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Abstract: Leaming from demonstration is an efficient way for transferring movement skill from a human teacher to a robot.
Using a camera as a recorder of the demonstrated movement, a learning strategy is required to acquire knowledge about the
nonlinearity and uncertainty of a robot-camera system through repetitive practice. The purpose of this paper is to design a neural
network controller for vision-based movement imitation by repetitive tracking and to keep the maximum training deviation from a
demonstrated trajectory in a permitted region. A distributed neural network structure along a demonstrated trajectory is proposed.
The local networks for a segment of the trajectory are invariant or repetitive over repeated training and are independent of the other
segments. As a result, a demonstrated trajectory can be decomposed into short segments and the training of the local neural
networks can be done segment-wise progressively from the starting segment to the ending one. The accurate tracking of the whole
demonstrated trajectory is thus accomplished in a step-by-step or segment-by-segment manner. It is used for trajectory imitation by
demonstration with an unknown robot-camera model and shows that it is effective in ensuring uniform boundedness and efficient
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1 Introduction

In order to control a complex system with an unknown

model, neural networks ( NN) have been introduced to

learn and reconstruct the unknown nonlinea.ril:ies[l~3 I

Most of them adjusted the network weights based on linear
adaptive theory. The desired operation is supposed to be
continual and, within an approximation region (2, the
convergence can be reached when the time ¢ goes to
infinity. For a non-periodic trajectory with a finite time
interval, which is widely applied for practical systems such
as cutting, painting, rtobot pick-and-place operation,
multi-times resetting then tracking becomes a choice to
keep the training persistentdy. However, the multi-times
resettng violates the assumption of continual operating
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along the time horizon in usual adaptive control. The
iterative leamning control (ILc)-% is a more special
technology for this kind of applicaion and can be
considered as an efficient altemative. ’

In this paper, we present an NN iterative training
scheme so that the control performance can be improved by
using previous tracking experience. Unlike the adaptive
NN’ s, every point {every servo period in application )
along the desired trajectory is given an independent local
NN such that any segment training does not cause any
interference to the other segments. In common with other
on-ine training schemes, during the early stages of
leaming, the tracking errors may be quite large so that the
states  would the region neural network
approximation. Due to the independence of the proposed
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local NN structure, a segmented training scheme is further
presented to ensure that the tracking error during training
does not exceed the admissible region of NN approxima-
tion. It always measures the maximum tracking error along
the trajectory during the training process. If the error at
any trajectory point exceeds a predefined bound then the
trajectory is divided into two segments from this point on.
After that, only the networks related to the first segment
are trained repetitively so that the whole tracking of this
segment reaches the desired precision. Then the training
can be extended to the remained segments. So it works in
a step by step or segment-by-segment manner, and finally
the whole trajectory tracking can reach the desired preci-
sion. [t makes the tracking error during the training not
exceed the predefined bound for the NN approximation.

The application background of this research is for robot
learning from demonstration with the help of a camera ( or
cameras) . It includes two phases, teaching phase and
training phase. At the teaching phase, a teacher grasps a
tool or simply an object to do a demonstration and a static
camera records the trajectories of some selected features of
the object on the image plane, which describe a desired
movement. At the training phase, a manipulator grasps the
same object to dotracking repetitively. With the aid of the
proposed NIN iterative training visual servoing scheme, an
exact replay of the demonstrated trajectory can be achieved
gradually. It is a flexible way for robot trajectory program-
ming.

2 Iterative learning neural network control

For a non-periodic desired trajectory 24(t) with a finite
tme interval 0 < ¢ _ t¢, the objective of ILC is to force the
state of the subsequent affine nonlinear system to follow the
desired trajectory exactly after a series of iterative training:

x(t,i) = f(t,x) + G(t,x)ul(t,x,i),0< t < tf,
(1)
where the i expresses the i-th iterative training or tracking,
f(t,x) € B* and G(t,x) € R™™ are unknown but
repeatable nonlinear continuous functions, and x(z,i) €
3", u(t,x,i) € R™ are the state and the control input of
the i-th training at time ¢, respectively.

The system (1) is described in terms of both continuous
time ¢ and discrete iterative number t. Although the time ¢
is within a finite interval, the ILC can ensure that the entire
trajectory converges to the desired one by infinite iterations .

First, we employ a linear parametric approximation
model, which may be GRBF NN!J, CMAC NN,
fuzzy NNP!, or even any mathematical approximation
model with linear parameters, to express the nonlinear func-
tions f(¢,x) and G(z,x) as follows:
fle,x) = Wlt)o(e,x) + &(t,x),

(e, x)TW(t)
: +e,(t,x),
o(t,x)"W, (1)

G(t,x)=G"(t,x)+&,=

(2)

where W/(1) € B2l and W, () € Bl = 1, ,n,
are the corresponding unknown optimal weights of the
neural networks at a specific instant ¢. They are invarant
over iterations. The &,(¢,x) and £,(¢,x ) denote modeling
errors of the approximation and their norms are supposed to
be bounded on a compact region 2. ¢(t,x) € %l isa
vector composed of basis functions that depend on what
kind of approximation model that we intend to use.

While the adaptive neural networkst' 73! distribute
neurons with unknown but constant optimal weights over a
region {2 containing the whole desired trajectory, as shown
in Fig. 1, the above neural networks are further distributed
along the ¢ axis around the corresponding points ( every
sample period in application) of the desired trajectory as
shown in Fig.2. The optimal weights W/(z) and W;(:)
may be time-varying and the networks can be used to
approximate time-varying but repeated uncertainties. In
adaptive NIN control, the weight training is carried out
along the time axis ¢ but, in Fig.2, the weight training is
carried out along the iteration axis i by repetitive tracking or
previous tracking experiences. In fact, each local NN tries
to learn an approximation model in a neighborhood around
a specific point of the desired trajectory.

X2 0
xy(1)

x|

Fig. 1 Adaptive NN

Fig. 2

[terative leaming NIN

Therefore, we can expect that, at first, due to a series of
time-varying local NN’s, the presented scheme can be used
for a time-varying uncertain system if the uncertainties are
invariant over iterations but the adaptive NN controller only
works for an autonomous systemn. In addition, although we
distribute a series of local NN’s over all trajectory points, it
does not mean a great increase of the size of the networks
because 2 local network with simpler structure can be chosen
for approximation of a small region around a specific point.
At last, an efficient “segmented training” can be
accomplished by the ILC. Since each point along the desired
trajectory has an independent local NN, the training of a
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segment x4(¢),0 < ¢t < T}, only adjusts the weights of the
corresponding local networks but has not any interference to
the other segments x4(¢), T, < t < T;. Here a segment is
part of the desired trajectory described by a time interval
within 0 to ¢;. This means that we can divide a trajectory
into several segments to realize segmented training, where a
segment of the trajectory is trained repetitively untl some
requirements have been met and further training of the other
segments does not cause any interference to this well trained
segment .

For a segment of x4(¢),0 < ¢t < T}, first, let the i-th
tracking error be e(t,i) = [e(t,i), -, e,(¢,i)]T =
xq(t) — x(t,i). In order to deal with the modeling error
and the initial resetting error, we define a modified error
vector with deadzone as

ea(t,1) = e(e,i) - $(¢,1),
$(t,i) =
[ef.sat(el(t, 1)/€r1)ssepsat(e,(t, i)/er)]l,
(3)
where g, = [ef 1 ,-",ef,,]vris an n-dimensional width of the
deadzone.
Furthermore, we define the following networks:

j‘(t,x) = Wf(t,i)¢(t7x)7

go(t,x)TfVl(t,i)
C( Lyx,i ) = ,
gp(t,x)TfV,,(t, i)
where Wf(t,i) and W,(¢,i),0 = 1,~*,n, are the i-th
identifications of the optimal weights in equation (2) .

We make the following assumption on the modeling
erTors.

Assumption 1 On the compact region (2, the L,
norm of the modeling error €,(z,x) is bounded with a
known constant || €} | w.

We make the following assumption for control singularity
avoidance.

Assumption 2 On the compact region {2, the estimate
of the input matrix G(¢,x) can ensure that the equation
G(t,x,i)x = ¥ has a solution and the norm of the relative

(4)

estimate error £ = sz(t,x)é(t,x, i)* is upper bounded
by a known constant || E || yand || E || yy < | € lm/ L € Iy
< 1, where | € Ipand | €r | v are the minimum width and
the maximum width in the deadzone vector, respectively.

With the aid of the networks (4), a control law with
least norm can be proposed as

w(t,u,i) = 6,2, 0)* (2a(t,0) - fle,2,0) +
Kie(t,1) + Kye(t,i)), (5)
where G(t,%,1)* denotes the pseudo-inverse matrix of
C(t,x,i),;'cd(t,i) is an estimated velocity of the desired
trajectory. If %4(¢) is available to use, we should directly
assign % 4{ ¢) !:o,%d(t, ). In some cases, when the desired

velocity has to be obtained by differentiating a given trajec-
tory, for example, the derivative may be sensitive to the

image noise for the feature based visual servoing, we can
treat the desired velocity as a repeated uncertainty and
estimate it through iterations.

Theorem 1 If a weak initial resetting condition
| ¢€0,i) | < €5j = L,yn, for Vi is satisfied,
under control of (5) with the following weight updating
laws:

,%d(t,li) = EF(i - jealtyf),

=0
I’i/f(t”') == EF/'('- _j)eA(tyj)SD(t7x)T,
J=0
Wl(tvi):_zlFl(i—j)eAl(t7].)90(t1x)uT(t,x,j),
;=0
l: 1,...,n,

where F(i - j), Fi(i-j),and F;(i- ) are any posi-
tive definite discrete matrix kemels, and the feedback gains

satisfying:
K, = dlag (Kll7.“7Kln)7 where Klisfi > ” €) ” o
| Ell y
K, = !
2 |€f|m—||E||M|€f|MHu”>0’
where u' = || ;f'd(t’i) - j‘(t,x,i) + K]e(tyi) || ’

then the tracking error of every point along the segment
vg(£),0< t < Ty, will converge to the deadzone, i.e.

lim | e;(t,i) |< €7/, ¥0 < ¢ < T, when the system

tracks the desired trajectory repetitively.
Proof See [7].

3 Segmented training neural network con-
trol .

A system to be controlled is usually not allowed to
deviate from the desired trajectory too much. If we have a
less knowledge about the system, the first several times’
training may result in a large tracking error such that it
would leave the region 2 of approximation. So, we have
to restrict this deviation during the training. The above
training algorithm is helpful to do so because the NN’ s
along the trajectory are independent of each other.

First, we define the following regions around the desired
trajectory as shown in Fig.3.

Fig. 3 Segmented training

Permitted region 2, This region can be defined
by the maximum allowed error ey as 2y = {x;: | e(t,
i)l < eyl when NN’s are trained. It means that the
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training can be conducted continuously when the tracking
error remains in it, If the tracking error exceeds it, the
training has to stop. This region should belong to the
compact region {2 for approximation.

Desired region £2;, This region describes the desired
tracking accuracy for segmented training. It can be defined
as Op = {x: | e(e,i) |l When every point
along the segment of the desired trajectory has been

)
=< €pi.

controlled into this region, the training can be extended to
the next segment. This region should be greater than the
deadzone, i.e. ep > | €f || , such that we can reach this
goal through finite iterations.

We define an expected length of the segment ¢, = ¢;at
the beginning, which means that we wish the length of the
segment is the whole trajectory initially. The segmented
training process is described by the following steps:

1) Let the initial state be located within the deadzone
| ej((),i) | < €&j,j = 1,>-,n, for Yi, as the
beginning of a segment tracking;

2) Control the system (1) based on Theorem 1 until the
system has finished tracking the segment with ¢ = ¢, or the
control error reaches the boundary of 2yat a time ¢ = T,
then ¢, = tand x4(t),0 < t < t,, forms a new segment;

3) Go to step 1) untl all points along the segment
x4(t),0 < t < ¢t,, are kept in the region {2});

4) Ift, < t;, then begin to extend the expected segment
with t, = ¢;and go to step 1), else the whole trajectory
has been controlled into the desired region (2.

The system can continue the whole trajectory tracking
repetitively so that the whole trajectory converges to the
deadzone and the trained networks can be employed as a
compensation for the nonlinear uncertainties in further use.
Now, we are going to explain this segmental training
scheme. In the first tracking, the unknown system is
controlled by the NN’ s with initial weights. Under the
control of this kind of poorly trained NN’ s, usually the
tracking error will increase along with moving of the
desired trajectory. If it does not exceed the permitted
region {2y, we continue this tracking and train the corre-
sponding networks by the updating laws presented in the
last section. Suppose that, at time , the tracking error has
reached the boundary of 2y as shown in Fig. 3. Then,
from the Theorem 1, if we repeat the training continuously
from time O to T only, we have

lim | ¢(¢,i) < ¢, VOt < T

This implies that, for any given 2 with e, > |l e/l ,
there exists a positive constant M, if the number N of
repeated training is greater than M, then the error of every
point of this segment will be always kept in the region {2p
for further iterations. Then we can go ahead to the next
segment until the tracking error has reached the boundary
of 0y again at time T, as shown in Fig.3.

Because the system works on a compact region (2, if the
control input (¢, x,i) in equation (1) is bounded, then
| % || sax is bounded. This means that it will take at least a
time T -« O for the state of the system moving out of 2y
from 2. Therefore, we know that 7, = T, + T = 2T.
From the same reason, after the N-th training (N = M, +
M;), the errors at every point along the segment x4(t),
0<

< t < T,, will be controlled into the region 2, for fur-
ther iterations. Suppose that there is an integer £ satisfying

k = t/T, then, in general, there exists an integer M =
k

E M; such that the tracking error of the whole trajectory

i=1
can be conwolled into the region (2 if the sum of the
repeated times is greater than M.

We obtained the above result under the assumption of
bounded control input u(t,x,i). This can be satisfied by
a projection method if we have a rough knowledge about
the range of the parameters. In this case, the weights are
kept to be bounded but never change the convergent
result .

4 Visual servoing for robot motion imita-
tion

For the time being, programming a motion of a robot
still relies on “hard-coding”. The task has to be carefully
analyzed and added to the robot program by a human,
which is usually difficult or even impossible for a robot with
high degrees-of-freedom such as a humanoid robot. A
leamning approach is a potential method to overcome the
need of * hard—codjng”[gj. In humans, a teacher demon-
strate a movement, we are capable of repeating through
leamning.

In this section, we are going to use the proposed NN
control scheme for robot trajectory imitation by visual
servoing. For a manufacturing task or simply a pick-and-
place operation, the imitating process can be described as:
First, a teacher grasps a tool or simply an object, and does
a demonstration as shown in Fig.4. At the same time, a
static camera records the tmjectodes of some selected
features of the object on the image plane as shown in
Fig.5, which are trajectories of 4 corner points of the
cube, p1(t),pa(t),p3(t) and ps(t), in Fig.4. These
describe the desired trajectory of the object. Then, let the
manipulator grasp the same object and do the training
repetitively as shown in Fig. 6. With the aid of the
proposed NN controller, a perfect replay (within the de-
sired precision region {2p) of the demonstrated trajectory
can be achieved ultimately. It is a wsk of a 3D-trajectory
visual tracking with only a single camera.
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Fig. 4 Teacher’s demonstration and feature points

8

Y {mm

X/ mm

Fig. 5 Desired trajectories of the features

Fig. 6 Manipulator trajectory imitation

Suppose that the optical equation of the selected feature

points is

x = J(0)0, (6)
where the general coordinates § € =™, the features x € ="
and Jacobian matrix J(8) € =™,

The system (6) is in the form of equation (1) with
f(t,x) = 0and with an unknown Jacobian matrix G(1,
x) = J(x). As mentioned in Section 2, a lot of different
basis functions can be selected to do approximation. We
select the basis function vector in equation (2) to be

olt,x) = [1 (xg(2) - =)'
When f(t,x) = 0, the control law becomes

u(e,x,i) = J(t,x,0)* (;Ac'd(t,i) + Kye(1,i)).
(7)
The training can be implemented through a table, where
each row of the table corresponds to the weights for a point
along the desired trajectory. The table is constructed with

an increment of a sample period 7 and is updated segment-
by-segment. In this simulatdon, the increment 7 is 20 ms.
At first, the lower part of the table is updated repetitively,
where the corresponding tracking errors are within the
permitted region (2y. After every point corresponding to
this part of the table is controlled within the desired region
{21, the training can be extended to the upper part of the
table. After all rows of the table have been trained, we
have achieved our control goal as well.

Suppose that a static camera (16 mm) records the trajec-
tories x,( ¢) of 4 feature points of an object on the image
plane within 5 s as shown in Fig.5, which are demonstrat-
ed by a teacher. Then let a manipulator grasp the same
object in front of the camera and try to track the trajectories
repetitively such that the trajectories of the features coincide
with the demonstrated trajectories on image plane. The
feedback and the adaptive gains of the control law are
selected to be

K, =3, F(i -j) =10, F(i-j) = 2.

In order to avoid singularity of the proposed control
law,
estimating the input matrix J{x(z)), namely, J(x4(t),
i) can only be adjusted within a known bound. This
bound is with a maximum * 50% deviation around the

the bounded identification law is adopted for

nominal one. The permitted region and the desired region
are assumed to be Oy = {x: |l e(t,i) || <3 x 1074},
Op = 1x: | e(z,i) || <3 x 1073}, respectively. Finally,
let the width of the deadzone in (3) bees; = 5 x 107,
then we can begin the training.
Let the initial weights of the neural networks be
jij(xd(t),o) = | :/i,-(xd(t)) o »

J ' (x4(2),0) = 0, %4(2,0) = 0.
Fig. 7 shows the control errors of feature point 1 in the
Cartesian space at the Ist iteration. The tracking is stopped
at 1.3 s with a maximum deviadon of [ 0. 0178,
-0.0363,0.0191] m. Then we repeat training the
segment of t =0~ 1.3 s. After another 2 iterations, the
control error of every point along this segrent is controlled
within an error band of | E(2,3) | < 3.1 mm in the
Cartesian space. Now, we continue our training for the
rest of the trajectory. In order to speed up learning and
reduce the segmented number, we let the initial value of
the estimated velocity for the new segment be equal to an
average over a region of the end of the trained segment,

for example, an average between :td(t =1.2) and ;éd(t =
1.3). It reduces the segmented number effectively. In our
case, we need not further segment the rest of the trajectory.
After the 15th training, the control errors are depicted in
Fig. 8 with a maximum tracking error of 0. 84 mm for
every point along the trajectory.
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Fig. 7 'The lst conrol errors of the feature point 1
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Fig. 8 Conrrol errors of the feature point 1 after 15 iterations

5 Conclusions

We have proposed a local network structure for nonlinear
systemn trajectory tracking with uncertainties that are invari-
ant over iterations. The proposed method can be used for
any approximation model with linear parameters. In
contrast to the adaptive neural network control scheme,
our training algorithm is derived from the viewpoint of ILC
such that every local neural network for a particular point of
the trajectory is independent of the others. This makes the
repetitive segmented training become possible and a
segmented training strategy to retain the training only in an

effect region is presented. A visual servoing controller is
further designed based on the proposed method and shows
to be effective for vision-guided motion imitation without
an exact mode].
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