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ABSTRACT
This paper investigates the controllability of distributed-

order fractional systems with distributed delays. By using the
controllability Gramian matrix and reduction to absurdity, a nec-
essary and sufficient condition for the controllability of linear
system is established, and a sufficient condition for the nonlinear
system is obtained. Examples are given to illustrate the effective-
ness of the theorems.

1 INTRODUCTION
Fractional order systems are research hotspots recently.

Fractional calculus appeared the same time as the appearance of
calculus. Thanks to their nonlocal and heredity properties, they
are widely used in a variety of fields such as control theory, bi-
ology, anomalous diffusion process, porous media,etc., these can
be seen in the monographs [10, 12–14].

In the past few years, the controllability of fractional order
systems have been widely researched, many results are obtained.
In 2012, Wei Jiang [7] investigated a fractional control system
with control delay and Balachandran [2] analyzed the control-
lability of fractional dynamical systems with distributed delays
in control. In our recent work [5] and [6], we studied several
kinds of fractional damped systems with different kinds of de-
lays. In 2016, Joice Nirmala et al. [9] researched the controlla-
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bility of nonlinear fractional delay dynamical systems using the
fixed point argument. We can see that, delays are common phe-
nomenons in actual model. There are many kinds of delays, such
as fixed delays, time-varying delays and distributed delays. It is
worth mention that, distributed delays are broad kind of delays,
they can describe some special delays, this will be seem in equa-
tion (2) below.

For a given function f (t), when we integrate C
0 Dα

t f (t) with
respect to the order α , then the distributed-order can be obtained.
Distributed-order system is a generalization of fractional order
system, it was first proposed by Caputo in 1969 [3]. Recently,
much attention has been paid to the distributed-order systems and
their applications on engineering fields. For some existing results
of distributed-order, we refer readers to [1, 11, 15–17] and the
reference therein.

In general, distributed-order fractional operator can be writ-
ten as

0Dq(α)
t f (t) :=

∫
γ2

γ1

q(α)C0 Dα
t f (t)dα,

where q(α) denotes the weight function of the distributed order
α ∈ [γ1,γ2].

In this paper, we investigates the following distributed-order
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fractional system with distributed delays
∫ 1

0
q(α)C0 Dα

t x(t)dα =
∫ 0

−τ

dσ B(t,σ)u(t +σ), t ≥ 0,

x(0) = x0,
u(t) = ψ(t),−τ ≤ t ≤ 0,

(1)

where 0 < α < 1,x ∈ Rn is a state vector, u(t) ∈ Rm is a control
vector, τ > 0 is the time delay, and ψ(t) is the initial control func-
tion. C

0 Dα
t x denotes the Caputo fractional derivative with respect

to x of order α . We assume that meas{α ∈ [0,1]|q(α)> 0}> 0,
which guarantees

∫ 1
0 q(α)sα dα 6= 0. In particular, if we define

B(t,σ) =

B, σ = 0,
0, −τ < σ < 0,
−C, σ =−τ,

and

q(α) = δ (α−β ), 0 < β < 1,

here δ is the Dirac delta function. By using the Lebesgue-
Stieltjes integral and the property of Dirac delta function, system
(1) becomes


C
0 Dβ

t x(t) = Bu(t)+Cu(t− τ), 0 < β < 1, t ≥ 0,
x(0) = x0,
u(t) = ψ(t),−τ ≤ t ≤ 0.

(2)

From this we can see that distributed-order system is a general-
ization of constant order system and distributed delay generalizes
the constant delay.

Definition 1.1. The left-side Caputo fractional derivative of
order α > 0 is defined by the operator

C
0 Dα

t z(t) =
1

Γ(n−α)

∫ t

0
(t− s)n−α−1z(n)(s)ds

provided that it exists almost everywhere on [0,+∞) where n =
[α]+1.

Definition 1.2. System (1) is said to be controllable on J =
[0,T ], if, for each initial x(0) and for each vector x1 ∈ Rn, there
exists a control u ∈C(J) such that the corresponding solution of
(1) with x(0) = x0 satisfies x(T ) = x1.

We proceed as follows. In Section 2, we present some lem-
mas that will be used in the discussion. Section 3 and Section
4 are the main results and their proofs. Examples are shown in
Section 5 to verify the effective of the theorems.

2 PRELIMINARIES
In this section, we present several lemmas which will be

used in the proof of the main results.

Lemma 2.1. [8] The Laplace transform of
∫ 1

0 q(α)CDα
t x(t)dα

is

L {
∫ 1

0
q(α)CDα

t x(t)dα}(s) = X(s)
∫ 1

0
q(α)sα dα

−x(0)
1
s

∫ 1

0
q(α)sα dα,

(3)

where X(s) =
∫

∞

0 x(t)e−stdt is the Laplace transform of x(t).

Lemma 2.2. The general solution of system


∫ 1

0
q(α)CDα

t x(t)dα = f (t), t ≥ 0,

x(0) = x0,
u(t) = ψ(t),−τ ≤ t ≤ 0,

(4)

with 0 < α ≤ 1 can be written as

x(t) = x0 +
∫ t

0
(L −1 1

Q(·)
)(t− s) f (s)ds,

where Q(s) =
∫ 1

0 q(α)sα dα and L −1 is the inverse of Laplace
transform.

Proof. Take the Laplace transform on both side of equation (4),
by Lemma 2.1, we get

Q(s)(X(s)− s−1x0) = F(s).

Then

X(s) = s−1x0 +Q−1(s)F(s).

Taking inverse Laplace transform to both sides of the last expres-
sion, then

x(t) = x0 +
∫ t

0
(L −1 1

Q(·)
)(t− s) f (s)ds.

According to Lemma 2.2, the solution of system (1) can be
easily obtained.

Lemma 2.3. The solution of system (1) can be written as

x(t) = x0 +
∫ t

0
(L −1 1

Q(·)
)(t− s)[

∫ 0

−τ

dσ B(s,σ)u(s+σ)]ds.

(5)
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3 LINEAR SYSTEM
In this section, we investigate the controllability of the

distributed-order fractional system (1) with distributed delays.
First, we change the expression of the solution (5). For con-
venience, we denote L −1Q−1(·) = P(·).

x(t)

= x0 +
∫ t

0 P(t− s)
[∫ 0
−τ

dσ B(s,σ)u(s+σ)
]
ds

= x0 +
∫ 0
−τ

dBσ

[∫ t
0 P(t− s)B(s,σ)u(s+σ)ds

]
= x0 +

∫ 0
−τ

dBσ

[∫ 0
σ

P
(
t− (s−σ)

)
B(s−σ ,σ)ψ(s)ds

]
+
∫ 0

−τ

dBσ

[∫ t+σ

0
P
(
t− (s−σ)

)
B(s−σ ,σ)u(s)ds

]
= x0 +

∫ 0
−τ

dBσ

[∫ 0
σ

P
(
t− (s−σ)

)
B(s−σ ,σ)ψ(s)ds

]
+
∫ t

0

[∫ 0

−τ

P
(
t− (s−σ)

)
dσ Bt(s−σ ,σ)u(s)ds

]
,

(6)

where

Bt(s,τ) =
{

B(s,τ), s≤ t,
0, s > t, (7)

and dBσ denotes the Lebesgue-Stieltjes integration with respect
to the variable σ in the function B(t,σ).

Now, we introduce the notation

G(t,s) =
∫ 0

−τ

P(t− (s−σ))dσ Bt(s−σ ,σ), (8)

and for T > 0, we define the controllability Gramian matrix

W =
∫ T

0
G(T,s)G>(T,s)ds. (9)

Theorem 3.1. The linear distributed-order fractional system
(1) with distributed delays is controllable on J if and only if the
controllability Gramian matrix

W =
∫ T

0
G(T,s)G>(T,s)ds

is positive defined.

Proof. First, we suppose that W is not positive definite. By the
definition of W , we know that W is not invertible, so there exists
a nonzero y such that

y>Wy = y>
∫ T

0
G(T,s)G>(T,s)dsy = 0,

hence, for s ∈ [0,T ],

y>G(T,s)

= y>
∫ 0

−τ

P(T − (s−σ))α−1dσ BT (s−σ ,σ)

= 0.

(10)

Since system (1) is controllable, there exists a control u ∈ C(J)
such that it steers the initial state x0 = y to the origin in the inter-
val J, we choose ψ(t) = 0, then it follows that

x(T ) = x0 +
∫ T

0
[
∫ 0

−τ

P(T − (s−σ))dσ BT (s−σ ,σ)]u(s)ds

= y+
∫ T

0
[
∫ 0

−τ

P(T − (s−σ))dσ BT (s−σ ,σ)]u(s)ds

= 0,

from this, we get

y>y+
∫ T

0
y>G(T,s)u(s)ds = 0. (11)

Combine (10) and (11) , we have y>y = 0. This is a contradic-
tion to the assumption y 6= 0. Thus W is invertible, hence, W is
positive defined.

Next, we suppose that W is positive definite, then its inverse
is well-defined. Define the control function as

u(t) = G>(T, t)W−1
(

x1− x0−
∫ 0

−τ

dBσ

×(
∫ 0

σ

P(T − (s−σ)))B(s−σ ,σ)ψ(s)ds
)
,

where x0, ψ(t) and x1 are chosen arbitrarily. Substituting u(t)
into (6) and using the definition of W , we have

x(T )

= x0 +
∫ 0

−τ

dBσ

(∫ 0

σ

P(T − (s−σ))B(s−σ ,σ)ψ(s)ds
)

+
∫ T

0

[∫ 0

−τ

P(T − (s−σ))dσ BT (s−σ ,σ)

×G>(T,s)W−1
(

x1− x0−
∫ 0

−τ

dBσ

×
∫ 0

σ

P(T − (s−σ))B(s−σ ,σ)ψ(s)ds
)]

= x1.

(12)

This means that the control u(t) steers the initial x0 to the desired
vector x1 ∈ Rn at time T . Hence system (1) is controllable.
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From Theorem 3.1, we have derived that the controllability of
the linear distributed-order fractional system (1) with distributed
delays is equivalent to the invertibility of W .

By Theorem 3.1, we have a simple pattern for the special
case (2).

Corollary 3.1. The fractional dynamical system with control
delay (2) is controllable if and only if

rank[B,C] = n. (13)

For system (2), the invertible of W is equivalent to the relation
(13), this is a special case, and is easy to check.

4 NONLINEAR SYSTEM
In this section, we consider the following nonlinear

distributed-order fractional system with distributed delays:
∫ 1

0
q(α)CDα

0+x(t)dα =
∫ 0

−τ

dσ B(t,σ)u(t +σ)+ f (t,x,u), t ≥ 0,

x(0) = x0,
u(t) = ψ(t),−τ ≤ t ≤ 0,

(14)
where A and B are the same as above and f : J×Rn×Rm→ Rn

is a continuous function.
Denote

M = {(z,v) : z ∈Cn(J),v ∈Cm(J)},

with the uniform norm ‖(z,v)‖ = ‖z‖+ ‖v‖ = maxt∈J |z(t)|+
maxt∈J |v(t)|, where Cn(J) = { f : J→ Rn| f is continuous on J}
is a Banach space, | · |n and | · |m denotes the max norm in Rn and
Rm, respectively, without confusion, we use the notation | · |. For
each (z,v)∈M, consider the nonlinear distributed-order fraction-
al system described by
∫ 1

0
q(α)CDα

0+x(t)dα =
∫ 0

−τ

dσ B(t,σ)u(t +σ)+ f (t,z,v), t ≥ 0,

x(0) = x0,
u(t) = ψ(t),−τ ≤ t ≤ 0.

(15)
By Lemma 2.2 and (6), the solution of (15) can be written as

x(t) = x0 +
∫ t

0
P(t− s) f (s,z,v)ds

+
∫ t

0
[
∫ 0

−τ

P(t− (s−σ))dσ Bt(s−σ ,σ)u(s)ds]

+
∫ 0

−τ

dBσ [
∫ 0

σ

P(t− (s−σ))B(s−σ ,σ)ψ(s)ds],

where Bt(s,τ) is given by (7), and dσ Bt denotes the Lebesgue-
Stieltjes integration with respect to the variable σ in the function
Bt(s−σ ,σ). Brevity, for given x0,x1 ∈ Rn, we use the notation

η(x0,x1;z,v)

= x1− x0−
∫ T

0
P(T − s) f (s,z,v)ds

−
∫ 0

−τ

dBσ

[∫ 0

σ

P(T − (s−σ))B(s−σ ,σ)ψ(s)ds
]
,

and define the control function

u(t) = G>(T, t)W−1
η(x0,x1;z,v),

where the initial state x0,ψ(t) and the vector x1 ∈ Rn are chosen
arbitrarily.

In order to derive the controllability result of nonlinear
distributed-order system, we need the following lemma.

Lemma 4.1. [4] If the function f (t,v) is bounded locally in ν

and satisfies that

lim
|ν |→∞

| f (t,ν)|
|ν |

= 0

uniformly in t ∈ J. Then for every pair of constants c,d, there is
a constant r such that if |ν | ≤ r, then c| f (t,ν)|+ d ≤ r for all
t ∈ J.

Theorem 4.1. Suppose that the continuous function f satisfies
the condition

lim
|(x,u)|→∞

| f (t,x,u)|
|(x,u)|

= 0 (16)

uniformly in t ∈ J, and the linear fractional system (1) is control-
lable. Then nonlinear system (14) is controllable on J.

Proof. Since the system (1) is controllable, it follows from Theo-
rem 3.1 that W defined in (9) is invertible. We define the operator
Ψ : M→M as follows:

Ψ(z,v) = (x,u),

where

u(t) = G>(T, t)W−1(η(x0,x1;z,v))

= G>(T, t)W−1
(

x1− x0−
∫ T

0
P(T − s) f (s,z,v)ds

−
∫ 0

−τ

dBσ

[∫ 0

σ

P(T − (s−σ))B(s−σ ,σ)ψ(s)ds
])

,

(17)
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and

x(t) = x0 +
∫ t

0
P(t− s) f (s,z,v)ds

+
∫ 0

−τ

dσ B(s−σ ,σ)
[∫ 0

σ

P(t− (s−σ))ψ(s)ds
]

+
∫ t

0

[∫ 0

−τ

P(t− (s−σ))dσ B(s−σ ,σ)
]
u(s)ds.

(18)

Now, we show that there exists a constant r > 0 such that

Ψ(M(r))⊂M(r) holds,

where M(r) = {(z,v) ∈ M : ‖z‖ ≤ r
2 and ‖v‖ ≤ r

2}. For conve-
nience, we introduce the following constants:

a1 = sup
s∈[0,T ]

‖P(T − s)‖,

a2 = ‖
∫ 0

−τ

dσ B(s−σ ,σ)[
∫ 0

σ

P(t− (s−σ))ψ(s)ds]‖,

a3 sup
t∈[0,T ]

‖G>(T, t)‖,

a = max
s∈[0,T ]

{T‖G(T,s)‖,1},

c1 = 4a1a3T |W−1, c2 = 4a1T,

d1 = 4a3|W−1|(|x1|+ |x0|+a2), d2 = 4(x0 +a2),

c = max{ac1,c2}, d = max{ad1,d2},
sup | f |= sup{| f (s,z,v)|;s ∈ J}.

By (18) and (17), we have

|u(t)|
≤ ‖G>(T, t)‖|W−1|

[
|x1|+ |x0|+a2 +a1T sup | f |

]
≤ a3|W−1|[|x1|+ |x0|+a2]+a3|W−1|a1T sup | f |

≤ d1

4
+

c1

4
sup | f |,

(19)

and

|x(t)|

≤ x0 +a2 +
∫ T

0
|G(t,s)||u(s)|ds+a1T sup | f |

≤ d2

4
+a
[

d1

4
+

c1

4
sup | f |

]
+ c2 sup | f |

≤ d
2
+

c
2

sup | f |.

(20)

Since f (t,x,u) satisfies (16), by Lemma 4.1, for each pair of
positive constants c and d, there exists a positive constant r such

that, if ‖(z̄, v̄)‖ ≤ r, then

c| f (t, z̄, v̄)|+d ≤ r, for all t ∈ [0,T ]. (21)

Now we take c,d as given by (19), and choose r such that (21)
holds. Therefore, if ‖z‖ ≤ r

2 , and ‖v‖ ≤ r
2 , then |z(s)|+ |v(s)| ≤ r

for all s ∈ [0,T ], it follows that d + csup | f | ≤ r. Therefore, by
(19), we have |u(s)| ≤ r

4 for all s ∈ [0,T ], and hence ‖u‖ ≤ r
2 ,

and by (20), ‖x‖ ≤ r
2 . Thus, Ψ(M(r))⊂M(r).

Similar to the proof of our previous paper [6], we get that
Ψ admits a fixed point (z,v) ∈M(r) such that Ψ(z,v) = (z,v) ≡
(x,u). Hence x(t) is the solution of system (14), and it is easy
to verify that x(T ) = x1 and that the control function u(t) steers
system (14) from initial x0 to x1 on [0,T ]. Hence system (14) is
controllable on [0,T ].

5 EXAMPLES
In this section, we give examples to illustrate the effective of

the theorems.

Example 5.1. Consider the linear distributed-order system
with distributed delays

∫ 1

0
δ (α−0.5)CDα

t x(t)dα =
∫ 0

−1
dσ B(t,σ)u(t +σ), (22)

where

x(t) =
(

x1(t)
x2(t)

)
and B(t,σ) =

(
−cos(t +σ) sin(t +σ)
−sin(t +σ) −cos(t +σ)

)
.

Then, by the properties of Dirac delta function, system (22) be-
comes

CD0.5
t x(t) =

∫ 0

−1
dσ B(t,σ)u(t +σ).

By calculation, P(t− (s−σ)) = (t−(s−σ))−0.5

Γ(0.5) and

G(T,s) =
∫ 0

−1

(T − (s−σ))−0.5

Γ(0.5)

(
sin(T +σ) cos(T +σ)
−cos(T +σ) sin(T +σ)

)
dσ

=

(
p(s) w(s)
−w(s) p(s)

)
,

where

p(s) =
∫ 0

−1

(T − (s−σ))−0.5

Γ(0.5)
sin(T +σ)dσ ,

5 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/13/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



w(s) =
∫ 0

−1

(T − (s−σ))−0.5

Γ(0.5)
cos(T +σ)dσ .

Then, we obtain that the controllability matrix

W =
∫ T

0
G(T,s)G>(T,s)ds

=
∫ T

0
(p2(s)+w2(s))

(
1 0
0 1

)
ds

is positive defined for any T > 0. Therefore, by Theorem 3.1,
system (22) is controllable.

Example 5.2. Now we consider the following distributed-order
fractional system:

∫ 1

0
(α−1)CDα

t x(t)dα =
∫ 0

−1
dσ B(t,σ)u(t +σ), (23)

where B(t,σ) equals to Example 5.1. Then we have P(s) =
L −1 ln2 s

1−s−lns ,

G(T,s) =
∫ 0

−1
L −1

( ln2(T − (s−σ))

1− (T − (s−σ))+ ln(T − (s−σ))

)
×
(

sin(T +σ) cos(T +σ)
−cos(T +σ) sin(T +σ)

)
dσ

=

(
q(s) v(s)
−v(s) q(s)

)
,

where

q(s) =
∫ 0

−1
L −1

( ln2(T − (s−σ))

1− (T − (s−σ))+ ln(T − (s−σ))

)
×sin(T +σ)dσ ,

v(s) =
∫ 0

−1
L −1

( ln2(T − (s−σ))

1− (T − (s−σ))+ ln(T − (s−σ))

)
×cos(T +σ)dσ .

Then, we obtain the controllability matrix

W =
∫ T

0
G(T,s)G>(T,s)ds

=
∫ T

0
(q2(s)+ v2(s))

(
1 0
0 1

)
ds

is positive defined for any T > 0. Therefore, by Theorem 3.1, the
system (23) is controllable.

Example 5.3. Base on Example 5.1 and Example 5.2, if we
choose

f (x) =
(

x1 + x2

1+ x2
1 + x2

2
,

x1 +1
1+ x2

1 + x2
2

)>
,

then the corresponding nonlinear systems are controllable.

6 Conclusions
In this paper, we have investigated the distributed-order frac-

tional systems with distributed delays. First, we present the ex-
pression of the solution, then by using the controllability Grami-
an matrix, a necessary and sufficient condition of linear system
is obtain, also, a special rank condition is derived. Third, utilize
a strong restriction of f , we get the nonlinear result. Examples
are given at last.

The methods we used here are the same as [2] and [6], but
the distributed-order fractional systems are more general.
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