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Abstract— This paper is concerned with observer-based out-
put feedback boundary control for a fractional reaction diffu-
sion (FRD) system. The considered FRD system is endowed with
only boundary sensing available and boundary actuation. First,
to design a backstepping-based observer for the FRD system.
Second, to combine a separately backstepping-based feedback
controller and the proposed observer to generate an output
feedback controller for stabilizing the FRD system. Third, to
analyze the Mittag-Leffler stability of the observer error system
and the controlled FRD system. Finally, to verify the validness
of our proposed method for the controlled FRD system and the
observer error system through a numerical example.

I. INTRODUCTION

Stabilization problem of fractional-order differential sys-
tems is an essential point in fractional-order control theory
and has been studied by many researchers. In [1], stability
results for control theory were provided for fractional-order
differential systems in state-space form and polynomial rep-
resentation. Due to the wide application of FRD systems in
[2], these dynamic systems have got much attention. Recent-
ly, above corresponding efforts in [1] have been applied to
the work of boundary feedback stabilization of such FRD
systems by Ge et al. [3], with the aid of the backstepping
technique [4].

Due to technical and economic restrictions, not all system
state can be completely accessible or obtained. It induces the
necessity of estimation of system state and observer-based
control. The observer-based controller for fractional-order
systems can be traced back to the work of Matignon et al. [5].
In this paper, our objective is to design the stabilizing output
feedback controller by the observer and the backstepping
technique, and finally obtain the Mittag-Leffler stability of
the boundary controlled FRD system with Robin or mixed
boundary conditions which is different from the one in [3].
To address this problem, we resort to the works of [6],
which can be viewed as a breakthrough for development of
observer design for distributed parameter systems (DPSs).
In their work, backstepping observer and observer-based
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boundary feedback controller have been proposed for partial
differential equations (PDEs). This design method is also
suitable to FRD systems if the solution of stabilization
problem has been obtained (see Section II-B).

Note that Matignon et al. [5] investigated observer-based
stabilization problem of fractional-order differential systems
and proposed the stability criterion of system matrix’s argu-
ment. This criterion, however, is really hard to be used, since
solving the argument of system matrix (system operator for
fractional-order partial differential equations) is complex in
fractional-order cases. Here, we discuss the observer-based
stabilization problem of FRD systems by the fractional-
order Lyapunov direct method, the Mittag-Leffler stability
theory [7], and the novelty lemma [8] for Caputo fractional
derivative which could find a simple Lyapunov candidate
function for fractional-order systems.

The structure of this paper is considered as follows. In
Section II, we introduce the problem statement and outline
the backstepping-based boundary feedback control design.
Section III and Section IV mainly focus on observer design
and observer-based output boundary feedback control for
the FRD system with Dirichlet actuation for anti-collocated
and collocated cases. In Section V, a numerical simulation
example has been used to test the efficiency of our proposed
method. And finally, concluding remarks and future work are
given in Section VI.

II. PROBLEM STATEMENT AND OVERVIEW ON
BACKSTEPPING CONTROL DESIGN

A. Mathematical modeling

We consider the time FRD system [3], in this paper, whose
state equation is given by
C
0 D

α
t u(x, t) = uxx(x, t) + a(x)u(x, t), x ∈ (0, 1), t > 0,

u(x, 0) = u0(x), x ∈ [0, 1]
(1)

with boundary conditions
p1ux(0, t)− p2u(0, t) = 0, t > 0, (2)

q1ux(1, t) + q2u(1, t) = U(t), t > 0, (3)

where u(x, 0) = u0(x) represents the nonzero initial value,
p1, p2 > 0, q1, q2 ≥ 0, U(t) is a control put, and C

0 D
α
t u(·)

denotes the Caputo time fractional derivative of α order [9].
It is shown in [1], [3] the FRD system (1)-(2), without control
at x = 1, i.e.,

q1ux(1, t) + q2u(1, t) = 0, t > 0 (4)
will be unstable if a(·) is a large positive function.

Based on the result of [1], [5], the sufficient and necessary
condition for stability of the FRD system (1) with (2) and (4)
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is the roots of some polynomial lie outside the closed angular
sector | arg(spec(Ā + a(x)))| ≤ απ

2 , where the operator Ā
described by (Āu)(x, t) = ∂2u(x,t)

∂x2 . If a(x) is large enough,
the stability of FRD system (1) with (2) and (4) can be
lost even if the eigenvalues of the operator Ā are always
negative. Thus, we consider to design backstepping-based
output feedback boundary control to stabilize this system.

First, to design a Mittag-Leffler convergent observer for
this system with only boundary measurement available and
Dirichlet acutation at x = 1 for anti-collocated and col-
located cases. Then, combining the designed observer and
the backstepping-based boundary feedback controller in Sec-
tion II-B, we obtain the output feedback boundary controller.

B. Overview of Dirichlet, Neumann and Robin boundary
feedback control design

Our main topic of design observer and output feedback
control recurs to the results of backstepping-based boundary
feedback control. In this part, we will summarize it for
the stabilization problem of the FRD system, which was
solved in [10]. Let us consider the system (1) with boundary
conditions

ux(0, t)− pu(0, t) = 0, (5)

u(1, t) = U(t), (6)

or ux(1, t) = U(t), (7)

or ux(1, t) + qu(1, t) = U(t), (8)

where t > 0, p = p2
p1
> 0 and q = q2

q1
> 0. The backstepping

approach’s main idea is to utilize the integral transformation
[11]

w(x, t) = u(x, t) +

∫ x

0

k(x, y)u(y, t)dy (9)

along with respective boundary feedback control to map the
above system (1), (5)-(8) into the below target system

C
0 D

α
t w(x, t) = wxx(x, t)− λw(x, t), x ∈ (0, 1), t > 0

with the initial condition
w(x, 0) = w0(x), x ∈ [0, 1]

and boundary conditions
wx(0, t)− psw(0, t) = 0, t > 0,

w(1, t) = 0,

or wx(1, t) = 0,

or wx(1, t) + qsw(1, t) = 0,

where t > 0, λ > 0, ps > 0, qs > 0 and w0(x) = u0(x) +∫ x
0
k(x, y)u0(y)dy. Using Lemma 2.4 in [11] and Definition

3.1 in [7], we can easily obtain above integral transformation
(9) is invertible and u(x, t) = 0 is an equilibrium point of
the FRD system (1).

Based on the argument in [10, Section 3.1], we can easily
show the below gain kernel PDE

kxx(x, y)− kyy(x, y) =
(
a(y) + λ

)
k(x, y),

d

dx
k(x, x) =

a(x) + λ

2
,

ky(x, 0) = p k(x, 0),

k(0, 0) = ps − p,

(10)

for (x, y) ∈ Ξ = {0 ≤ y ≤ x ≤ 1}.
Once the kernel gain k(x, y) is determinate, Dirichlet,

Neumann and Robin boundary feedback controllers at x = 1
can be expressed as follows

u(1, t) = −
∫ 1

0

k(1, y)u(y, t)dy, (11)

ux(1, t) = −k(1, 1)u(1, t)−
∫ 1

0

kx(1, y)u(y, t)dy, (12)

ux(1, t) + qu(1, t) =
(
q − qs − k(1, 1)

)
u(1, t)

−
∫ 1

0

(
kx(1, y) + qsk(1, y)

)
u(y, t)dy.

(13)
respectively. Thus, it is easy for us to state the following
theorems proved in [10].

Theorem 1. It is assumed that a(x) ∈ C1[0, 1]. Thus, the
gain kernel PDE (10) has a unique solution that is twice
continuously differentiable in 0 ≤ y ≤ x ≤ 1.

Theorem 2. Suppose that λ is an arbitrary positive constant,
a(·) is an arbitrary function in L2(0, 1) and H1(0, 1), the
function w(·, t) is continuously differentiable for t ∈ [0,∞),
and the Laplace transform of w2(·, t) exists. For any initial
value u0(x) ∈ C(0, 1) and H1(0, 1) with compatible condi-
tion

ux(0, 0) = pu0(0), u0(1) = −
∫ 1

0

k(1, y)u0(y)dy, (14)

orux(0, 0) =pu0(0),

ux(1, 0) =− k(1, 1)u0(1)−
∫ 1

0

kx(1, y)u0(y)dy.
(15)

orux(0, 0) =pu0(0),

ux(1, 0) =− qu(1, 0) +
(
q − qs − k(1, 1)

)
u0(1)

−
∫ 1

0

(
kx(1, y) + qsk(1, y)

)
u0(y)dy,

(16)

the system (1) with (5) and (6), or with (5) and (7), or with
(5) and (8) has a unique solution under the above controllers
(11), (12) or (13), and this system is L2 and H1 Mittag-
Leffler stable at u(x, t) = 0.

III. OBSERVER-BASED OUTPUT FEEDBACK CONTROL FOR
ANTI-COLLOCATED CASE

As we know, for the observer-based output feedback
control problem, much technical difference can not be found
between Dirichlet, Neumann and Robin actuation. Without
loss of generality, we will discuss observer design and
observer-based output feedback control for anti-collocated
case under Dirichlet actuation in this section.

A. Design of observer

First, let us consider the case of Dirichlet actuation at
x = 1 when the measurement only available at x = 0. The
corresponding observer is given by

C
0 D

α
t û(x, t) = ûxx(x, t) + a(x)û(x, t) + r1(x)(u(0, t)

− û(0, t)), x ∈ (0, 1),

û(x, 0) = û0(x), x ∈ [0, 1]
(17)
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with boundary conditions
ûx(0, t) = pu(0, t) + r10(u(0, t)− û(0, t)), t > 0,

û(1, t) = U(t), t > 0,
(18)

where û0(x) is the initial value. Note that r1(x) is a
observer gain function to be designed and r10 is a constant
independent of x to be determined.

The observer error system can be given by
C
0 D

α
t ũ(x, t) = ũxx(x, t) + a(x)ũ(x, t)

− r1(x)ũ(0, t), x ∈ (0, 1)

ũ(x, 0) = ũ0(x), x ∈ [0, 1]

(19)

with boundary conditions
ũx(0, t) = −r10ũ(0, t), t > 0,

ũ(1, t) = 0, t > 0,
(20)

where ũ(x, t) = u(x, t)− û(x, t), ũ0(x) is the initial value.
We need to choose appropriate observer gains r1(x) and

r10 to stabilize system (19)-(20). For this purpose, we try to
look for a integral transformation like

ũ(x, t) = w̃(x, t) +

∫ x

0

r(x, y)w̃(y, t)dy (21)
to convert the system (19)-(20) into a target system

C
0 D

α
t w̃(x, t) = w̃xx(x, t)− λ̃w̃(x, t),

w̃(x, 0) = w̃0(x), x ∈ [0, 1]
(22)

with boundary conditions
w̃x(0, t) = 0, t > 0,

w̃(1, t) = 0, t > 0,
(23)

where λ̃ > 0 that is different from λ in Section II-A and
can determine the observer convergence speed, w̃0(x) is
the initial value and w̃0(x) = ũ0(x) −

∫ x
0
r(x, y)w̃0(y)dy.

Obviously, the target error system is Mittag-Leffler stable in
L2 and H1 (see the proof of Theorem 3 for more details).

Next, we will find out gain kernel r(x, y) in (21) through
some computation and substitution. First, taking the Caputo
time fractional derivative of the integral transform (21) along
the trajectory of the first equation in (22), then we get
C
0 D

α
t ũ(x, t) =C

0 D
α
t w̃(x, t) +

∫ x

0

r(x, y)C0 D
α
t w̃(y, t)dy

=w̃xx(x, t)− λ̃w̃(x, t) +

∫ x

0

r(x, y)(w̃yy(y, t)

− λ̃w̃(y, t))dy.
(24)

First and second derivatives for (21) on x are given by
ũx(x, t) =w̃x(x, t) + r(x, x)w̃(x, t)

+

∫ x

0

rx(x, y)w̃(y, t)dy,
(25)

ũxx(x, t) =w̃xx(x, t) +
d

dx
r(x, x)w̃(x, t) + rx(x, x)w̃(x, t)

+

∫ x

0

rxx(x, y)w̃(y, t)dy.

(26)

Note that d
dxr(x, x) = rx(x, x) + ry(x, x), where

rx(x, x) =
∂

∂x
r(x, y)|y=x, ry(x, x) =

∂

∂y
r(x, y)|y=x.

After a series of computation, we get the following form
of kernel PDE

rxx(x, y)− ryy(x, y) = −
(
a(x) + λ̃

)
r(x, y),

d

dx
r(x, x) = −1

2
(a(x) + λ̃),

r(1, y) = 0,

(27)

for (x, y) ∈ Ξ = {0 ≤ y ≤ x ≤ 1}.
And, it also yields
r(x, 0)w̃x(0, t)− (r1(x) + ry(x, 0))w̃(0, t) = 0,

w̃x(0, t) = (−r(0, 0)− r10)w̃(0, t).
(28)

Combining above equation (28) and (23), we get the
following observer gains as long as the kernel PDE (27) has
a unique solution

r1(x) = −ry(x, 0), r10 = −r(0, 0). (29)
Using the method of change of variables in [6, Section 3],

we can transform the above kernel PDE (27) into the one
(with p = ∞, λ̃ instead of λ) in class (10) in Section II-
B. Note that the second equation in above kernel PDE (27)
has contrary sign with the counterpart of the kernel PDE
in [6, Section 3] since the mathematical sign in coordinate
transformations is opposite. Using Theorem 1, we can obtain
the kernel PDE (27) is well-posed.
Remark 1. In above kernel PDE (27), if a(x) is a constant
ν, using the above transformed kernel gain PDE (with
p = ∞, λ̃ instead of λ) in class (10) in Section II-B
and the conclusion in [12, page 35], we can obtain its

solution r(x, y) = (ν + λ̃)(1 − x)
I1(
√

(ν+λ̃)(2−x−y)(x−y))√
(ν+λ̃)(2−x−y)(x−y)

.

Moreover, based on (29), observer gains can be rewritten

as r1(x) = −ry(x, 0) = (ν+λ̃)(1−x)
x(2−x) I2(

√
(ν + λ̃)x(2− x)),

r10 = −r(0, 0) = − (ν+λ̃)
2 . They will be used for our

numerical simulations in Section V. Note that Ii(·) denotes
the modified Bessel functions with i order, i = 0, 1, 2.

Based on the argument on invertibility of above integral
transformation (9) provided in Section II-B, the integral
transformation (21) is also invertible. Then we can get the
following main result.

Theorem 3. If r(x, y) is the unique solution of kernel
PDE (27), then the observer error system (19)-(20) with
observer gains r1(x) and r10 provided in (29) is Mittag-
Leffler stable at ũ(x, t) = 0 (equilibrium point of (19)) in
L2(0, 1) and H1(0, 1) norms for any initial ũ0(x) ∈ L2(0, 1)
and H1(0, 1).

Proof. Considering the Caputo time fractional derivatives of
Lyapunov functional V (t) = 1

2

∫ 1

0
w̃2(x, t)dx and G(t) =∫ 1

0
w̃2
x(x, t)dx along with the target system (22)-(23) for

L2 and H1 Mittag-Leffler stabilities respectively, we can
get the target system (22)-(23) is L2 and H1 Mittag-Leffler
stable. Then combining it and the invertibility of integral
transformation (21), this conclusion can be obtained.

B. Design of observer-based output feedback controller

In this part, we will combine the observer for Dirich-
let actuation of anti-collocated case and the corresponding
boundary feedback controller to address the output feedback
control problem via the backstepping method. First, we
illustrate the result from the following theorem.

Theorem 4. If the k(x, y) is the solution of (10) and λ̃ ≥ λ,
the system (1), (5), (6) with the controller

U(t) = −
∫ 1

0

k(1, y)û(y, t)dy (30)
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and the observer (17), (18), (30) is L2 and H1 Mittag-Leffler
stable at u(x, t) = 0, û(x, t) = 0 (equilibrium point of (17))
for u0, û0 ∈ L2(0, 1) and H1(0, 1), where observer gains
r1(x) and r10 are provided in (29).

Proof. Considering the integral transformation ŵ(x, t) =
û(x, t) +

∫ x
0
k(x, y)û(y, t)dy, we map the the observer (17),

(18), (30) into the observer target system. This, together with
the error target system (22)-(23), forms the below integrated
(ŵ(x, t), w̃(x, t)) system

C
0 D

α
t ŵ(x, t) = ŵxx(x, t)− λŵ(x, t)

+ {r1(x) +

∫ x

0

k(x, y)r1(y)dy}w̃(0, t),

ŵ(x, 0) = ŵ0(x),

ŵx(0, t) = psŵ(0, t) + (p+ r10)w̃(0, t),

ŵ(1, t) = 0,
C
0 D

α
t w̃(x, t) = w̃xx(x, t)− λ̃w̃(x, t),

w̃(x, 0) = w̃0(x),

w̃x(0, t) = 0,

w̃(1, t) = 0,
(31)

where ŵ0(x) and w̃0(x) are initial values.
To show the Mittag-Leffler stability of the integrated

(ŵ(x, t), w̃(x, t)) system, we consider the Lyapunov func-
tional

V (t) =
M

2

∫ 1

0

w̃2(x, t)dx+
1

2

∫ 1

0

ŵ2(x, t)dx, (32)

where M is a positive constant to be set later.
By [8, Lemma 1] and integrating from 0 to 1 by parts, we

can obtain the Caputo time fractional derivative of α order
of V (t) along the trajectory of (31) as follows

C
0 D

α
t V (t) =

M

2

∫ 1

0

C
0 D

α
t w̃

2(x, t)dx

+
1

2

∫ 1

0

C
0 D

α
t ŵ

2(x, t)dx

≤M
∫ 1

0

w̃(x, t)C0 D
α
t w̃(x, t)dx

+

∫ 1

0

ŵ(x, t)C0 D
α
t ŵ(x, t)dx

= −M
∫ 1

0

w̃2
x(x, t)dx−Mλ̃

∫ 1

0

w̃2(x, t)dx

− psŵ2(0, t)− (p+ r10)ŵ(0, t)w̃(0, t)

−
∫ 1

0

ŵ2
x(x, t)dx− λ

∫ 1

0

ŵ2(x, t)dx

+

∫ 1

0

w̃(0, t)ŵ(x, t)
(
r1(x)

+

∫ x

0

k(x, y)r1(y)dy
)
dx.

(33)

With the help of Poincaré and Young inequalities, the

below estimate follows

−(p+ r10)ŵ(0, t)w̃(0, t) ≤1

4

∫ 1

0

ŵ2
x(x, t)dx

+ (p+ r10)2
∫ 1

0

w̃2
x(x, t)dx.

(34)
Setting N = max

0<x<1
{r1(x) +

∫ x
0
k(x, y)r1(y)dy} and

also using Poincaré and Young inequalities, we can get the
following estimate∫ 1

0

w̃(0, t)ŵ(x, t)
(
r1(x) +

∫ x

0

k(x, y)r1(y)dy
)
dx

≤ w̃(0, t)N

∫ 1

0

ŵ(x, t)dx

≤ 1

4

∫ 1

0

ŵ2
x(x, t)dx+ 4N2

∫ 1

0

w̃2
x(x, t)dx.

(35)

These estimates (34), (35), together with (33), imply that
C
0 D

α
t V (t) ≤−

[
M − (p+ r10)2 − 4N2

] ∫ 1

0

w̃2
x(x, t)dx

− 1

2

∫ 1

0

ŵ2
x(x, t)dx−Mλ̃

∫ 1

0

w̃2(x, t)dx

− λ
∫ 1

0

ŵ2(x, t)dx.

(36)
Since λ̃ ≥ λ,

∫ 1

0
w̃2(x, t)dx ≤ 4

∫ 1

0
w̃2
x(x, t)dx and∫ 1

0
ŵ2(x, t)dx ≤ 4

∫ 1

0
ŵ2
x(x, t)dx, above estimate (36) can

be further written as follows
C
0 D

α
t V (t) ≤− 1

4

[
M − (p+ r10)2 − 4N2 + 4Mλ

]
×
∫ 1

0

w̃2(x, t)dx− 1

8
(1 + 8λ)

∫ 1

0

ŵ2(x, t)dx.

(37)
Moreover, we take the following equation of M

1

4

[
M − (p+ r10)2 − 4N2 + 4Mλ

]
=
M

8
(1 + 8λ),

which implies M = 2(p+ r10)2 + 8N2.
Finally, choosing M = 2(p + r10)2 + 8N2, the equality

(37) becomes
C
0 D

α
t V (t) ≤ −1

4
(1 + 8λ)V (t). (38)

Using the fractional-order extension of Lyapunov direction
method [7, Theorem 5.1], we can obtain the integrated
(ŵ(x, t), w̃(x, t)) system is L2 Mittag-Leffler stable. In ad-
dition, since the w̃(x, t) system and the ŵ(x, t) system
(without {r1(x)+

∫ x
0
k(x, y)r1(y)dy}w̃(0, t)) are H1 Mittag-

Leffler stable, and the relationship between them is in series,
then the integrated (ŵ(x, t), w̃(x, t)) system is also Mittag-
Leffler stable in H1. Therefore, the (û(x, t), ũ(x, t)) system
is Mittag-Leffler stable in L2 and H1, which indicates our
result has been proved.

Remark 2. These results on Theorem 3 and Theorem 4 can
be generalized to Neumann actuation type with observer
gains r1(x) = −ry(x, 0) and r10 = −r(0, 0), the controller
ux(1, t) = −k(1, 1)û(1, t)−

∫ 1

0
kx(1, y)û(y, t)dy, and Robin

actuation type with observer gains r1(x) = −ry(x, 0) and
r10 = −r(0, 0), the controller ux(1, t) + qu(1, t) = (q −
qs − k(1, 1))û(1, t)−

∫ 1

0

(
kx(1, y) + qsk(1, y)

)
û(y, t)dy.
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IV. OBSERVER-BASED OUTPUT FEEDBACK CONTROL FOR
COLLOCATED CASE

In this part, we will solve the output feedback control
problem with Dirichlet actuation for collocated case.

A. Observer design

Suppose measurement is only available at x = 1, which
is at same end as Dirichlet actuation. Specifically, we focus
on the observer problem with ux(1, t) measured and u(1, t)
actuated. Similarly, the corresponding observer is expressed
as follows
C
0 D

α
t û(x, t) = ûxx(x, t) + a(x)û(x, t) + r1(x)(ux(1, t)

− ûx(1, t)), x ∈ (0, 1),

û(x, 0) = û0(x), x ∈ [0, 1]
(39)

with boundary conditions
ûx(0, t) = pû(0, t), t > 0,

û(1, t) = U(t) + r10(ux(1, t)− ûx(1, t)), t > 0,
(40)

where û0(x) is the initial value. r1(x) is a observer gain
function to be designed and r10 is a constant independent
of x to be determined. In this collocated case, measurement
ux(1, t) replaces u(0, t), r1(x) is with ux(1, t)−ûx(1, t) and
r10 is injected in the boundary condition at x = 1.

The observer error system is described by
C
0 D

α
t ũ(x, t) = ũxx(x, t) + a(x)ũ(x, t)

− r1(x)ũx(1, t), x ∈ (0, 1),

ũ(x, 0) = ũ0(x), x ∈ [0, 1]

(41)

with boundary conditions
ũx(0, t) = pũ(0, t), t > 0,

ũ(1, t) = −r10ũx(1, t), t > 0,
(42)

where ũ(x, t) = u(x, t)− û(x, t), ũ(x, 0) is the initial value.
We use the integral transformation like

ũ(x, t) = w̃(x, t) +

∫ 1

x

r(x, y)w̃(y, t)dy (43)

to map the above system (41) and (42) into the below target
system

C
0 D

α
t w̃(x, t) = w̃xx(x, t)− λ̃w̃(x, t),

w̃(x, 0) = w̃0(x), x ∈ [0, 1]
(44)

with boundary conditions
w̃x(0, t) = pw̃(0, t), t > 0,

w̃(1, t) = 0, t > 0,
(45)

where λ̃ > 0, w̃0(x) is the initial value satisfying (43).
The method of solving gain kernel r(x, y) of (43) is

same as the one in anti-collocated case apart from integral
transformation (43) instead of (21). Then we can get the
below conditions on the gain kernel r(x, y) of (43)

rxx(x, y)− ryy(x, y) = −
(
a(x) + λ̃

)
r(x, y),

d

dx
r(x, x) =

1

2
(a(x) + λ̃),

rx(0, y) = pr(0, y),

r(0, 0) = 0,

(46)

for (x, y) ∈ Ξ = {0 ≤ y ≤ x ≤ 1}, and the observer gains
r1(x) = −r(x, 1), r10 = 0. (47)

Also utilizing the method of change of variables in [6,
Section 4], we can transform the above kernel PDE (46) into

the one (10) (with k(0, 0) = 0) in Section II-B. Furthermore,
using Theorem 1, we can obtain the kernel PDE (46) is well-
posed. This, together with the invertibility of above integral
transformation (43) provided in [6, Sectioin 4], induces the
following main result.

Theorem 5. If r(x, y) is the unique solution of kernel
PDE (46), then the observer error system (41)-(42) with
observer gains r1(x) and r10 provided in (47) is Mittag-
Leffler stable at ũ(x, t) = 0 (equilibrium point of (41)) in
L2(0, 1) and H1(0, 1) norms for any initial ũ0(x) ∈ L2(0, 1)
and H1(0, 1).

B. Observer-based output feedback control law

A similar problem of observer-based output feedback
controller design will hold for the collocated case and we
will formulate our main result in below theorem.

Theorem 6. If the k(x, y) is the solution of (10) and λ̃ ≥ λ,
the system (1), (5), (6) with the controller

U(t) = −
∫ 1

0

k(1, y)û(y, t)dy (48)

and the observer (39), (40) (with r10 = 0), (48) is L2 and H1

Mittag-Leffler stable at u(x, t) = 0, û(x, t) = 0 (equilibrium
point of (39)) for u0, û0 ∈ L2(0, 1) and H1(0, 1), where
observer gains r1(x) and r10 are provided in (47).

Proof. We omit the proof, since it is same as the one of
Theorem 4 except that the transformation (21) is replaced by
(43) and the (û(x, t), ũ(x, t)) system is driven by ux(1, t)−
ûx(1, t) instead of u(0, t)− û(0, t).

Remark 3. We also can extend these conclusions on The-
orem 5 and Theorem 6 to Neumann actuation type with
observer gains r1(x) = ry(x, 1), r10 = −r(1, 1), and the
controller ux(1, t) = −k(1, 1)u(1, t)−

∫ 1

0
kx(1, y)û(y, t)dy.

V. NUMERICAL SIMULATION STUDY

In this section, we will carry out a simulation example for
the anti-collocated case to verify the effective of our results.
We utilize the numerical algorithm in [13, Sectioin IV],
the method of using difference to estimate differential, and
finite-difference approximation method to simulate the FRD
system. The spatial stepsize and temporal stepsize are h =
M
X , ν = N

T , where the spatial solution domain x ∈ [0,M ]
and the temporal solution domain t ∈ [0, N ] with grid points
X + 1 and T + 1 respectively.

In this anti-collocated case, the output y(t) is u(0, t), we
set the discretization parameters M = 1, N = 2, X = 20,
and T = 180. The initial conditions of the plant and observer
are considered as u0(x) = 10x(1−x) and û0(x) = 5x(1−x).
The simulation parameters are given as α = 0.7, a(x) ≡ 10,
ps = p = 1, λ̃ = 10, and λ = 1. Then the observer gains
for observer (17), (18), (30) and the gain kernel k(x, y)
[14, Theorem 10] for the controller (30) are given as
r1(x) = 20(1−x)

x(2−x) I2(
√

20x(2− x)), r10 = −10, k(x, y) =

− 11
2
√
3

∫ x−y
0

e−τ/2I0(
√

11(x+ y)(x− y − τ))sinh(
√

3τ)dτ

+11x
I1(
√

11(x2−y2))√
11(x2−y2)

, where k(0, 0) = 0.
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Fig. 1. Evolution of state L2 norm and state of the system (1), (5) with
the observer-based output feedback controller (6),(30).
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Fig. 2. Evolution of state L2 norm and state of the observer error system
(19), (20).

The evolution of state L2 norm and state of the system
(1), (5) with the observer-based output feedback controller
(6), (30) is shown in Fig. 1, which illustrates the controlled
system is L2 Mittag-Leffler stable (state norm converges to
zero) and H1 Mittag-Leffler stable (state converges to zero
for all x). Fig. 2 shows the evolution of state L2 norm
and state of the observer error system (19), (20), which
guarantees the L2 and H1 Mittag-Leffler stability of observer
error system (19), (20). In Fig. 3 (a), the output y(t) = u(0, t)
in normal case and with white noise (signal-to-noise ratio 28
dB) are provided. Fig. 3 (b) implies the robust Mittag-Leffler
stability of above controlled and observer error systems with
measurement noise.

VI. CONCLUSIONS

This contribution considered observer design and
observer-based output feedback boundary control for the
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Fig. 3. (a) Output y(t) in normal case and with noise. (b) Evolution of
state of the controlled and observer error systems with noise.

FRD system with the Robin boundary condition at x = 0
and the observer-based output feedback boundary controller
for Dirichlet actuation at x = 1 via the backstepping method.
It is pointed out that the provided method here can be
extended to more complicated families of systems, such as a
class of coupled FRD systems, time delay FRD systems and
FRD systems with disturbance, if the backstepping-based
boundary feedback control problem of them can be solved.
Future work will focus on these open equations which are
still unsolved.
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[5] D. Matignon and B. D’Andréa-Novel, “Observer-based controllers for
fractional differential systems,” in Proceedings of the 36th Conference
on Decision and Control, San Diego, California USA, December 1997,
pp. 4967–4972.

[6] A. Smyshlyaev and M. Krstic, “Backstepping observers for a class
of parabolic PDEs,” Systems & Control Letters, vol. 54, no. 7, pp.
613–625, 2005.

[7] Y. Li, Y. Chen, and I. Podlubny, “Stability of fractional-order non-
linear dynamic systems: Lyapunov direct method and generalized
Mittag–Leffler stability,” Computers & Mathematics with Applications,
vol. 59, no. 5, pp. 1810–1821, 2010.

[8] N. Aguila-Camacho, M. A. Duarte-Mermoud, and J. A. Gallegos,
“Lyapunov functions for fractional order systems,” Communications
in Nonlinear Science and Numerical Simulation, vol. 19, no. 9, pp.
2951–2957, 2014.

[9] I. Podlubny, Fractional differential equations. San Diego, CA:
Academic press, 1999.

[10] J. Chen, B. Zhuang, Y. Chen, and B. Cui, “Backstepping-based
boundary feedback control for a fractional reaction diffusion system
with mixed or Robin boundary conditions,” IET Control Theory
& Applications, 2017. [Online]. Available: http://digital-library.theiet.
org/content/journals/10.1049/iet-cta.2017.0227

[11] W. Liu, “Boundary feedback stabilization of an unstable heat equa-
tion,” SIAM journal on control and optimization, vol. 42, no. 3, pp.
1033–1043, 2003.

[12] M. Krstic, Boundary Control of PDEs: A Course on Backstepping
Designs. Society for Industrial and Applied Mathematics, 2008.

[13] H. Li, J. Cao, and C. Li, “High-order approximation to Caputo deriva-
tives and Caputo-type advection-diffusion equations (III) ,” Journal of
Computational & Applied Mathematics, vol. 299, no. 3, pp. 159–175,
2016.

[14] A. Smyshlyaev and M. Krstic, “Closed-form boundary state feedbacks
for a class of 1-D partial integro-differential equations,” IEEE Trans-
actions on Automatic Control, vol. 49, no. 12, pp. 2185–2202, 2004.

2440


