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Abstract The stability analysis of fractional-order
systems with unbounded delay remains an open prob-
lem. In this paper, we firstly explore two new inte-
gral inequalities. Using these two integral inequali-
ties obtained, the Halanay inequality with unbounded
delay is extended to Caputo fractional-order case and
Riemann–Liouville fractional-order case. Finally, sev-
eral examples are presented to illustrate the effec-
tiveness and applicability of the fractional Halanay
inequalities in obtaining the asymptotic stability con-
ditions of fractional-order systems with unbounded
delay.
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1 Introduction

Fractional calculus as an old mathematical topic is
developed long ago by the mathematicians Leibniz,
Liouville, Riemann and so on. It does not attract great
attention due to the difficulty in computing and the
uncertainty of its geometric significance. However,
since these decades, researchers found that fractional
calculus can precisely describe some abnormal phe-
nomena, it iswidely used inmany areas such as physics,
control and engineering, see [1–6].

As an important aspect of control systems, stability
has attracted increasing interests. In 1996,Matignon [7]
firstly presents the stability result of fractional-order
linear system which can be used to determine the sta-
bility through the location in the complex plane of the
dynamic matrix eigenvalues of the state. Since then,
many results about the stability of fractional-order sys-
tems are obtained. Themainmethods to analyze the sta-
bility of fractional-order linear system include Laplace
transform method [8], linear matrix inequality (LMI)
approach [9] and the Riesz basis approach and the
semigroup method [10]. For the stability of fractional-
order nonlinear system, the main approaches include
the comparison method [11,12], the integral inequality
method [13], the linearization technique [14] and the
Lyapunov method [15,16].

The Lyapunov direct method is a powerful tool to
analyze the stability of integer-order nonlinear systems
which can be verified easilywithout solving the system.
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For fractional-order nonlinear system, the Lyapunov
method is not developed until 2009 [15] and 2010 [16],
where the authors proposed the Mittag-Leffler stabil-
ity, which is a generalization of classical exponential
stability, and they explored the fractional Lyapunov
method. Nevertheless, since the well-known Leibniz
chain rule is invalid for fractional-order derivative, the
application of Lyapunov method is not available until
2014 [17] where the authors proposed a simple but
useful derivative inequality, which makes x2 become
a good Lyapunov candidate function. A similar differ-
ential inequality in the Riemann–Liouville sense was
explored in 2016 [18].

Time delay as a common phenomenon is often
encountered in different real systems, such as elec-
tric, synchronous, chemical processes [19–21]. It is
worth to remark that, the existence of delay may cause
some undesirable response, even instability, so the
research on the stability of fractional-order systemwith
time delay is meaningful and important. In [22,23],
the authors generalized the Razumikhin method to
fractional-order systems with bounded delay. Using
frequency domain method, the asymptotic stability
results about fractional retarded and neutral systems are
obtained in [24,25]. In [18,26], the authors explored
the fractional-order systems with unbounded delay
and they obtained the stability of the systems with
the restriction τ̇ (t) ≤ d < 1. The stability results
in [18,26,27] are essentially in L2 norm sense. It is
noted that the convergence in L2 norm sense does not
imply the convergence in pointwise sense, i.e., x(t) →
0 as t → ∞ cannot follow from

∫ t
t−τ(t) x

2(s)ds → 0
as t → ∞.

In this paper, motivated mainly by [18,26,27], we
focus on the asymptotic stability of fractional-order
systems with unbounded delay, where the fractional-
order derivatives are in Caputo sense and Riemann–
Liouville sense. The main tools proposed here which
are also our first contribution are two integral inequal-
ities which generalize the Halanay inequality with
bounded delay to the fractionalHalanay inequalitywith
unbounded delay. The second novelty is that we do not
need the assumption that τ̇ (t) ≤ d < 1 used in [18,26]
(also see Remark 3).

The rest of this paper is organized as follows: Sect. 2
presents some basic concepts and lemmas on fractional
calculus. The new integral inequalities and fractional
Halanay inequalities with unbounded delay are intro-
duced in Sect. 3. Several kinds of fractional-order sys-

tems with unbounded delay are explored in Sect. 4
where the asymptotic stability conditions are obtained.
Section 5 is a conclusion about this paper.

2 Preliminary

In this section, some basic definitions and lemmas are
presented which are useful throughout this paper.

Definition 1 [2] The Riemann–Liouville fractional
integral of order α > 0 for a function f :R+ → R

is defined by

0D
−α
t f (t) = 1

Γ (α)

∫ t

0
(t − s)α−1 f (s)ds.

Based on this definition of Riemann–Liouville frac-
tional integral, the fractional-order derivative in
Riemann–Liouville sense and Caputo sense are given.

Definition 2 [2] The Riemann–Liouville fractional
derivative of order α > 0 for a function f :R+ → R is
defined by

RL
0 Dα

t f (t) = dk

dtk

(
0D

−(k−α)
t f (t)

)

= 1

Γ (k − α)

dk

dtk

∫ t

0
(t − s)k−α−1 f (s)ds,

t > 0,

where k − 1 ≤ α < k, k ∈ N and Γ (·) is the Gamma
function, that is

Γ (α) =
∫ +∞

0
tα−1e−tdt.

In particular, when 0 < α < 1, we have

RL
0 Dα

t f (t) = 1

Γ (1 − α)

d

dt

∫ t

0
(t − s)−α f (s)ds.

Definition 3 [2] The Caputo fractional derivative of
order α > 0 for a function f :R+ → R is defined by

C
0D

α
t f (t) = 0D

−(k−α)
t f (k)(t)

= 1

Γ (k − α)

∫ t

0
(t − s)k−α−1 f (k)(s)ds,

t > 0,

where k−1 ≤ α < k, k ∈ N and f (m)(t) is them-order
derivative of f (t). In particular, when 0 < α < 1, we
have
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C
0D

α
t f (t) = 1

Γ (1 − α)

∫ t

0

f ′(s)
(t − s)α

ds.

A very important concept in the theory of fractional
calculus is Mittag-Leffler function.

Definition 4 [2] The two-parameter Mittag-Leffler
function is defined by

Eα,β(z) =
+∞∑

j=0

z j

Γ (α j + β)
, α > 0, β > 0.

When β = 1, the two-parameter Mittag-Leffler func-
tion becomes the one-parameter Mittag-Leffler func-
tion, i.e.,

Eα(z) = Eα,1(z) =
+∞∑

j=0

z j

Γ (α j + 1)
, α > 0.

It is well known that the computation of the frac-
tional derivatives for composite functions is com-
plicated since there is no chain rule for fractional-
order derivative. That is, generally, C

0D
α
t f (x(t)) �=

f ′(x(t))C0Dα
t x(t). This leads to the difficulty of com-

putation C
0D

α
t x

2(t). Fortunately, for the sake of stabil-
ity, the following two lemmas about fractional-order
derivative inequalities are enough to analyze the stabil-
ity of a class of fractional systems considered in this
paper.

Lemma 1 [17] Let α ∈ (0, 1) and x(t) ∈ R be a con-
tinuous and differentiable function. Then for any t ≥ 0,
C
0D

α
t x

2(t) ≤ 2x(t)C0D
α
t x(t).

Lemma 2 [18] Let α ∈ (0, 1) and x(t) ∈ R be a con-
tinuous and differentiable function. Then for any t ≥ 0,
RL
0 Dα

t x
2(t) ≤ x(t)RL0 Dα

t x(t).

Consider the following fractional-order systemwith
unbounded delay

0D
α
t x(t) = f (t, x(t), x(t − τ(t))), t ≥ 0, (1)

where 0 < α < 1, 0Dα
t x(t) represents the fractional-

order derivative of x(t) in Riemann–Liouville or
Caputo sense. x(t) ∈ R

n is the state vector, f :R+ ×
R
n × R

n → R
n is a nonlinear functions with

f (0, 0, 0) = 0. τ(t): [0,+∞) → [0,+∞) represents
the unbounded time delay.

Definition 5 For fractional-order system (1), the trivial
solution is called to be asymptotically stable if x(t) →
0 as t → +∞.

3 Integral inequalities

In this section, we establish two integral inequalities
which can be used to deal with the asymptotic stabil-
ity for fractional-order systems with unbounded time-
varying delay. The proof is based on “inf–sup”method.

Theorem 1 Let φ: [− h,+∞) → R
+ be bounded on

[− h, 0] and continuous on [0,+∞). Suppose that
a ∈ C(R+,R) satisfies limt→+∞ a(t) = 0, τ ∈
C(R+,R+) with τ(t) ≤ t + h and t − τ(t) → +∞
as t → +∞. K ∈ C(R+,R+) ∩ L1(R+), and
limt→+∞ K (t) = 0. μ > 0 is a constant and the fol-
lowing inequality holds: for all t ≥ 0,

φ(t) ≤ a(t) + μ

∫ t

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds.

(2)

If μ‖K‖L1(R+) < 1, then, limt→+∞ φ(t) = 0.

Proof The proof is divided into two steps.
Step 1 Proving that φ(t) is uniformly bounded on

[− h,+∞).
Indeed, since τ(t) ≤ t + h, for s ∈ [0, t], we have
sup

s−τ(s)≤σ≤s
φ(σ) ≤ sup

σ∈[− h,t]
φ(σ)

which, combining with (2), gives

φ(t) ≤ a(t) + sup
σ∈[− h,t]

φ(σ)μ

∫ t

0
K (t − s)ds

= a(t) + sup
σ∈[− h,t]

φ(σ)μ

∫ t

0
K (s)ds

≤ a(t) + sup
σ∈[− h,t]

φ(σ)μ‖K‖L1(R+),

(3)

Taking the supremum on both sides of (3) yields

sup
σ∈[− h,t]

φ(σ) ≤ sup
s≥0

a(s) + sup
σ∈[− h,0]

φ(σ)

+ sup
σ∈[− h,t]

φ(σ)μ‖K‖L1(R+).
(4)

Since μ‖K‖L1(R+) < 1, it follows from (4) that for all
t ≥ 0,

sup
σ∈[− h,t]

φ(σ) ≤ sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

,

(5)

that is, φ(t) is bounded on [− h,+∞).
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Step 2 Showing that limt→+∞ φ(t) = 0. Denote
φ(t) := sups≥t φ(s). It is clear to see that φ(t) is well
defined and is non-increasing with respect to t since
φ(t) is nonnegative and is bounded on [− h,+∞) just
proved in step 1, which also implies the existence of
inf t≥0 φ(t). Thus, to order to show limt→+∞ φ(t) = 0,
it suffices to prove inf t≥0 φ(t) = 0.

Indeed, for any given ε > 0, there exists a constant
T ≥ 0 such that φ(t) ≤ φ(T ) ≤ inf t≥0 φ(t) + ε holds
for all t ≥ T . Since limt→+∞(t − τ(t)) = +∞, there
exist T > 0 such that for all t ≥ T , t−τ(t) > T holds.
It follows from (2) and (5) that

φ(t) ≤ a(t) + μ

∫ t

0
K (t − s)φ(s − τ(s))ds

≤ a(t) + μ

∫ T

0
K (t − s)φ(s − τ(s))ds

+ μ

∫ t

T
K (t − s)φ(s − τ(s))ds

≤ a(t) + sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

μ

×
∫ T

0
K (t − s)ds + μ

[

inf
t≥0

φ(t) + ε

] ∫ t

T
K (t − s)ds

≤ a(t) + sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

μ

×
∫ T

0
K (t − s)ds +

[

inf
t≥0

φ(t) + ε

]

μ‖K‖L1(R+).

(6)

By the definition of φ(t) and (6), we get that for
t ≥ T ,

φ(t) ≤ sup
s≥t

[

a(s) + sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

× μ

∫ T

0
K (s − σ)dσ +

[

inf
t≥0

φ(t) + ε

]

μ‖K‖L1(R+)

]

≤ sup
s≥t

a(s) + sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

× μ

∫ T

0
sup
s≥t

K (s − σ)dσ +
[

inf
t≥0

φ(t) + ε

]

μ‖K‖L1(R+).

(7)

From limt→+∞ a(t) = 0 and limt→+∞ K (t) = 0,
one has

lim
t→+∞

{

sup
s≥t

a(s) + sups≥0 a(s) + supσ∈[− h,0] φ(σ)

1 − μ‖K‖L1(R+)

× μ

∫ T

0
sup
s≥t

K (s − σ)dσ

}

= 0.

Taking the infimum on both sides of (7) and noting that
inf t≥0 φ(t) = limt→+∞ φ(t), we derive

inf
t≥0

φ(t) ≤
[

inf
t≥0

φ(t) + ε

]

μ‖K‖L1(R+),

which, jointlywithμ‖K‖L1(R+) < 1, yields inf t≥0 φ(t) ≤
εμ‖K‖L1(R+)/(1−μ‖K‖L1(R+)). The arbitrariness of
ε implies inf t≥0 φ(t) = 0. Proof is completed. ��

Theorem 2 Let φ: (0,+∞) → R
+ be continuous.

Suppose that a: (0,+∞) → R is a continuous func-
tion satisfying limt→+∞ a(t) = 0. τ : (0,+∞) →
(0,+∞) is continuous and satisfies t − τ(t) ≥
g(t) > 0 for all t > 0, where g(t) is monoton-
ically increasing and limt→+∞ g(t) = +∞. K ∈
C(R+,R+) ∩ L1(R+), satisfies limt→+∞ K (t) = 0,
and there exists a constant T > 0 such that

∫ T
0 K (t −

s) sups−τ(s)≤σ≤s φ(σ)ds is bounded for t > g(T ) and
tends to 0 as t → +∞. μ > 0 is a constant and the
following inequality holds: for all t ≥ 0,

φ(t) ≤ a(t) + μ

∫ t

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds. (8)

If μ‖K‖L1(R+) < 1, then, limt→+∞ φ(t) = 0.

Proof We prove this theorem by two steps.
Step 1 Showing that φ(t) is uniformly bounded for

all t > g(T ).
Noting that 0 < g(t) ≤ t − τ(t), it follows from (8)

that

φ(t) ≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ μ

∫ t

T
K (t − s) sup

g(s)≤s−τ(s)≤σ≤s
φ(σ)ds

≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ sup
σ∈[g(T ),t]

φ(σ)μ

∫ t

T
K (t − s)ds

≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ sup
σ∈[g(T ),t]

φ(σ)μ‖K‖L1(R+), (9)
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which implies

sup
t≥g(T )

φ(t) ≤ sup
t≥g(T )

a(t) + μ sup
t≥g(T )

∫ T

0
K (t − s)

× sup
s−τ(s)≤σ≤s

φ(σ)ds + sup
t≥g(T )

φ(t)μ‖K‖L1(R+).

(10)

Since a(t) is continuous and limt→+∞ a(t) = 0, it is
seen that a(t) is bounded on [g(T ),+∞). Since
∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

is bounded and μ‖K‖L1(R+) < 1, it follows from (10)
that

sup
t≥g(T )

φ(t) ≤
sup

t≥g(T )

a(t) + μ sup
t≥g(T )

∫ T
0 K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

1 − μ‖K‖L1(R+)

:= N , t ≥ g(T ),

(11)

that is, φ(t) is uniformly bounded on [g(T ),+∞).
Step 2 Showing that limt→+∞ φ(t) = 0. Denote

φ(t) := sups≥t>g(T ) φ(s), it is seen that φ(t) is well
defined and is non-increasing with respect to t since
φ(t) is nonnegative and is bounded on [g(T ),+∞)

just proved in step 1,which also implies the existence of
inf t>g(T ) φ(t). Thus, in order to show limt→+∞ φ(t) =
0, it suffices to prove inf t>g(T ) φ(t) = 0. Indeed, by the
definition of infimum, for any given ε > 0, there exists
G > g(T ) such that φ(t) ≤ φ(G) ≤ inf t>g(T ) φ(t)+ε

for all t ≥ G. Considering the fact that 0 < g(t) ≤
t − τ(t) and g(t) is increasing, we have g(T ) < T and
g−1(g(G)) = G < g−1(G). It follows from (8) and
(11) that

φ(t) ≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ μ

∫ g−1(G)

T
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ μ

∫ t

g−1(G)

K (t − s) sup
g(s)≤s−τ(s)≤σ≤s

φ(σ)ds

≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ μN
∫ g−1(G)

T
K (t − s)ds

+ μ sup
[G,t]

φ(σ)

∫ t

g−1(G)

K (t − s)ds

≤ a(t) + μ

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
φ(σ)ds

+ μN
∫ g−1(G)

T
K (t − s)ds

+
[

inf
t>g(T )

φ(t) + ε

]

μ‖K‖L1(R+) (12)

By the definition of φ(t) and (12), we get that for
t ≥ g−1(G) > g(T ),

φ(t) ≤ sup
s≥t

[

a(s) + μ

∫ T

0
K (s − σ) sup

σ−τ(σ )≤ω≤σ

φ(ω)dσ

+ μN
∫ g−1(G)

T
K (s − σ)dσ

+
[

inf
t>g(T )

φ(t) + ε

]

μ‖K‖L1(R+)

]

≤ sup
s≥t

a(s) + μ sup
s≥t

∫ T

0
K (s − σ) sup

σ−τ(σ )≤ω≤σ

φ(ω)dσ

+ μN
∫ g−1(G)

T
sup
s≥t

K (s − σ)dσ

+
[

inf
t≥T

φ(t) + ε

]

μ‖K‖L1(R+). (13)

From limt→+∞ a(t) = 0 and limt→+∞ K (t) = 0,
one has

lim
t→+∞

{

sup
s≥t

a(s) + μ sup
s≥t

∫ T

0
K (s − σ)

× sup
σ−τ(σ )≤ω≤σ

φ(ω)dσ

+μN
∫ g−1(G)

T
sup
s≥t

K (s − σ)dσ

}

= 0.

Taking the infimum on both sides of (13) and noting
that inf t>g(T ) φ(t) = limt→+∞ φ(t), we derive

inf
t>g(T )

φ(t) ≤
[

inf
t>g(T )

φ(t) + ε

]

μ‖K‖L1(R+),

which, jointly with μ‖K‖L1(R+) < 1, yields
inf t>g(T ) φ(t) ≤ εμ‖K‖L1(R+)/(1 − μ‖K‖L1(R+)).
The arbitrariness of ε yields inf t>g(T ) φ(t) = 0. Proof
is completed. ��

By using Theorem 1, we arrive at the following
corollary.
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Corollary 1 Letα ∈ (0, 1) and V : [− h,+∞) → R
+

be bounded on [− h, 0] and continuous on [0,+∞).
Suppose that τ ∈ C(R+,R+) satisfies τ(t) ≤ t + h
for some fixed h > 0, t − τ(t) → +∞ as t → +∞.
For some positive constants λ > μ > 0, the following
inequality holds: for all t ≥ 0,

C
0D

α
t V (t) ≤ −λV (t) + μ sup

−τ(t)≤σ≤0
V (t + σ). (14)

Then limt→+∞ V (t) = 0.

Proof According to (14), for t ≥ 0, there exists a non-
negative function M(t) satisfying

C
0D

α
t V (t) + M(t) = −λV (t) + μ sup

−τ(t)≤σ≤0
V (t + σ).

(15)

Taking the Laplace transform on both sides of (15)
yields, for t ≥ 0,

sα V̂ (s) − V (0)sα−1 + M̂(s) = −λV̂ (s) + μF(s),
(16)

where

V̂ (s) :=
∫ ∞

0
e−st V (t)dt,

M̂(s) :=
∫ ∞

0
e−st M(t)dt,

F(s) :=
∫ ∞

0
e−st sup

−τ(t)≤σ≤0
V (t + σ)dt,

are, respectively, the Laplace transformof the functions
V (t), M(t) and sup−τ(t)≤σ≤0 V (t + σ). Therefore, by
(16), it has V̂ (s) the expression given by

V̂ (s) = V (0)sα−1 − M̂(s) + μF(s)

sα + λ
. (17)

Taking the inverse Laplace transform on both sides of
(17) gives

V (t) = Eα(−λtα)V (0) − M(t) ∗
[
tα−1Eα,α(−λtα)

]

+ μ

[

sup
−τ(t)≤σ≤0

V (t + σ)

]

∗
[
tα−1Eα,α(−λtα)

]
,

(18)

where ∗ represents the convolution operator. Since
M(t), tα−1 and Eα,α(−λtα) are nonnegative, we have
the following estimate:

V (t) ≤ Eα(−λtα)V (0) + μ

∫ t

0
(t − s)α−1

× Eα,α(−λ(t − s)α) sup
−τ(t)≤σ≤0

V (s + σ)ds.

(19)

It can be easily seen that (19) is the form of (2) with
a(t) = Eα(−λtα)V (0) and K (t) = tα−1Eα,α(−λtα).
Obviously, a(·) is continuous and limt→+∞ a(t) = 0.
FromTheorem1, in order to prove limt→+∞ V (t) = 0,
it is sufficient to verify μ‖K‖L1(R+) < 1. Indeed, it
follows from [3, p. 50, formula 1.10.7] that

d

dt
[tαEα,α+1(−λtα)] = tα−1Eα,α(−λtα),

which implies

∫ t

0
sα−1Eα,α(−λsα)ds = tαEα,α+1(−λtα). (20)

It follows from [3, Page 43, formula 1.8.28] that

Eα,α+1(−λtα) = 1

λtα
+ O

(
1

λ2t2α

)

,

which yields

lim
t→+∞ tαEα,α+1(−λtα) = 1

λ
.

Since
∫ t
0 s

α−1Eα,α(−λsα)ds is non-decreasing with
respect to t , from (20), so does for tαEα,α+1(−λtα).
Thus,

∫ t

0
sα−1Eα,α(−λsα)ds ≤ 1

λ
, ∀t ≥ 0. (21)

which, jointly with λ > μ, implies

μ‖K‖L1(R+) = μ

∫ ∞

0
sα−1Eα,α(−λsα) ≤ μ

λ
< 1.

(22)

Hence limt→+∞ V (t) = 0. ��
By using Theorem 2, we arrive at the following

corollary.

Corollary 2 Let α ∈ (0, 1) and V : (0,+∞) → R
+

be continuous on (0,+∞) and t1−αV (t) is continuous
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on [0,+∞). τ : (0,+∞) → (0,+∞) is continuous
and satisfies t − τ(t) ≥ g(t) > 0 for all t > 0, where
g(t) is monotonically increasing, limt→+∞ g(t) =
+∞ and (g(t))α−1 is integrable on (0, T ]. Assume that
for some positive constants λ > μ > 0, the following
inequality holds: for all t ≥ 0,

RL
0 Dα

t V (t) ≤ −λV (t) + μ sup
−τ(t)≤σ≤0

V (t + σ). (23)

Then limt→+∞ V (t) = 0.

Proof By (23), for t > 0, we know that there exists a
nonnegative function M(t) satisfying

RL
0 Dα

t V (t) + M(t) = −λV (t) + μ sup
−τ(t)≤σ≤0

V (t + σ).

(24)

Taking the Laplace transform on both sides of (24)
yields

sα V̂ (s) − RL
0 D−(1−α)

t V (0) + M̂(s)

= −λV̂ (s) + μF(s), (25)

where t > 0 and

V̂ (s) :=
∫ ∞

0
e−st V (t)dt,

M̂(s) :=
∫ ∞

0
e−st M(t)dt,

F(s) :=
∫ ∞

0
e−st sup

−τ(t)≤σ≤0
V (t + σ)dt,

are, respectively, the Laplace transformof the functions
V (t),M(t) and sup−τ(t)≤σ≤0 V (t+σ). Therefore, (25)
is reduced to

V̂ (s) =
RL
0 D−(1−α)

t V (0) − M̂(s) + μF(s)

sα + λ
. (26)

Taking the inverse Laplace transform on both sides of
(26) gives

V (t) = tα−1Eα,α(−λtα)RL0 D−(1−α)
t V (0)

− M(t) ∗ [tα−1Eα,α(−λtα)]

+ μ

[

sup
−τ(t)≤σ≤0

V (t + σ)

]

∗ [tα−1Eα,α(−λtα)],

(27)

where ∗ represents the convolution operator. Since
M(t), tα−1 and Eα,α(−λtα) are nonnegative, it follows
that

V (t) ≤ tα−1Eα,α(−λtα)RL0 D−(1−α)
t V (0)

+ μ

∫ t

0
(t − s)α−1Eα,α(−λ(t − s)α)

× sup
−τ(s)≤σ≤0

V (s + σ)ds.

(28)

Clearly, (28) is the form of (8) with K (t) = tα−1

Eα,α(−λtα) and a(t) = tα−1Eα,α(−λtα)RL0 D−(1−α)
t

V (0), it can be seen that a(·) is continuous on (0,+∞)

and satisfies limt→+∞ a(t) = 0. Similar to the proof
of Corollary 1, we have limt→+∞ K (t) = 0 and
μ‖K‖L1(R+) < 1. To show limt→+∞ V (t) = 0, it suf-

fices to prove that
∫ T
0 K (t − s) sups−τ(s)≤σ≤s V (σ )ds

is bounded for t > g(T ) and tends to zero as t → +∞.
Actually, for t > g(T ), it has

∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
V (σ )ds

=
∫ T

0
K (t − s) sup

g(s)≤s−τ(s)≤σ≤s
σα−1σ 1−αV (σ )ds

≤
∫ T

0
K (t − s)(g(s))α−1 sup

s−τ(s)≤σ≤s
σ 1−αV (σ )ds.

Since t1−αV (t) is continuous on [0, T ], we obtain
∫ T

0
K (t − s) sup

s−τ(s)≤σ≤s
V (σ )ds

≤
∫ T

0
K (t − s)(g(s))α−1ds sup

0≤σ≤T
σ 1−αV (σ )

≤
(∫ g(T )

2

0
K (t − s)(g(s))α−1ds

+
∫ T

g(T )
2

K (t − s)(g(s))α−1ds

)

sup
0≤σ≤T

σ 1−αV (σ )

≤
⎛

⎜
⎝ sup

s∈
[
0, g(T )

2

]
K (t − s)

∫ g(T )
2

0
(g(s))α−1ds

+ sup
s∈

[
g(T )
2 ,T

]
(g(s))α−1

∫ T

g(T )
2

K (t − s)ds

⎞

⎟
⎠

× sup
0≤σ≤T

σ 1−αV (σ ). (29)
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Since (g(s))α−1 is integrable on (0, T ] and limt→∞
K (t) = 0, it can be verified that

sup
s∈

[
0, g(T )

2

]
K (t − s)

∫ g(T )
2

0
(g(s))α−1ds

is bounded for all t > g(T ) and converges to zero as
t → ∞. On the other hand, since K (t) is integrable on
(0, T ] and limt→∞ K (t) = 0, it is easy to check that

sup
s∈

[
g(T )
2 ,T

]
(g(s))α−1

∫ T

g(T )
2

K (t − s)ds

is bounded for all t > g(T ) and converges to zero
as t → ∞. Thus, by (29),

∫ T
0 K (t − s)(g(s))α−1ds

is bounded for all t > g(T ) and tends to zero as
t → +∞. Hence, it follows from Theorem 2 that
limt→+∞ V (t) = 0. ��
Remark 1 Corollaries 1 and 2 can be regarded as gener-
alization of Halanay inequality with unbounded delay
[28]. Corollary 1 is applicable for the asymptotic stabil-
ity of Caputo fractional-order system while Corollary
2 can be applied to obtain the stability of Riemann–
Liouville fractional-order system. According to the
characteristic of solution expression of fractional-order
system 0Dα

t x(t) = −λx(t) + f (x), where 0Dα
t repre-

sents Caputo derivative or Riemann–Liouville deriva-
tive, V (t) in Corollaries 1 and 2 has different domain
of V (t) (One is t ≥ −h, the other is t > 0), and thus
τ(t) in Corollary 1 is supposed to satisfy t − τ(t) ≥
−h, whereas τ(t) in Corollary 2 is required to satisfy
t − τ(t) > 0 which is assumed in [18,26].

Remark 2 In [23], the authors useRazumikhin theorem
to investigate the stability of fractional-order system
with bounded delay.Corollaries 1 and 2 can be regarded
as a generalization of Theorem 3.2 in [23].

4 Applications on asymptotic stability

In this section, by applying the inequalities derived in
the previous section, we investigate the asymptotic sta-
bility for several classes of fractional-order systems
with unbounded time-varying delay.

Example 1 Consider the following fractional-order
differential system

C
0D

α
t x(t) = −a(t)x(t) + b(t)x(t − τ(t)), (30)

where 0 < α < 1, x ∈ R is the state, a(t), b(t) are
continuous functions, τ(t) is a continuous function sat-
isfying t − τ(t) ≥ −h for t ≥ 0 and t − τ(t) → +∞
as t → +∞.

Denote V (t) = x2(t) and choose two constants
λ > μ > 0. Finding Caputo’s derivative of V (t) with
respect to t along the solution to (30) yields

C
0D

α
t V (t) + λV (t) − μ sup

−τ(t)≤σ≤0
V (t + σ)

≤ 2x(t)C0D
α
t x(t) + λx2(t) − μx2(t − τ(t))

= 2x(t)[− a(t)x(t) + b(t)x(t − τ)] + λx2(t)

−μx2(t − τ(t))

= [− 2a(t) + λ]x2(t) + 2b(t)x(t)x(t − τ(t))

−μx2(t − τ(t))

= (
x(t) x(t − τ(t))

)

(−2a(t) + λ b(t)
b(t) −μ

) (
x(t)

x(t − τ(t))

)

≤ 0,

provided that

(−2a(t) + λ b(t)
b(t) −μ

)

≤ 0, ∀t ≥ 0. (31)

By Corollary 1, if (31) holds, the solution of (30) is
asymptotically stable.

Proposition 1 Suppose that there exist two constants
λ > μ > 0 such that LMI (31) holds. Then system (30)
with x0 = φ ∈ C([− h, 0],R) is asymptotically stable
for all unbounded delay τ(t) satisfying τ(t) ≤ t + h
and t − τ(t) → +∞ as t → +∞.

When a(t) = a, b(t) = b in (30) are two constants
functions, (31) becomes

(−2a + λ b
b −μ

)

≤ 0. (32)

This is equivalent toμ > 0,−2a+λ < 0 and−(−2a+
λ)μ − b2 > 0, that is, μ > 0, λ ∈ (0, 2a) and (2a −
λ)μ > b2. It is easy to verify that if a > |b|, there
exists two constants λ,μ > 0 with λ > μ such that
λ ∈ (0, 2a) and (2a − λ)μ > b2, i.e., LMI (32) is
feasible. Hence the following corollary is proved.

Corollary 3 Suppose that a > |b|. Then system

C
0D

α
t x(t) = −ax(t) + bx(t − τ(t)), (33)
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Fig. 1 System (33) with α = 0.8, a = 8, b = 3, x0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t/2 + 3
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Fig. 2 System (33) with α = 0.8, a = 8, b = 3, x0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t sin2(t)/2 + t/3 + 3

with 0 < α < 1, x0 = φ ∈ C[− h, 0] is asymptotically
stable for all unbounded delay τ(t) satisfying τ(t) ≤
t + h and t − τ(t) → +∞ as t → +∞.

Note that t − τ(t) → +∞ as t → +∞ whence τ(t) is
bounded. Corollary 3 generalizes the results of [13,29],
where both time delays are required to be bounded.

Figure 1 gives a numerical simulation of system (33)
with α = 0.8, a = 8, b = 3, τ (t) = 1

2 t + 3 and x0 =
1 ∈ C[− 3, 0]. Figure 2 gives a numerical simulation
of system (33) with α = 0.8, a = 8, b = 3, τ (t) =
t sin2(t)

2 + t
3 + 3 and x0 = 1 ∈ C[− 3, 0].

Now taking a(t) = t2 + 1, b(t) = t and choosing
λ = 1, μ = 1

2 , a simple computation shows that LMI
(31) holds for all t ≥ 0. Hence system C

0D
0.8
t x(t) =

−(t2 + 1)x(t) + t x(t − τ(t)) is asymptotically stable
with unbounded delay τ(t) satisfying τ(t) ≤ t + h
and t − τ(t) → +∞ as t → +∞. The simulation
of this system with delay τ(t) = 1

2 t + 3 and τ(t) =
t sin2(t)

2 + t
3+3 can be seen in Figs. 3 and 4, respectively,

where the initials are x0 = 1 ∈ C[− 3, 0].
Example 2 Consider the following fractional-order
nonlinear system with delay

C
0D

α
t x(t) = f (x(t), y(t), z(t)) + ax(t − τ(t)),

C
0D

α
t y(t) = g(x(t), y(t), z(t)) + by(t − τ(t)),

C
0D

α
t z(t) = h(x(t), y(t), z(t)) + cz(t − τ(t)).

(34)
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Fig. 3 System (30) with α = 0.8, a = t2 + 1, b = t, x0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t/2 + 3
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Fig. 4 System (30) with α = 0.8, a = t2 + 1, b = t, x0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t sin2 t/2 + t/3 + 3

where 0 < α < 1, x, y, z ∈ R are states, f, g, h:R3 →
R are continuous functions, τ(t) > 0 is a continuous
function satisfying t−τ(t) ≥ −h and t−τ(t) → +∞
as t → +∞.

Proposition 2 Suppose that there exist constants λ,μ

such that λ > μ > 0 and

(a2

μ
+ λ

)
x2 +

(b2

μ
+ λ

)
y2 +

(c2

μ
+ λ

)
z2

+ 2x f (x, y, z) + 2yg(x, y, z) + 2zh(x, y, z) ≤ 0

holds. Then system (34)with x0 = φ ∈ C([− h, 0],R),
y0 = ϕ ∈ C([− h, 0],R), z0 = ψ ∈ C([− h, 0],R)

is asymptotically stable for all unbounded delay τ(t)
satisfying t − τ(t) ≥ −h and t − τ(t) → +∞ as
t → +∞.

Proof Denote V (t) = x2(t) + y2(t) + z2(t). Finding
Caputo’s derivative of V (t) with respect to t along the
solution to (34) gives

C
0D

α
t V (t) ≤ 2x(t)C0D

α
t x(t) + 2y(t)C0D

α
t y(t)

+ 2z(t)C0D
α
t z(t) = 2x(t)

(
f (x(t), y(t), z(t))

+ ax(t − τ(t))
)

+ 2y(t)
(
g(x(t), y(t), z(t)) + by(t − τ(t))

)

+ 2z(t)
(
h(x(t), y(t), z(t)) + cz(t − τ(t))

)

(35)
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By Young’s inequality and (2), it follows that

C
0D

α
t V (t) + λV (t) − μ sup

−τ(t)≤σ≤0
V (t + σ)

≤ 2x(t)
(
f (x(t), y(t), z(t)) + ax(t − τ(t))

)

+ 2y(t)
(
g(x(t), y(t), z(t)) + by(t − τ(t))

)

+ 2z(t)
(
h(x(t), y(t), z(t)) + cz(t − τ(t))

) + λx2(t)

+ λy2(t) + λz2(t) − μ sup
−τ(t)≤σ≤0

x2(t + σ)

−μ sup
−τ(t)≤σ≤0

y2(t + σ) − μ sup
−τ(t)≤σ≤0

z2(t + σ)

≤ 2x(t) f (x(t), y(t), z(t)) + a2x2(t)

μ
+ μx2(t − τ(t))

+ 2y(t)g(x(t), y(t), z(t)) + b2y2(t)

μ

+μy2(t − τ(t)) + 2z(t)h(x(t), y(t), z(t)) + c2z2(t)

μ

+μz2(t − τ(t)) + λx2(t) + λy2(t) + λz2(t)

−μx2(t − τ(t)) − μy2(t − τ(t)) − μz2(t − τ(t))

= 2x(t) f (x(t), y(t), z(t)) + a2x2(t)

μ

+ 2y(t)g(x(t), y(t), z(t)) + b2y2(t)

μ

+ 2z(t)h(x(t), y(t), z(t)) + c2z2(t)

μ

+ λx2(t) + λy2(t) + λz2(t)

≤ 0

which, jointly with Corollary 1, implies that V (t) =
x2(t) + y2(t) + z2(t) → 0 as t → +∞. Thus, system
(34) is asymptotically stable. ��

Now taking f (x, y, z) = −2x + y + y2 +
z, g(x, y, z) = −xy− x −2y− z, h(x, y, z) = −x +
y − 2z, and choosing λ = 2, μ = 1, a = b = c = 1, it
is easy to verify that system (34) with α = 0.8, initials
x0 = y0 = z0 = 1 ∈ C[− 3, 0] is asymptotically stable
for unbounded delay τ(t) satisfying τ(t) < t + h and
t − τ(t) → +∞ as t → +∞. The simulations of sys-
tem (34) with the above parameters and τ(t) = 1

2 t + 3

and τ(t) = t sin2(t)
2 + t

3 + 3 can be seen in Figs. 5 and
6, respectively.

Example 3 Consider the following fractional-order
nonlinear system in Riemann–Liouville sense with
unbounded time delay
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Fig. 5 System (34) with α = 0.8, x0 = y0 = z0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t/2 + 3
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Fig. 6 System (34) with α = 0.8, x0 = y0 = z0 = 1 ∈
C[− 3, 0], and with delay τ(t) = t sin2(t)/2 + t/3 + 3

RL
0 Dα

t x(t) = −3x(t) − 3

2
x(t − τ(t)) + 1

4
y(t − τ(t))

+ x(t) sin(y(t)),

RL
0 Dα

t y(t) = −2y(t) + 1

2
y(t − τ(t))

+ y(t) sin(x(t − τ(t))), (36)

where 0 < α < 1, x(t), y(t) ∈ R. τ(t) > 0 is a
continuous function and satisfies t − τ(t) > 0 and
t − τ(t) → +∞ as t → +∞

In order to prove the stability of system (36),we shall
construct Lyapunov function V (t) = x2(t) + y2(t) to
verify that there exist λ > μ > 0 such that inequal-
ity RL

0 Dα
t V (t)+λV (t)−μ sup−τ(t)≤σ≤0 V (t +σ) ≤ 0

holds.ByLemma2,findingRiemann–Liouville deriva-
tive of V (t) with respect to t along the solution to (36)
gives:

RL
0 Dα

t V (t) + λV (t) − μ sup
−τ(t)≤σ<0

V (t + σ)

≤ 2x(t)
[ − 3x(t) − 3

2
x(t − τ(t)) + 1

4
y(t − τ(t))

+ x(t) sin(y(t))
] + 2y(t)

[ − 2y(t) + 1

2
y(t − τ(t))

+ y(t) sin(x(t − τ(t)))
]

+ λx2(t) + λy2(t) − μx2(t − τ(t)) − μy2(t − τ(t))

= − 6x2(t) − 3x(t)x(t − τ(t)) + 1

2
x(t)y(t − τ(t))
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Fig. 7 System (34) with α = 0.8, 0D
α−1
t x(t)|t→0 =

0D
α−1
t y(t)|t→0 = 1, and with delay τ(t) = t/5

+ 2x2(t) sin(y(t)) − 4y2(t) + y(t)y(t − τ(t))

+ 2y2(t) sin(x(t − τ(t))) + λx2(t) + λy2(t)

−μx2(t − τ(t)) − μy2(t − τ(t))

≤ (λ − 4)x2(t) + (λ − 2)y2(t) − 3x(t)x(t − τ(t))

+ 1

2
x(t)y(t − τ(t)) + y(t)y(t − τ(t))

−μx2(t − τ(t)) − μy2(t − τ(t))

= (
x(t) y(t) x(t − τ(t)) y(t − τ(t))

)

×

⎛

⎜
⎜
⎝

λ − 4 0 − 3/2 1/4
0 λ − 2 0 1/2

− 3/2 0 −μ 0
1/4 1/2 0 −μ

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x(t)
y(t)

x(t − τ(t))
y(t − τ(t))

⎞

⎟
⎟
⎠

≤ 0

if

⎛

⎜
⎜
⎝

λ − 4 0 − 3/2 1/4
0 λ − 2 0 1/2

− 3/2 0 −μ 0
1/4 1/2 0 −μ

⎞

⎟
⎟
⎠ ≤ 0 (37)

holds. It can be directly calculated that with λ = 1.7
andμ = 1.2, LMI (37) holds and thus (36) is asymptot-
ically stable. The evolution of system (36)withα = 0.8
and initials 0D

α−1
t x(t)|t→0 = 1, 0D

α−1
t y(t)|t→0 = 1

can be seen in Figs. 7 and 8 where the delays are

τ(t) = t
5 and τ(t) = t

4 + t sin2(10t)
4 , respectively.

Remark 3 In [18], the authors prove the stability result
by using the Lyapunov method under the restriction
τ̇ (t) < 1.Also, the stability results of [18] is in L2 norm
sense. In this paper, we have removed the assumption
that τ̇ (t) < 1 by using the integral inequalities to obtain
the asymptotic stability inRn norm sense. Particularly,
τ̇ (t) < 1 is invalid for the case where τ(t) = t

4 +
t sin2(10t)

4 , the stability results derived here cannot be
obtained from the method used in [18].
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Fig. 8 System (34) with α = 0.8, 0D
α−1
t x(t)|t→0 =

0D
α−1
t y(t)|t→0 = 1, and with delay τ(t) = t/4+ t sin2(10t)/4

5 Conclusion

In this paper, we investigated the asymptotic stability
of fractional-order systems with the Caputo fractional
derivative and Riemann–Liouville fractional deriva-
tive. Firstly, two integral inequalities are presented,
by which the Halanay inequality is generalized to
fractional Halanay inequality with unbounded delay.
According to the characteristics of the solution of
fractional-order system, we made the assumptions that
t − τ(t) ≥ −h for Caputo fractional-order system and
t − τ(t) > 0 for Riemann–Liouville fractional-order
system. Examples are included to illustrate the effec-
tiveness of our results. It should be remarked that our
results are easily applied to obtain the stability condi-
tions.

In future works, applying the fractional Halanay
inequality obtained in the paper to time fractional reac-
tion diffusion equation with time-varying delay seems
to be an interesting problem. At addition, a future
research direction may be to use the fractional Halanay
inequality and LMI approach in [30] to design the
robust state feedback controller for fractional nonlin-
ear system with bounded or unbounded time delay and
to analyze the global stability analysis for fractional-
order neural networks with mixed time-varying delays
[12,31].
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