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ABSTRACT. Stem water potential (SWP) has become a very popular tool for farmers to monitor the water status of 
almond trees. However, it is labor intensive and time consuming to scale up the measurements in the large field. With 
the development of unmanned aerial vehicles (UAVs) and sensing payload, it becomes possible to monitor the water 
status much more efficiently with UAV-based multispectral images of higher spatial resolution and more flexible 
temporal resolution. Driven by this possibility, studies have been started in a commercial almond orchard since 2014 to 
research almond water stress monitoring using the small unmanned aerial vehicle and the modified multispectral 
camera. More specifically, we are researching how to predict almond SWP by extracting information from these 
multispectral images. Recent experiments showed that traditional vegetation indices such as normalized difference 
vegetation index (NDVI) do not work very well with high resolution aerial images to predict SWP. Meanwhile, we 
found non-normalized difference vegetation index (NNDVI) between near-infrared (NIR) band, blue band, and its 
higher order moments have a better correlation with SWP. In this paper, we proposed the fractional-order moments of 
NNDVI and discussed its correlation with SWP. It is shown that the correlation between the proposed fractional-order 
moments of NNDVI and SWP is more significant than that between the traditional NDVI and SWP.  
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Introduction 
Water is one of the major constraints all around the world in agriculture. As one of the top three challenges, water 

scarcity is affecting two-thirds of world’s population up to a month a year (Mekonnen & Hoekstra, 2016). Plants will 
experience water stress if evaporative demand is more than water supply in the soil (Slayter & others, 1967). Under water 
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stress, crops will close stomata and reduce uptake of carbon dioxide and their growth will be diminished (Nilsson, 1995). 
As one of the most important crops in California, almond uses 9.5 percent of the states’ water in agriculture. Water stress 
will cause a reduction of kernel size and number of nuts and hence serious yield production losses (Steduto, Hsiao, 
Fereres, & Raes, 2012; Shackel, et al., 2011; Doll & Shackel, 2016). In addition, it will affect future floral bud 
development and cause compound losses (Doll & Shackel, 2016).  

To ameliorate the water usage without sacrificing yield, it is critical to optimize irrigation schedules and apply water in 
the right amount and at the right time. The success of optimizing irrigation schedules depends on how easily growers can 
measure water stress in the fields. Currently, proper irrigation scheduling is based on soil moisture status, evaporative 
demand and plant water status (Steduto, Hsiao, Fereres, & Raes, 2012). Plant based water status measurement provides an 
integrated view of plant-soil continuum (Dhillon, Francisco, Roach, Upadhyaya, & Delwiched, 2014). SWP has been 
proven to be a useful index in many fruit species and able to indicate short- and medium-term plant response to stress 
(Shackel, et al., 1997) and serves as the standard method for plant water status monitoring. Instructions for scheduling 
irrigation based on SWP have been developed (Shackel, Lampinen, Sibbett, Olson, & others, 2000). However, it has not 
been well adopted in irrigation practice. This is mainly because SWP measurement is very labor intensive and time 
consuming, requiring the sampling time either during pre-dawn or within 2 hours around solar noon, and about 3–5 
minutes per sample (Shackel, Lampinen, Sibbett, Olson, & others, 2000). This makes it almost impossible to conduct the 
measurements for the whole field. 

Remote sensing provides the capability of real-time measurement in a large scale. With the fast development of small 
unmanned vehicles systems (sUAS) and imaging payload, sUAS based remote sensing becomes more and more popular. 
Images can be collected with a lower cost, higher-spatial resolution and flexible timing, spurning a lot of research on 
applications of water stress monitoring using sUAS. Crop water stress index (CWSI) correlated well with SWP in peach 
trees (Wang and Gartung, 2010; (Bellvert, et al., 2016), pistachio trees (Goldhamer, Fereres, Mata, Girona, & Cohen, 
1999) and almond trees (Gonzalez-Dugo, et al., 2012). Photochemical Reflectance Index (PRI) showed good correlation 
with SWP in olive trees (Suárez, Zarco-Tejada, González-Dugo, Berni, & Fereres, 2008).  Non-normalized vegetation 
difference index was shown to have good correlation with SWP in almond trees (Zhao, Stark, Chen, Ray, & Doll, 2016).  

It has been shown that, the average of vegetation indices such as NDVI is similar under different image resolutions, 
either obtained from satellites, sUAS or hand-hold scanners (Matese, et al., 2015; Zheng, et al., 2016). As a result, high 
resolution images will not benefit the final measurements if the average statistic is used. On the other hand, the 
temperature distribution within the individual canopy showed water stress (Gonzalez-Dugo, et al., 2012; Agam, et al., 
2014) characterized by a positive skewness. Similarly, histogram shapes of NDVI are also used to compare stress levels at 
different regions (Candiago, Remondino, De Giglio, Dubbini, & Gattelli, 2015).   

Inspired by these works, the goal of this study is to discuss the relationship between the higher order moments of 
vegetation indices and SWP. In particular, we extend the order of the moments from integer order to fractional order. Two 
different definitions of fractional-order moments are analyzed separately.  

 

 
Figure 1. Test site overview 
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Material and Methods 

Study Areas 

The study site lies in a 15-year-old mature, commercial almond (Prunus dulcis) orchard in Merced County, California 
(37.493498◦N, -120.634914◦W). There are three varieties of almonds: Nonpareil, Carmel, and Monterey, all planted on 
Lovell peach rootstock, spaced at 5.5 m×6.1 m, with Rocklin loam and Greenfield sandy soil. The local climate is 
Mediterranean, characterized by wet, cool winters with a rainy season and hot, dry summers. Each block is treated with 
five different irrigation treatments, from 70% to 110% of crop evapotranspiration (ETc), with increment of 10%. Each 
treatment was replicated three times. Each plot is composed of three lines with 18 trees each and a buffer row between 
treatments (Fig. 1). Crop evapotranspiration was calculated according to the UN Food and Agriculture Origination (FAO) 
method (Allen, Pereira, Raes,Smith,&others,1998). 
                                                                                           occ ETKET *=   (1) 
where ET o is the reference evapotranspiration, and Kc is crop coefficient, defined as the ratio ET c/ETo. 

Field Measurement 

To determine the effects of irrigation treatments on tree water stress, midday SWP is measured using a pressure 
chamber (1PMS Instrument Model 600, Oregon, USA) following standard procedures (Fulton, Grant, Buchner, & Connell, 
2014). These sample trees were measured once a week. The layout of sample trees is shown in Fig. 1, where the sample 
trees are marked with the letter a,b and c. SWP was measured simultaneously as the UAV flight campaigns.  

Airborne Imagery 

Two COTS (Commercial-off-the-shelve) cameras were flown from August, 2014 to October, 2015. One is configured 
to detect three bands: red, green, blue (RGB), and the other is configured to detect near-infrared (NIR), green, blue. Both 
cameras (ELPH110HS, Canon, Japan) have a resolution of 4608×3459 pixels with 24 bit radiometric resolution and a 
focal length 4.3mm. The modified NIR camera (LDP, LLC, USA) is centered at 430nm, 530nm and 700 nm with the 
quantum efficiency shown in Fig. 2.  

Flight campaigns were conducted around noon at 60m altitude, yielding a ground spatial resolution of 1.87cm. The 
trigger distance for imaging was 16 m to generate vertical overlap up to 75%.  Right before the flight missions, images of 
white panel were taken to convert digital number (DN) value of pixels to reflectance (Smith & Milton, 1999).  Only the 
images of canopies taken with nadir angles were considered so the disturbance of bidirectional reflectance distribution 
function (BRDF) is minimized (Stark, Zhao, & Chen, 2016).  

 
Figure 2. Band configuration of the modified NIR camera 

 
1 Mention of trade names or commercial products in this publication is solely for the purpose of providing specific 

information and does not imply recommendation or endorsement by the University of California or U.S. Department of 
Agriculture. 
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Fractional Order Moments 

Considering a random sample X as Nxxx ,...,, 21 , its standardized moments with order α defined as  

                                                                                
r

r
r σ

µα =                                                                                          (2) 

where,  
                                                                       ( )[ ]r

r XE µµ −=                                                                                   (3) 

                                                                    ( )[ ] 2/2 )( r
r XE µσ −=                                                                              (4) 

µ is the mean of this sample and r is an integer.,  To generalize the integer-order moments to fractional-order moments, r  
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According to these definitions, the fractional-order moment A with order 4 is the same with kurtosis and the fractional-
order moment B with the order 3 is the same with skewness. The moment A with order 2 is equal to 1 and the moment B 
with order 1 is equal to 0. In the following we will not consider these two constants.  

 

Figure 3. Correlation between SWP and mean, variance, fractional-order moments using method A and method B of order 5, in middle block on 
June 12, 2015 
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Results and Discussions 
We compared four different methods to extract water stress signature from images, NDVI mean, NDVI variance, 

fractional-order moments of DN difference between the NIR band and the blue band of every pixel within canopies 
obtained using the method A and the method B, denoted as fractional-order moment A (FmomentA) and fractional-order 
moment B( FmomentB). The optimal order of the moments was determined by grid search within the range of [0.2, 10] 
with the step 0.2.  

Fig. 3, 5, 6  showed the scatter plots, fitted lines, and R square between SWP and extracted vegetation indices of three 
different days, June 12, June 18, and August 20, 2015 in the middle block, where the x axis is SWP, and the y axis stands 
for the extracted vegetation indices from the image.    

According to Fig. 4, the correlation between fractional-order moments and SWP, quantified by R square, can be tuned 
by changing the order. By definition, the fractional-order moment A with order 2 is always 1, since it is standardized. The 
fractional-order moment with order 1 is always 0. So these two points were marked with circles in Fig. 4. When the order 
is changed from 0.2 to 10, first the R square is increased and then it is decreased. There is an optimal order where the R 
square is the largest. It is interesting that the optimal order is not at the integer point. The optimal order for moment A is 5 
and the optimal order for moment B is 4.4.  The performances of moment A and moment B were not exactly the same.  
Therefore, the value of moments order in Fig. 3, 5, 6 are not the one yielding best R square at the same time, but the one 
yielding relatively good R square with both moments A and moments B. According to Fig. 3, 5, 6, it is shown that 
moments-based methods perform better than NDVI mean and variance. 

 
Figure 4. R square vs. order of the fractional-order moments, in middle block, on June 12, 2015 

 
Figure 5. Correlation between SWP and mean, variance, fractional-order moments using method A and method B of order 10, in middle block 

on June 18, 2015 
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Figure 6. Correlation between SWP and mean, variance, fractional-order moments using method A and method B of order 1.8, in middle block 

on August 20, 2015 

Conclusions 
With the development of UAV and camera technologies, it becomes much easier to collect high resolution images with 

affordable cost and flexible timing. Yet the challenge is to make sense of these high resolution images to obtain accurate 
information. Based on past work on non-normalized difference vegetation indices (Zhao, Stark, Chen, Ray, & Doll, 2016), 
we discussed the best order of fractional-order moments. Performances of traditional NDVI mean, NDVI variance and 
fractional-order moments of canopy difference were compared. Fractional-order moments improved the correlation 
between image-based results and SWP, and the optimal order of fractional-order moments was not an integer but a 
fraction. 
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