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Abstract: In this paper, the asymptotical stability for several classes of fractional order differential systems with time delay is
investigated. We firstly present an integral inequality by which the Halanay inequality is extended to fractional order case. Based on
the generalized Halanay inequality, we establish several asymptotical stability conditions under which the fractional order systems
with time delay are asymptotically stable. It is worth to note that these stability conditions are easy to check without resorting to
the solution expression of the systems.

1 Introduction

Fractional calculus, more precisely, arbitrary order calculus, appears
almost at the same time with the classical calculus. But it did not
attract a great attention due to the lack of application background
and the complexity of computation, until the last few decades when
researchers found that there are many anomalies that can not be
explained by classical calculus while fractional calculus is a use-
ful tool to describe some abnormal diffusion process because of its
memory and hereditary properties, then it is widely used in many
fields such as blood flow phenomena, electrochemical processes,
viscoelastic materials, etc.[1–3]. In 1991, Oustaloup proposes a
CRONE control, and in 1999, Podlubny[4] introduces the PIλDµ

controller, fractional calculus has been used in control theory, and
the researchers found fractional order controllers provide superior
performances in both theory and practice, and many results are
obtained, see[5–8].

Asymptotical stability analysis of fractional order systems, one
of the fundamental issues in control theory, is to find some stability
conditions under which systems are asymptotically stable. For linear
fractional order systems, the first stability result is the well-known
Matignon theorem [9]. This theorem enables us to determinate the
stability of linear fractional order systems through the location in
the complex plane of the dynamic matrix eigenvalues of the state.
Recently, many mathematical tools have been applied to analyze
the asymptotical stability in fractional order linear systems. These
include LMI approach [10], the Laplace transform method [11], the
Lyapunov method [12] and the Riesz basis approach and the semi-
group method [13]. In [14], it introduces the characteristic equation
of the system to give some simple sufficient asymptotical stability
conditions for interval linear fractional order neutral system with
time delay. Laplace transform method is developed in [11], where a
n-dimensional linear fractional order differential equation with mul-
tiple time delays is addressed and several sufficient conditions of
globally asymptotically stable are exploited.

For nonlinear fractional order systems, the Lyapunov method is
a classical approach to deal with the stability problem. The key
advantage of applying the Lyapunov method in obtaining the sta-
bility criteria for a given system is that it does not need to solve
the system to obtain the explicit solution expression and the need is
just the system structure. However, due to the memory effect and
the weakly singular kernels of the fractional order derivative, the
fractional Lyapunov method which is different from the classical

Lyapunov method was not developed until 2009 in [12] and 2010
in [15], and the applicability of the fractional Lyapunov method was
not available until 2014 in [16]. The Mittag-Leffler stability concept
is introduced in [12] and this kind of stability implies the asymptot-
ical stability. In [16], a simple but useful fractional order differential
inequality is established, which proves the quadratic function, x2, to
be a good Lyapunov candidate function. Very recently, a class of con-
vex and positive definite function as Lyapunov candidate function is
developed in [17], which makes the fractional Lyapunov theorem
more applicable. In [18], an indirect approach to obtain the stabil-
ity for nonlinear fractional order systems is established by using the
relation of the stability between the fractional order systems and the
corresponding integer order systems.

For the stability of fractional order system with time delay
(FSTD), Mittag-Leffler stability is addressed in [19]. In [20, 21], fre-
quency domain method is used to obtain the asymptotical stability
results. Razumikhin method was generalized to fractional order sys-
tems with delay in [22]. However, to the best of our knowledge, there
are few easily verifiable asymptotical stability criteria for FSTD.
In this paper, we are concerned with the asymptotical stability for
FSTD via a new integral inequality. Based on this inequality, we
generalize the Halanay inequality proposed by Aristide Halanay in
[23]. With these inequalities and the result of [16], we establish some
stability criteria that are easy to check.

The paper is organized as follows: Section 2 presented some
basic concepts and lemmas about fractional calculus. A new inte-
gral inequality and a generalized Halanay inequality are introduced
in Section 3. Section 4 is devoted to the asymptotical stability for
several kinds of fractional order systems with time delay. Section 5
is a conclusion about the paper.

2 Preliminary

In this section, some basic definitions and preliminaries are given
which are useful throughout this paper.

Definition 1. [4, Page 79] The Caputo’s fractional derivative of
order α > 0 for a function f : R+ → R is defined by

C
0D

α
t f(t) =

1

Γ(m− α)

∫ t
0

f (m)(θ)

(t− θ)α−m+1
dθ, t > 0
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withm = min{k ∈ N : k > α > 0}, where f (m)(t) is them-order
derivative of f(t), and Γ(·) is the Gamma function.

In particular, when 0 < α < 1, we have

C
0D

α
t f(t) =

1

Γ(1− α)

∫ t
0

f ′(θ)
(t− θ)α

dθ.

Definition 2. [4, Page 16] The one-parameter Mittag-Leffler func-
tion and two-parameter Mittag-Leffler function are defined by

Eα(z) =

+∞∑
k=0

zk

Γ(αk + 1)
and Eα,β(z) =

+∞∑
k=0

zk

Γ(αk + β)

respectively, where α > 0, β > 0.

Let h > 0 be a constant, we suppose that x ∈ C([−h,+∞);Rn).
For any t ≥ 0, we denote by xt an element of C([−h, 0];Rn)
defined by xt(σ) = x(t+ σ), −h ≤ σ ≤ 0. Consider the fractional
order system with time delay.

C
0D

α
t x(t) = f(t, xt), t > 0,

x(t) = ϕ(t), t ∈ [−h, 0],
(1)

where x ∈ Rn is the state vector, f : R+ × C([−h, 0];Rn) → Rn
is a nonlinear functional vector satisfies f(0, 0) = 0, ϕ is the contin-
uous vector valued history function and ∥ϕ∥ = supσ∈[−h,0] |ϕ(σ)|,
where | · | denotes the Euclidean norm for vectors.

Definition 3. [24, Page 4] For system (1), the trivial solution is said
to be:

• stable, if for any given ε > 0 there exists a δ > 0 such that ∥ϕ∥ <
δ implies |x(t)| < ε for all t ≥ 0.
• asymptotically stable, if it is stable and if in addition there exists
a δ > 0 such that if ∥ϕ∥ < δ, then x(t) → 0 as t→ +∞.
• unstable, if it is not stable.

Lemma 1. [16] Let x(t) ∈ R be a continuous and differentiable
function, then, for any t ≥ 0,

C
0D

α
t x

2(t) ≤ 2x(t)C0D
α
t x(t), ∀α ∈ (0, 1).

If x(t) ∈ Rn, it holds that for ∀α ∈ (0, 1) and t ≥ t0,

C
0D

α
t (x

⊤(t)x(t)) ≤ 2x⊤(t)C0D
α
t x(t).

Lemma 2. The Cauchy problem for fractional order time-delay
system of order 0 < α < 1:

C
0D

α
t x(t) = λx(t) + f(t, xt), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h, 0], (2)

is equivalent to the following integral equation:

x(t) = Eα(λt
α)ϕ(0) +

∫ t
0
(t− s)α−1Eα,α(λ(t− s)α)

× f(s, xs)ds, t ≥ 0,

x(t) = ϕ(t), t ∈ [−h, 0],

(3)

where λ ∈ R and f : R+ × C([−h, 0];R) → R is a continuous
function.

Proof: Taking the Laplace transform on both side of (2) gives

sαx̂(s)− sα−1ϕ(0) = λx̂(s) + f̂(s, xs), (4)

where

x̂(s) =

∫+∞

0
e−stx(t)dt, f̂(s, xs) =

∫+∞

0
e−stf(t, xt)dt,

are respectively, the Laplace transform of functions x(t), f(t, xt).
Therefore,

x̂(s) =
sα−1ϕ(0) + f̂(s, xs)

sα + λ
. (5)

Taking the inverse Laplace transform on both side of (5) yields

x(t) = Eα(−λtα)ϕ(0) + f(t, xt) ∗ tα−1Eα,α(−λtα),

where ∗ denotes the convolution operator, that is, for t ≥ 0,

x(t) = Eα(−λtα)ϕ(0) +
∫ t
0
(t− s)α−1Eα,α(−λ(t− s)α)

× f(s, xs)ds.

For integral equation (3), it equals to

x(t) = Eα(−λtα)ϕ(0) + f(t, xt) ∗ tα−1Eα,α(−λtα), t ≥ 0.
(6)

Taking Laplace transform on both side of (6) and then taking the
inverse Laplace transform, we can transfer (3) to equation (2). This
ends the proof. �

3 An integral inequality

In this section, we establish an integral inequality which can be used
to deal with the asymptotical stability for fractional order systems
with time delay. The proof is based on “inf − sup” method.

Theorem 1. Let ϕ : [−h,+∞) → R+ be bounded on [−h, 0]
and continuous on [0,+∞). Suppose that a,K : R+ → R are
two continuous functions which satisfy lim

t→+∞
a(t) = 0, K(t) ≥ 0,

lim
t→+∞

K(t) = 0 and K ∈ L1(R+). µ > 0 is a constant and the

following inequality holds:

ϕ(t) ≤ a(t) + µ

∫ t
0
K(t− s) sup

s−h≤σ≤s
ϕ(σ)ds, t ≥ 0. (7)

If µ∥K∥L1(R+) < 1, then, lim
t→+∞

ϕ(t) = 0.

Proof: This proof is divided into two steps.
Step 1: We show that ϕ(t) is bounded for all t ≥ −h. Indeed,

since for any s ∈ [0, t], [s− h, s] ⊂ [−h, t], then sup
s−h≤σ≤s

ϕ(σ) ≤

sup
σ∈[−h,t]

ϕ(σ), by (7), we obtain

ϕ(t) ≤ a(t) + sup
σ∈[−h,t]

ϕ(σ)µ

∫ t
0
K(t− s)ds

= a(t) + sup
σ∈[−h,t]

ϕ(σ)µ

∫ t
0
K(s)ds

≤ a(t) + sup
σ∈[−h,t]

ϕ(σ)µ∥K∥L1(R+),

(8)

which, together with the boundedness of sups≥0 a(s), gives

sup
σ∈[0,t]

ϕ(σ) ≤ sup
s≥0

a(s) + sup
σ∈[−h,t]

ϕ(σ)µ∥K∥L1(R+).
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Noting that

sup
σ∈[−h,t]

ϕ(σ) ≤ sup
σ∈[0,t]

ϕ(σ) + sup
σ∈[−h,0]

ϕ(σ),

we get

sup
σ∈[−h,t]

ϕ(σ) ≤ sup
s≥0

a(s) + sup
σ∈[−h,0]

ϕ(σ)

+ sup
σ∈[−h,t]

ϕ(σ)µ∥K∥L1(R+).
(9)

Since µ∥K∥L1(R+) < 1, it follows from (9) that

sup
σ∈[−h,t]

ϕ(σ) ≤
sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)
, t ≥ 0, (10)

that is, ϕ(t) is bounded on [−h,+∞).
Step 2. We show that lim

t→+∞
ϕ(t) = 0. Denote ϕ(t) := sup

s≥t
ϕ(s).

Since ϕ(t) is nonnegative and ϕ(t) is bounded on [−h,+∞)
just proved in step 1, ϕ(t) is well-defined and is non-increasing
with respect to t, which implies that inf

t≥0
ϕ(t) exists. Moreover,

inf
t≥0

ϕ(t) = lim
t→+∞

ϕ(t). Thus, to show lim
t→+∞

ϕ(t) = 0, it suffices

to prove inf
t≥0

ϕ(t) = 0. Indeed, for any given ε > 0, there exists T ≥

0 such that ϕ(t) ≤ ϕ(T ) ≤ inf
t≥0

ϕ(t) + ε for all t ≥ T . It follows

from (7) and (10) that

ϕ(t)

≤a(t) + µ

∫ t
0
K(t− s)ϕ(s− h)ds

≤a(t) + µ

∫T+h

0
K(t− s)ϕ(s− h)ds

+ µ

∫ t
T+h

K(t− s)ϕ(s− h)ds

≤a(t) +
sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)
µ

∫T+h

0
K(t− s)ds

+ µ[ inf
t≥0

ϕ(t) + ε]

∫ t
T+h

K(t− s)ds

≤a(t) +
sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)
µ

∫T+h

0
K(t− s)ds

+ [inf
t≥0

ϕ(t) + ε]µ∥K∥L1(R+).

(11)

By the definition of ϕ(t) and (11), we get for t ≥ T + h,

ϕ(t)

≤ sup
s≥t

[
a(s) +

sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)

× µ

∫T+h

0
K(s− σ)dσ

]
+ [inf

t≥0
ϕ(t) + ε]µ∥K∥L1(R+).

(12)

From lim
t→+∞

a(t) = 0 and lim
t→+∞

K(t) = 0, we have

lim
t→+∞

sup
s≥t

[
a(s) +

sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)

× µ

∫T+h

0
K(s− σ)dσ

]
≤ lim
t→+∞

sup
s≥t

a(s) +
sups≥0 a(s) + supσ∈[−h,0] ϕ(σ)

1− µ∥K∥L1(R+)

× µ lim
t→+∞

sup
s≥t

∫T+h

0
K(s− σ)dσ = 0.

(13)

Taking the limitation on both side of (12) and noting that
inft≥0 ϕ(t) = limt→+∞ ϕ(t), by (13), we derive

inf
t≥0

ϕ(t) ≤ [ inf
t≥0

ϕ(t) + ε]µ∥K∥L1(R+),

which, jointly with µ∥K∥L1(R+) < 1, yields inft≥0 ϕ(t) ≤
εµ∥K∥L1(R+)/(1− µ∥K∥L1(R+)). By the arbitrariness of ε, we
get inft≥0 ϕ(t) = 0. Proof is completed. �

Several remarks about Theorem 1 are given in order:

Remark 1. In general, the inequality (7) does not yield that ϕ(t)
tends to zero, exponentially. For example, consider the following
integral equation:

ϕ(t) = Eα(−3tα) +

∫ t
0

[
(t− s)α−1Eα,α(−3(t− s)α)

× Eα(−2sα)

ψ(s)
ϕ(s− 1)

]
ds, t ≥ 0,

(14)

where ϕ(t) = 1− t for t ∈ [−1, 0], and

ψ(t) =

{
2− t, 0 ≤ t ≤ 1,
Eα(−2(t− 1)α), t ≥ 1.

We claim that the solution of (14) satisfies the inequality (7). Indeed,
by Lemma 2, it is seen that the integral equation (14) is actually
equivalent to the following fractional order differential equation
with time delay:

C
0D

α
t ϕ(t) = −3ϕ(t) +

Eα(−2tα)

ψ(t)
ϕ(t− 1), t ≥ 0,

ϕ0 = 1− t ∈ C[−1, 0].

(15)

The solution is explicitly found to be

ϕ(t) =

{
1− t, −1 ≤ t ≤ 0,
Eα(−2tα), t ≥ 0,

(16)

which gives sup
s−1≤σ≤s

ϕ(σ) = ϕ(s− 1). On the other hand, since

Eα(−2tα) is monotone decreasing on t ∈ [0,+∞) and 1− t ≥
1 = Eα(−2 · 0α) for t ∈ [−1, 0], we have 0 <

Eα(−2sα)
ψ(s)

≤ 1.
Thus, by (14), ϕ satisfies (7) with h = 1, µ = 1, a(t) = Eα(−3tα),
and K(t) = tα−1Eα,α(−3tα). From the proof of Corollary 1
below, we get µ∥K∥L1(R+) = 1/3 < 1, which implies ϕ satisfies
(7). However, by (16), ϕ is asymptotically convergent to zero and
cannot decay exponentially as t goes to infinity.

Remark 2. If a(t) and K(t) decay to zero exponentially, then ϕ(t)
may tends to zero exponentially. To illustrate this, we consider the
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The solution of system (14)
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Fig. 1: The evolutions of the solutions of systems (15) and (18)

following integral equation

ϕ(t) = e−3t + e−2
∫ t
0
e−3(t−s)ϕ(s− 1)ds, t ≥ 0, (17)

where ϕ(t) = e−2t for t ∈ [−1, 0]. Similar to Remark 1, the solu-
tion of (17) satisfies the inequality (7) with h = 1, a(t) = K(t) =
e−3t. This system (17) is equivalent to the following first order
differential equation with time delay

ϕ̇(t) = −3ϕ(t) + e−2ϕ(t− 1), t ≥ 0,

ϕ0 = e−2t ∈ C[−1, 0].
(18)

A simple computation shows the solution of (18) is explicitly given
by ϕ(t) = e−2t for all t ≥ −1. We can see that ϕ(t) > 0 and decays
to zero exponentially.

Figure 1 shows the evolutions of the solution of system (15) with
α = 0.8 and the solution of system (18). It is seen that the solution
of system (18) decays quicker than the solution of system (15).

By using Theorem 1, we arrive at the following corollary.

Corollary 1. Let V : [−h,+∞) → R+ be bounded on [−h, 0] and
continuous on [0,+∞). Assume that for some positive constants
λ > µ > 0, the following inequality holds:

C
0D

α
t V (t) ≤ −λV (t) + µ sup

−h≤σ≤0
V (t+ σ), t ≥ 0, (19)

where 0 < α < 1. Then, lim
t→+∞

V (t) = 0.

Proof: By (19), we know that there exists a nonnegative function
M(t) satisfying

C
0D

α
t V (t) +M(t) = −λV (t) + µ sup

−h≤σ≤0
V (t+ σ), t ≥ 0.

(20)

Taking the Laplace transform on both sides of (20) gives

sαV̂ (s)− V (0)sα−1 + M̂(s) = −λV̂ (s) + µF (s), t ≥ 0,
(21)

where

V̂ (s) :=

∫+∞

0
e−stV (t)dt, M̂(s) :=

∫+∞

0
e−stM(t)dt,

F (s) :=

∫+∞

0
e−st sup

−h≤σ≤0
V (t+ σ)dt,

(22)

are respectively, the Laplace transform of the functions V (t), M(t)
and sup

−h≤σ≤0
V (t+ σ). Therefore, by (21), we have that

V̂ (s) =
V (0)sα−1 − M̂(s) + µF (s)

sα + λ
. (23)

Taking the inverse Laplace transform on both sides of (23) yields

V (t) =Eα(−λtα)V (0)−M(t) ∗ [tα−1Eα,α(−λtα)]

+ µ[ sup
−h≤σ≤0

V (t+ σ)] ∗ [tα−1Eα,α(−λtα)],
(24)

where ∗ denotes the convolution operator. Since M(t), tα−1 and
Eα,α(−λtα) are nonnegative functions, it follows that

V (t) ≤Eα(−λtα)V (0) + µ

∫ t
0
(t− s)α−1

× Eα,α(−λ(t− s)α) sup
−h≤σ≤0

V (s+ σ)ds.
(25)

We can see that (25) is the form of (7) in Theorem 1 with
a(t) = Eα(−λtα)V (0) and K(t) = tα−1Eα,α(−λtα). It is obvi-
ous that lim

t→+∞
a(t) = 0, K(t) ≥ 0 and lim

t→+∞
K(t) = 0. To

show lim
t→+∞

V (t) = 0, it suffices to prove that µ∥K∥L1(R+) < 1.

Indeed, it follows from [27, Page 50, formula 1.10.7] that

d

dt
[tαEα,α+1(−λtα)] = tα−1Eα,α(−λtα),

which gives us∫ t
0
sα−1Eα,α(−λsα)ds = tαEα,α+1(−λtα). (26)

It follows from [27, Page 43, formula 1.8.28] that

Eα,α+1(−λtα) =
1

λtα
+O(

1

λ2t2α
)

with t→ +∞, which yields

lim
t→+∞

tαEα,α+1(−λtα) =
1

λ
.

On the other hand, from (26), since
∫t
0 s
α−1Eα,α(−λsα)ds is non-

decreasing with respect t, so does for tαEα,α+1(−λtα). Thus,∫ t
0
sα−1Eα,α(−λsα)ds ≤

1

λ
, ∀t ≥ 0, (27)

which, jointly with λ > µ, implies

µ∥K∥L1(R+) = µ

∫+∞

0
sα−1Eα,α(−λsα)ds ≤

µ

λ
< 1. (28)

Thus, it follows from Theorem 1 that lim
t→+∞

V (t) = 0. �

Remark 3. The above corollary can be regarded as a generalization
of Halanay inequality [23, Page 378, Lemma], where α = 1 and
V (t) tends to zero, exponentially, as t goes to infinity.

However, when α ∈ (0, 1), we generally cannot expect that V (t)
decay exponentially because there is a memory effect in the equation
due to the tail of time. A typically example can be seen in Remark
1, system (15) satisfies the conditions in Corollary 1, the solution of
(15) satisfies lim

t→+∞
ϕ(t) = 0 but ϕ(t) cannot decay exponentially.
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4 Asymptotical stability

In this section, we investigate the asymptotical stability for five
classes of fractional order systems with time delay.

Example 4.1. Consider the following fractional order differential
system:

C
0D

α
t x(t) = −ax(t) + bx(t− τ(t)), (29)

where 0 < α < 1, x ∈ R is the state, a, b are two constants, and
τ(t) is a continuous function and satisfies 0 < τ(t) ≤ h for t ≥ 0.

In order to obtain the stability condition of (29), we denote
V (t) = x2(t) and choose two constants λ > µ > 0. Finding
Caputo’s derivative of V (t) with respect to t along the solution of
(29) yields

C
0D

α
t V (t) + λV (t)− µ sup

−h≤σ≤0
V (t+ σ)

≤2x(t)C0D
α
t x(t) + λx2(t)− µx2(t− τ(t))

=[x(t) x(t− τ(t))]

(
−2a+ λ b

b −µ

)[
x(t)
x(t− τ(t))

]
< 0

(30)

if

(
−2a+ λ b

b −µ

)
< 0, (31)

which is equivalents to −2a+ λ < 0 and −(−2a+ λ)µ− b2 > 0,
that is, λ ∈ (0, 2a) and (2a− λ)µ > b2. Since λ > µ, LMI (31)
reduces to (2a− λ)λ > b2. Therefore, if a > |b|, then LMI (31) is
feasible, and by Corollary 1, the solution of (29) is asymptotically
stable.

In system (29), taking α = 0.8, a = 8, b = 3, x0 = 1 ∈ [−1, 0],
the numerical simulations of this system with delays τ = 1 and
τ(t) = sin2(t), respectively, are plotted in Figure 2, from which,
we can see that system (29) with both τ = 1 and τ(t) = sin2(t)
are asymptotically stable and the solution of the system (29) with
time-varying delay decays faster than that of the system with con-
stant delay. Taking b = −3 and the rest of parameters as before,
the numerical simulations plotted in Figure 3 show that system (29)
with both τ = 1 and τ(t) = sin2(t) are still asymptotically stable.
The solution of the system (29) with time-varying delay decays faster
than that of the system with constant delay.

The stability for system (29) is considered in [22], where the
author used the Lyapunov-like theorem to prove the asymptotical
stability result. Figure 4 shows the regions of a > |b| that make the
system (29) to be asymptotically stable.

Proposition 1. Suppose that a > |b|, then given h > 0, system
(29) with x0 = ϕ(t) ∈ C[−h, 0] is asymptotically stable for all
fast-varying delay τ(t) ∈ [0, h].

Example 4.2. Now we consider the following fractional order
differential system

C
0D

α
t x(t) = Ax(t) +A1x(t− τ(t)), (32)

where 0 < α < 1, x ∈ Rn is the state, A,A1 are constants matri-
ces, and τ(t) is a continuous function satisfies 0 < τ(t) ≤ h for
t ≥ 0.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

 

 

τ=1

τ(t)=sin2(t)

Fig. 2: System (29) wiht α = 0.8, a = 8, b = 3, x0 = 1 ∈ [−1, 0],
and with delay τ = 1 and τ(t) = sin2(t).
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τ(t)=sin2(t)

0 5 10 15 20 25
−0.5

0

0.5

1
The absolute value of x

Fig. 3: System (29) with α = 0.8, a = 8, b = −3, x0 = 1 ∈
[−1, 0], and with delay τ = 1 and τ(t) = sin2(t).

Fig. 4: The regions of a > |b| which make the system (29) to be
asymptotically stable

Similar to Example 4.1, let Lyapunov function V (t) =
x⊤(t)x(t). Then

C
0D

α
t V (t) + λV (t)− µ sup

−h≤σ≤0
V (t+ σ)

≤2x⊤(t)C0D
α
t x(t) + λx⊤(t)x(t)− µx⊤(t− τ(t))x(t− τ(t))

≤2x⊤(t)[Ax(t) +A1x(t− τ)] + λx⊤(t)x(t)

− µx⊤(t− τ(t))x(t− τ(t))

≤
[
x⊤(t) x⊤(t− τ(t))

]
W

[
x(t)
x(t− τ(t))

]
< 0
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if

W :=

(
A⊤ +A+ λI A1

A⊤
1 −µI

)
< 0. (33)

From Corollary 1, we have the following proposition.

Proposition 2. Suppose that there exist two positive constants λ >
µ > 0 such that the LMI (33) is feasible. Then, for any given h > 0,
system (32) with x0 = ϕ ∈ C[−h, 0] is asymptotically stable for all
fast-varying delay τ(t) ∈ [0, h].

Remark 4. When the delay is independent of time, i.e.,τ(t) ≡ h
for some constant h > 0, the asymptotical stability of (32) is con-
sidered in [11], where the Laplace transform method is used. Note
that when the delay is dependent of time, the asymptotical stability
cannot follow from the Laplace transform method.

Example 4.3. Consider the following fractional order differential
system with distributed delay


C
0D

α
t x(t) = −x(t) + y(t),

C
0D

α
t y(t) = −g(t, y(t))− f(x(t))

+

∫0
−τ

h(x(t+ θ))y(t+ θ)dθ,

(34)

where 0 < α < 1, x, y ∈ R are the states, τ > 0 is a constant, and
f, h : R → R, g : R× R → R are continuous functions.

Proposition 3. Suppose that the function h satisfies |h(x)| ≤ Lwith
some L ≥ 0 and there exist three positive constants ε, λ and µ with
λ > µ > 0 such that

τ2L2 ≤ εµ (35)

and

(λ− µ− 2)x2 + (λ+ ε)y2

+ 2y
(
x− g(t, y)− f(x)

)
≤ 0.

(36)

Then, the system (34) with x0 = ϕ ∈ C([−h, 0],R), y0 = φ ∈
C([−h, 0],R) is asymptotically stable.

Proof: Let V (t) = x2(t) + y2(t) be a Lyapunov function. Finding
Caputo’s derivative of V (t) with respect to t along the solution of
(34) gives

C
0D

α
t V (t)

≤2x(t)C0D
α
t x(t) + 2y(t)C0D

α
t y(t)

=− 2x2(t) + 2x(t)y(t)− 2y(t)g(t, y)− 2y(t)f(x)

+ 2y(t)

∫0
−τ

h(x(t+ θ))y(t+ θ)dθ.

(37)

Noting the fact that |h(x)| ≤ L, by Young’s inequality, (35), (36)
and (37), we get

C
0D

α
t V (t) + λV (t)− µ sup

−τ≤σ≤0
V (t+ σ)

≤− 2x2(t) + 2x(t)y(t)− 2y(t)g(t, y)− 2y(t)f(x)

+ 2y(t)Lτ sup
−τ≤σ≤0

|y(t+ σ)|+ λx2(t) + λy2(t)

− µ sup
−τ≤σ≤0

(x2(t+ σ) + y2(t+ σ))

≤− 2x2(t) + 2x(t)y(t) + λx2(t) + λy2(t)− 2y(t)g(t, y)

− 2y(t)f(x) +
L2τ2

µ
y2(t)− µ sup

−τ≤σ≤0
x2(t+ σ)

≤− 2x2(t) + 2x(t)y(t) + λx2(t) + λy2(t)− 2y(t)g(t, y)

− 2y(t)f(x) +
L2τ2

µ
y2(t)− µx2(t)

=(λ− µ− 2)x2(t) + (λ+
L2τ2

µ
)y2(t) + 2x(t)y(t)

− 2y(t)g(t, y)− 2y(t)f(x)

≤(λ− µ− 2)x2 + (λ+ ε)y2 + 2y(x− g(t, y)− f(x))

≤0,

which, jointly with Corollary 1, implies that V (t) = x2(t) +
y2(t) → 0 as t→ +∞. Thus, the system (34) is asymptotically
stable. �

Corollary 2. Suppose that the functions f, g, h satisfy f(x) ≥
Mx, g(t, y) ≥ Ny, and |h(x)| ≤ L with some M > 0, N >
0, L ≥ 0 and there exist three positive constants ε, λ and µ with
λ > µ > 0 such that

τ2L2 ≤ εµ (38)

and

(
λ− µ− 2 1−M
1−M λ+ ε− 2N

)
≤ 0. (39)

Then, the system (34) with x0 = ϕ ∈ C([−h, 0],R), y0 = φ ∈
C([−h, 0],R) is asymptotically stable.

Proof: By proposition 3, it suffices to prove that (36) holds. By
conditions (38), we have

(λ− µ− 2)x2(t) + (λ+ ε)y2(t)

+ 2y(t)
(
x(t)− g(t, y)− f(x)

)
=(λ− µ− 2)x2(t) + (λ+ ε)y2(t) + 2x(t)y(t)

− 2y(t)g(t, y)− 2y(t)f(x, y)

≤(λ− µ− 2)x2(t) + (λ+ ε− 2N)y2(t) + (2− 2M)x(t)y(t)

=
(
x(t) y(t)

)(λ− µ− 2 1−M
1−M λ+ ε− 2N

)(
x(t)
y(t)

)
≤0,

which implies that (36) holds. This ends the proof. �

IET Research Journals, pp. 1–8
6 c⃝ The Institution of Engineering and Technology 2015

Page 6 of 8

IET Review Copy Only

IET Control Theory & Applications

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Example 4.4. Consider the following fractional order nonlinear
system with distributed delay,

C
aD

α
t x(t) = f(x(t)) +

∫ t
t−τ(t)

g(x(ζ))dζ, (40)

where 0 < α < 1, 0 < τ(t) ≤ h, x ∈ Rn, the initial function is
x0 = ϕ ∈ C([−h, 0],Rn). f, g : Rn → Rn are two continuous
vector-valued functions such that (40) has a global solution on
[0,∞).

Proposition 4. Suppose that there exist two positive constants λ >
µ > 0 such that

2x⊤(t)

[
f(x(t)) +

∫ t
t−τ(t)

g(x(ζ))dζ

]
+ λx⊤(t)x(t)

− µ sup
t−τ(t)≤σ≤t

x⊤(σ)x(σ) ≤ 0, ∀x ∈ Rn.
(41)

Then the system (40) with x0 = ϕ ∈ C([−h, 0],Rn) is asymptoti-
cally stable.

Proof: Let V (t) = x⊤(t)x(t) be the Lyapunov function. By Lemma
1, computing the Caputo’s derivative of V (t) along the solution of
(40) gives

C
0D

α
t V (t) + λV (t)− µ sup

−τ(t)≤σ≤0
V (t+ σ)

≤2x⊤(t)C0D
α
t x(t) + λx⊤(t)x(t)− µ sup

t−τ(t)≤σ≤t
x⊤(σ)x(σ)

=2x⊤(t)

[
f(x(t)) +

∫ t
t−τ(t)

g(x(ζ))dζ

]
+ λx⊤(t)x(t)

− µ sup
t−τ(t)≤σ≤t

x⊤(σ)x(σ) ≤ 0.

(42)

Since 0 < τ(t) ≤ h, we have

sup
−h≤σ≤t

V (t+ σ) ≥ sup
−τ(t)≤σ≤t

V (t+ σ).

Thus, it follows from (42) that

C
0D

α
t V (t) + λV (t)− µ sup

−h≤σ≤0
V (t+ σ)

≤C0Dαt V (t) + λV (t)− µ sup
−τ(t)≤σ≤0

V (t+ σ)

≤0,

which, jointly with Corollary 1, implies that V (t) → 0 as t→ +∞.
Thus, system (40) is asymptotically stable. �

Corollary 3. Suppose that the function g satisfies ∥g(x)∥ ≤ L∥x∥
with some L ≥ 0 and there exist three positive constants ε, λ and µ
with λ > µ > 0 such that

h2L2 ≤ εµ, and 2x⊤f(x) + (λ+ ε)x⊤x ≤ 0, for all x ∈ Rn.
(43)

Then the system (40) with x0 = ϕ ∈ C([−h, 0],Rn) is asymptoti-
cally stable.

Proof: By Proposition 4, it suffices to show that (41) holds. Indeed,
by Young’s inequality

∥x(t)∥ sup
t−τ(t)≤σ≤t

∥x(σ)∥

≤ 1

2µ
x⊤(t)x(t) +

µ

2
sup

t−τ(t)≤σ≤t
x⊤(σ)x(σ),

(43) and the fact that ∥g(x)∥ ≤ L∥x∥, we have

2x⊤(t)

[
f(x) +

∫ t
t−τ(t)

g(x(σ))dσ

]
+ λx⊤(t)x(t)

− µ sup
t−τ(t)≤σ≤t

x⊤(σ)x(σ)

≤2x⊤(t)f(x) + 2L∥x∥
∫ t
t−τ(t)

∥x(σ)∥dσ + λx⊤(t)x(t)

− µ sup
t−τ(t)≤σ≤t

x⊤(σ)x(σ)

≤2x⊤(t)f(x) + 2Lh∥x∥ sup
t−τ(t)≤σ≤t

∥x(σ)∥+ λx⊤(t)x(t)

− µ sup
t−τ≤σ≤t

x⊤(σ)x(σ)

≤2x⊤(t)f(x) +
L2h2

µ
x⊤(t)x(t) + µ sup

t−τ≤σ≤t
x⊤(σ)x(σ)

+ λx⊤(t)x(t)− µ sup
t−τ≤σ≤t

x⊤(σ)x(σ)

=2x⊤(t)f(x) +
L2h2

µ
x⊤(t)x(t) + λx⊤(t)x(t)

≤2x⊤(t)f(x) + (λ+ ε)x⊤(t)x(t)

≤0,

which proves that (41) holds. This ends the proof. �

Example 4.5. Consider the fractional order nonlinear system with
distributed delay governed by

C
0D

α
t x1(t) = f1(x(t)) +

∫ t
t−τ1(t)

g1(x(ζ))dζ,

C
0D

α
t x2(t) = f2(x(t)) +

∫ t
t−τ2(t)

g2(x(ζ))dζ,

...
C
0D

α
t xn(t) = fn(x(t)) +

∫ t
t−τn(t)

gn(x(ζ))dζ,

(44)

where 0 < α < 1, x(t) = [x1(t), x2(t), · · · , xn(t)]⊤ ∈ Rn, the
initial function is x0 = ϕ ∈ C([−h, 0],Rn). The time delay func-
tions τi : R+ → [0, h] are continuous. Functions fi(x), gi(x) :
Rn → R are continuous such that (44) has a global solution on
[0,∞).

Proposition 5. For any x(t) ∈ Rn, suppose that functions gi satisfy
|gi(x)| ≤ Li∥x∥ with some Li ≥ 0, i = 1, 2, . . . , n, and there exist
three positive constants ε, λ and µ with λ > µ > 0 such that

h2L2 ≤ εµ, and

2x⊤f(x) + (λ+ ε)x⊤x ≤ 0, for all x ∈ Rn,
(45)

where L = max
i
Li. Then, given h > 0, the system (44) with ϕ ∈

C[−h, 0] is asymptotically stable.
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Proof: The Proposition can be established by mimicking the proof
of Corollary 3. We leave details to the interested reader. �

Remark 5. The key idea of Lyapunov method to get the stability
is that we do not need to solve the differential systems but just use
the structure of systems. Clearly, the conditions (36), (43) and (45)
do not involve the solution of (34), (40) and (44), respectively, thus
(36), (43) and (45) are easily to verify for application purpose. The
results here could provide some insights into the qualitative analysis
of fractional order systems with time delay.

5 Concluding remarks

In this paper, we have obtained a new integral inequality, which is
our novelty. Applying this integral inequality and Laplace transform,
Halanay inequality is extended to Caputo fractional order case. Sev-
eral examples validate that this generalized Halanay inequality can
be easily applied to obtain the asymptotical stability conditions for
fractional order systems with time delay, where the delay is bounded.
If the delay is unbounded, a new technique to prove the integral
inequality should be developed. Stability of fractional order systems
with time-varying delay or time constant delay is a wide open and
fertile area for future research. The presented integral inequality can
be used to obtain the stability of Caputo fractional order systems
with multiple time delays.
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