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ABSTRACT
Intensity inhomogeneity or weak texture region image seg-

mentation plays an important role in computer vision and image
processing. RSF(Region-Scalable Fitting) active contour model
has been proved to be an effective method to segment intensity
inhomogeneity. However RSF model is sensitive to the initial lo-
cation of evolution curve , it tends to fall into local optimal. Aim-
ing at the problem, this paper proposed a new method for image
segmentation based on fractional differentiation and RSF model.
The proposed method adds the global Grünwald-Letnikov frac-
tional gradient into the RSF model. Thus the gradient of the in-
tensity inhomogeneity and weak texture regions is strengthened.
As a result, both the robustness of initial location of evolution
curve and efficiency of image segmentation are improved. The-
oretical analysis and experimental results demonstrate that the
proposed algorithm is capable of segmenting the intensity inho-
mogeneities and weak texture images. It is robust to curve initial
location, furthermore the efficiency of segmentation is improved.

1 INTRODUCTION
Image segmentation is one of the most important problems

in computer vision and iamge processing. In recent years, ac-
tive contour models (ACM)[1]have been widely developed and
have several notable advantages over classical image segmen-

∗Corresponding author. Tel: +86 13870995902. E-mail:
guimei.zh@163.com (G. M. Zhang), chen53@ucmerced.edu (Y, Q. Chen)

tation methods, so they are extensively used in computer vision
and medicine image analysis. Generally, the existing ACM meth-
ods can be classified into two types: edge-based models[1−3] and
region-based models[4−8]. There are many advantages of region-
based models when compared with edge-based models, such
as robustness against initial contour and insensitivity to image
noise, thus region-based models are more widely used. However,
common region-based active contour models tend to rely on in-
tensity homogeneity in each of the regions to be segmented. For
example, the popular C-V model[5], which has been successfully
used in binary phase segmentation with the assumption that each
image region is statistically homogeneous. But, the C-V model
does not work well for the images with intensity inhomogeneity.
Vese and Chan extended their work and proposed the piecewise
constant (PC) models[6], this model utilize multi-phase level set
functions to represent multiple regions. However, both the C-V
and the PC models have the drawback described above. Li et
al.[7] proposed the RSF(Region-Scalable Fitting) model, which
utilizes the local image information as constraints, can well seg-
ment objects with intensity inhomogeneity. But when segment-
ing images with weak texture and edges, RSF model is sensi-
tive to the initial location of evolution curve during the optimiza-
tion process, it tends to fall into local optimal with slow evo-
lution rate, because the models only use local information. To
solve this problem, Zhang et al.[8] improved the method to seg-
ment images with intensity inhomogeneity, but this methods is
time consuming. Song et al.[9] combined Laplace zero crossing
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operator and put forward a regularized gradient flows method,
which improved edges location. Zhang et al.[10]proposed Lo-
cal Image Fitting (LIF) model, this method decreases compu-
tational complexity over RSF model. Wang et al.[11] designed a
new nonlinear weighted item based on Bayes rule, this weighted
item is capable of adaptively evolution, thus can well deal with
boundary leak. However, the above methods do not solve the
problem of sensitivity to initial evolution curve. Fractional dif-
ferentiation have the advantage of strengthening the components
of high and medium frequency, while reserving the part of very
low frequency in nonlinear manner. This excellent features are
widely used in keeping texture details and weak edges in im-
age processing[12]. For example, Ren et al.[13] introduced frac-
tional calculus to CV models and add fractional fitting term, Tian
et al.[14] employed fractional divergence operator to CV model,
both methods improve capacity of weak edges location and the
performance of segmenting weak edges, in addition both men-
tioned above methods are more robust to noise. However, both
models do not work well in images with intensity inhomogene-
ity because they only use image local information. Though RSF
model has been proved to be an effective method to segment
intensity inhomogeneity. It has limitation in segmenting image
with weak texture and weak edge, troubled by inclining to local
minimum and slow evolution speed. Aims at the problem, this
paper introduced fractional differentiation to RSF model, using
global fractional gradient fitting term as a new driving force to
attract evolution curve to stop at object boundary. So, image gra-
dient is calculated using fractional differentiation instead of tra-
ditional gradient function. Therefore, detail feature is strength-
ened while image gradient of regions with intensity inhomogene-
ity and weak texture is enhanced. As a result, both the robustness
to initial evolution curve and efficiency of image segmentation
are improved. Theoretical analysis and experimental results in-
dicate that the proposed algorithm is capable of segmenting the
intensity inhomogeneity and weak texture images. It is capable
of dealing with the problem that RSF model is sensitive to ini-
tial location of evolution curve, and improving the efficiency of
segmentation.

2 BACKGROUND
2.1 RSF Model

Chan and Vese proposed an ACM based on the Mumford-
Shah model[4], which utilizes image’s global intensity to calcu-
late information, and assumes that the intensity of both back-
ground and foreground is homogeneous. CV model has been
successfully used in binary phase segmentation with intensity
uniform without image smooth processing in advance. However,
it has limitation in segmenting images with intensity inhomoge-
neous. To solve this problem, Li et al.[7] proposed the Region-
Scalable Fitting (RSF) model by embedding the local image in-
formation instead of global image information and introduced

a kernel function to define an RSF energy function, moreover a
new symbol distance function is defined to stable evolution of the
level set function. RSF is able to segment images with intensity
inhomogeneities and is much more efficient and accurate than
the CV model. Level set energy equation of RSF is as follows:

Eε( f1(x), f2(x),φ)

=
2

∑
i=1

λi

∫
(
∫

Ωi
Kσ (x− y)|I(y)− fi(x)|2Mε

i (φ(y))dy)dx

+ v
∫
|∇Hε(φ(x))dx+ µ

∫ 1
2
(|∇φ(x)−1|)2dx, (1)

where Kσ (x− y) is a Guassian kernal with standard devi-
ation σ , Mε

1 (φ) = Hε(φ), Mε
2 (φ) = 1−Hε(φ), Hε is regular-

ized Heaviside function, fi(x)(i = 1,2) are two smooth functions
that approximate the local image intensities inside and outside
the contour C, respectively. fi(x)(i = 1,2) can be expressed as
following:

fi(x) =
Kσ (x)∗ [Mε

i (φ(x))I(x)]
Kσ (x)∗ [Mε

i (φ(x))]
, i = 1,2. (2)

The first item in formula (1) is local intensity fitting value,
driving evolution curve to stop at object contour; the second one
is length constraint, controlling the length of evolution curve;
the last one is symbol distance function, preventing the evolution
curve from initializing. Minimizing the energy function can be
implemented by solving the corresponding Euler-Lagrange equa-
tions. Then,we have the gradient descent flow as follows:

∂φ
∂ t

=−δε(φ)(λ1e1−λ2e2)+ vδε(φ)div(
∇φ
|∇φ | )

+ µ(∆φ −div
∇φ
|∇φ | ), (3)

where δε(φ) is regularized Dirac function,

ei(x) =
∫

Kσ (y− x)|I(x)− fi(y)|2dy, i = 1,2. (4)

RSF model improves greatly the performance of segment-
ing images with intensity inhomogeneous. But it tends to fall
into local optimal because it only uses image local information,
furthermore, it is sensitive to initial location of evolution curve.
To get desired result, initial location of curve should be properly
chosen according to segmentation result, thus its application is
restricted.
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2.2 Fractional Differential Definition
Fractional calculus[15,16] is a branch of integer order

calculus, which extends the traditional integer order cal-
culus. Generally, the most popular definitions among
them involve: Riemann Liouville(R-L)definition, Grünwald-
Letnikov(G-L)definition and Caputo definition[15,16], where R-L
definition and G-L definition can perform convolution operation,
so they are wildly used in the field of signal processing. G-L def-
inition is more accurate than R-L definition[15,16]thus we deduce
this paper’s fractional differential operator based on G-L defini-
tion. ∀α ∈ R(includes fraction), let the integer part of α as [α].
If signal s(t), t ∈ [a,b](a < b,a ∈ R) exists n + 1(n ∈ Z) order
continuous derivative, when α > 0, n at least equals to [α], then
the G-L fractional order(α) derivative is defined as[15,16] :

G
a Dα

b s(t) = lim
h→ 0

mh = b−a

h−α
m

∑
r=0

[−α
r

]
s(t− rh), (5)

where,
[
−α

r

]
= (−α)(−α+1)...(−α+r+1)

r! ;h = b−a
m , when h →

0,m→ ∞,m =
[ b−a

h

]
.

2.3 Fraction Differential Characteristics
For an arbitrary square integrable energy signal I(x) ∈ R2,

its Fourier transform is as following :

f̂ (x) =
∫

R
f (x)exp(−iωx)dx. (6)

Suppose n order derivative of signal I(x) is In(x)(n ∈ N),
the following equal can be obtained based on Fourier transform
characteristics:

DnI(x)
FT⇔(D̂I)n(ω) = (iω)n Î(ω) = d̂n(ω)Î(ω). (7)

We extend integer order to fractional order, then α order of
I(x) is Iα(x)(α ∈ R+).Similarly, fractional order Fourier trans-
form is:

Dα I(x)
FT⇔(D̂I)α(ω) = (iω)α Î(ω) = d̂α(ω)Î(ω), (8)

where,

{
d̂α(ω) = (iω)α = âα(ω)exp(iθ α(ω)),
âα(ω) = |ω|α ,θ α(ω) = απ

2 sgn(ω).
(9)

FIGURE 1. THE AMPLITUDE-FREQUENCY CURVE OF SIG-
NAL.

According to formula (8) and formula (9) , the amplitude-
frequency curve of signal can be drawn and shown in Fig.1. It
is noted that for low frequency signal such as 0 < ω < 1, frac-
tional differential attenuates the signal less than the integer one,
and for high frequency one such as ω > 1, fractional differential
enhances signal less than the integer one, thus we get the conclu-
sion that fractional differential can enhance the high frequency
signals, meanwhile reinforce the medium frequency one, and
non-linear retain the low frequency one. In digital image, weak
edges and texture details correspond to low frequency parts, and
noise and boundaries correspond to high frequency ones. If sign
is processed by integer derivative, weak edge and texture tend to
be greatly weaken, meanwhile noise will be strengthen tremen-
dously. Fortunately fractional differential is capable of solving
this drawback, that is, noise will not be strengthened tremen-
dously and weak edge and texture will be retained nonlinearity.
These advantages can be introduced to preserve weak edges and
texture, and resist noise to some extent. In a short, we chose
different order according to our requirements. In this paper, we
need to preserve texture details and weak edges, it is obvious
from Fig.1 that when 0 < α < 1, low frequency signal can be
reserved better than integer one, and high frequency one is sup-
pressed better than integer one, so we suggest the reasonable or-
der between (0,1) in this paper.

3 CONSTRUCT FRACTIONAL DIFFERENTIAL MASK
BASED ON G-L DEFINITION

According to formula (5), if the interval of s(t) is t ∈ [a,b],
we divide [a,b] by equal interval of h = 1, then m = (b−a)/h =
b−a. We can deduce the fractional order differential formula of
s(t), which is given by:
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dα s(t)
dt(α)

≈ s(t)+(−α)s(t−1)+
(−α)(−α +1)

2
s(t−2)

+ . . .+
Γ(−α +m−1)
(m−1)!Γ(−α)

s(t−m+1). (10)

As the computer processes digital signal, the biggest vari-
ation of image intensity is limited, and the image intensity just
varies in two adjacent pixels. So the minimum equal interval of
f (x,y) must be h = 1. The backward fractional partial differen-
tial formula of f (x,y) can be defined as follows:

∂ α f (x,y)
∂xα ≈ f (x,y)+(−α) f (x−1,y)

+
(−α)(−α +1)

2
f (x−2,y)+ . . .

+
Γ(−α +m−1)
(m−1)!Γ(−α)

f (x−m+1,y)+ . . . , (11)

∂ α f (x,y)
∂yα ≈ f (x,y)+(−α) f (x,y−1)

+
(−α)(−α +1)

2
f (x,y−2)+ . . .

+
Γ(−α +m−1)
(m−1)!Γ(−α)

f (x,y−m+1)+ . . . , (12)

From formula (11) and (12), it can be seen that coefficient
of each item is different, the sum of each item coefficient does
not equal to zero, which is much different to integer one. The
general formula of coefficient is:

H =
Γ(−α +m−1)
(m−1)!Γ(−α)

, (13)

where Γ(•) is the Gamma function. According to the gradi-
ent of integer order, fractional order gradient can be rewritten as
follows:

∇α s = [Gα
x Gα

y ]T =
[ ∂ α s

∂xα
∂ α s
∂yα

]T
. (14)

The fractional order gradient magnitude is:

mag(∇α s) = [(Gα
x )2 +(Gα

y )2]
1
2 . (15)

0 0 0 0 

1 a-
( )( 1)

2

a a- - + ( 1)

( 1)! ( )m m

a

a

G - +

- G - +

0 0 0 0 

(a) POSITIVE DIRECTION OF X AXIS

0 1 0 

0 a- 0 

0 
( )( 1)

2

a a- - +
0 

0 
( 1)

( 1)! ( )m m

a

a

G - +

- G - +
0 

(b) POSITIVE DIRECTION OF Y AXIS

FIGURE 2. THE FRACTIONAL DIFFERENTIAL MASK

For simplicity, from formula (11) and (12) we select the
leading several terms as the fractional partial differential approx-
imate value of f (x,y) in the positive direction of X and Y , and
construct fractional order mask with dimension of M ×M, as
shown in Fig.2.

4 FRACTIONAL ORDER RSF MODEL
Intensity inhomogeneity, weak texture and weak edge of-

ten occur in images due to various factors. For example, these
cases are usually due to technical limitations or artifacts intro-
duced by the object being imaged in medical images. For this
situations, the RSF model is not suitable for image segmentation,
it is sensitive to the initial location of evolution curve during the
optimization process, it tends to fall into local optimal with slow
evolution. Aiming at this problem, we proposed a new segmen-
tation model combining G-L fractional order derivative and RSF
model.

4.1 A New RSF Model
We introduce G-L fractional order gradient to energy func-

tion, considering fractional order gradient as another drive force.
Evolution curve stops at image boundary driven by local intensity
fitting term and global fractional order gradient. We combined
G-L fractional order gradient and RSF model, and constructed a
novel energy function as following:

EFG(m1,m2,C) = β1

∫

Ω
‖∇α I(x,y)|−m1|2dydx

+β2

∫

Ω
‖∇α I(x,y)|−m2|2dydx, (16)
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Where ∇α I(x,y) is fractional order gradient, C is evolution
curve, m1 and m2 are the averages of fractional order gradient
magnitude inside and outside the counter, respectively. β1 and
β2 are constants, generally β1 = β2 = 1. We embed unknown
curve C to high-dimensional level set, substitute evolution curve
with level set function φ(x,y) , and suppose that: if point (x,y) is
inside the curve C , then φ(x,y) > 0; if point (x,y) is outside the
curve C, then φ(x,y) < 0; if point (x,y) is on the boundary, then
φ(x,y) = 0. So energy equation can be rewritten as:

EFG(m1,m2,φ)

= β1

∫

Ω
‖∇α I(x,y)|−m1|2Hε(φ)dydx

+β2

∫

Ω
‖∇α I(x,y)−m2|2(1−Hε(φ))dydx, (17)

where m1 and m2 can be computed according to the follow-
ing formulas:

m1 =
∫

Ω |∇α I(x,y)|Hε(φ(x,y))dydx∫
Ω Hε(φ(x,y))dydx

m2 =
∫

Ω |∇α I(x,y)|(1−Hε(φ(x,y)))dydx∫
Ω(1−Hε(φ(x,y)))dydx

. (18)

Where Hε(φ) and δε(φ) are the regularized versions of
Heaviside function and Dirac function[10], respectively. Combin-
ing this energy equation(Formula (17)) to RSF model,the total
energy equation is as following:

E( f1, f2,m1,m2,φ)

=
2

∑
i=1

βi

∫

Ω
|∇α I(x,y)−mi|2dydx

+ν
∫

Ω
|∇Hε(φ)|dx+ µ

∫ 1
2
(|∇φ(x)|−1)2dx

+
2

∑
i=1

λi

∫
(
∫

Ω
Kσ (x,y)|I(y)− fi(x)|2Mε

i (φ(y)dy)dx (19)

Minimize the energy function can be resort to solve the
corresponding Euler-Lagrange equation. We can obtain level
set evolution equation of curve by using the gradient descend
method:

∂φ
∂ t

= δε(φ)(−β1(|∇α I|−m1)2

+β2(|∇α I|−m2))2 +νδε(φ)div(
∇φ
|∇φ | ) (20)

Suppose ∂φ
∂ t = ∆φ , then update equation of level set function

is:

φ n+1 = φ n +∆t∆φ (21)

4.2 Algorithm
Step 1: According to ref [7,10,12] and experiment experi-

ences, set initial parameters: v,µ ,λ1,λ2,β1,β2 and initial level set
function φ0;

Step 2: According to formula(15), calculate fractional order
gradient magnitude;

Step 3: According to formula(2), calculate f1, f2,and then
compute the sum of average fractional order gradient inside and
outside the curve according to formula (18);

Step 4: Keep f1, f2, m1 and m2 fixed, update level set func-
tion according to formula (20) and (21)

Step 5: Judge whether level set function is stable or not, if
level set function get stable, then output final result, otherwise
return to Step 3.

5 EXPERIMENT RESULTS AND ANALYSIS
Computer environment in this paper is: CPU with Intel Core

i3-2130 and RAM of 4GB, 64bit Windows 7.0 operating system,
programming tool is Matlab of version R2013a. The proposed
method has been tested from the aspects of segmentation perfor-
mance and robustness to initial curve location.

5.1 Segmentation Performance
This section focuses on testing segmentation performance

of the proposed method, to ensure contrast experiment fair, we
select four images, two are from ref[8] (numbered as picture I
and picture II), and another two are galaxy and fingerprint pic-
tures(numbered as picture III and picture IV), all of the four pic-
tures are intensity inhomogeneity, and picture I and II include
weak edges, picture III and picture IV involve weak texture.
We take experiments using above four pictures and compare our
method with LIF model, ref [13] model, RSF model. Segmen-
tation result and segmentation time are introduced to evaluate
segmentation performance of each model. Parameters of each
model in our experiments are all from their references, parame-
ters of proposed model are based on experiments experience, as
follows: picture I:∆t = 0.1,λ1 = λ2 = β1 = β2 = 1,µ = 1,σ =
3,ν = 0.001×255×255, mask size of fractional order is 3×3,
order α = 0.6; picture II: ν = 0.004×255×255,α = 0.7, other
parameters are the same as that of picture I; picture III: fractional
order α = 0.2, other parameters are the same as that of picture
II; picture IV: α = 0.85,other parameters are the same as that of
picture I. Experiment results are shown in Fig.3, the first row to
the fourth row are picture I,II,III and IV, respectively;
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FIGURE 3. SEGMENTATION RESULTS. The first row to the fourth
row are picture I, II, III and IV respectively; The first columninput im-
ages red squares denote initial location Second column: LIF modelThird
column: Ref[13] model Fourth column: RSF modelFifth column: pro-
posed method (optimal order is 0.2,0.6,0.7,0.85, respectively).

The first column is input images and the red squares denote
initial contour, from the second column to the fifth are segmenta-
tion results using LIF model, ref[13]model, RSF model and pro-
posed model. It can be seen from Fig.3 that both LIF model and
ref [13] model can not segment object successfully. RSF model
is capable of segmenting picture I and picture II, but limited in
segmenting picture III and picture IV. However, our method seg-
ment all of the four pictures successfully. Additionally, we ana-
lyze time consuming of our method, and compare it with other
methods as mentioned above. We repeat the experiments above
100 times and then compute their average time. The result is
shown in Tab.1. From table 1, it is obvious that our method is
faster than others, thus the segmentation efficiency is improved.
This is because our method not only keep the advantage of orig-
inal RSF model, but also combine new fractional order fitting
term, thus driving force of curve evolution is strengthened, and
then the curve evolution is accelerated.

5.2 Robustness To Initial Curve Location
This section aims to test the robustness to initial curve loca-

tion. We selected two images with weak edge and texture, and
randomly select five different initial locations, as shown in Fig.4,
where squares with red color denote different initial locations.
We take experiments and compare our method with RSF model.
All the parameters in this section are the same as those in sec-
tion5.1, experiment results are shown in Fig.4. The first row of

TABLE 1. SEGMENTATION TIMES(UNITS: s).

Number LIF Ref[13] RSF OURS

picture I 7.29 7.29 2.94 1.96

picture II 2.85 2.85 3.47 2.60

picture III 37.81 26.86 29.40 8.62

picture IV 9.80 5.20 8.61 3.90

each group shows input images and six different initial locations
(red square), the second row is segmentation results using RSF
model, and the third one is segmentation results using our model.
Experiment results indicate that RSF model is sensitive to initial
location of curve. Different initial locations always result in dif-
ferent segmentation output, and even get mistaken segmentation
when initial location is not appropriate. But our method can seg-
ment objects successfully even though selecting different initial
contour. In conclusion, our model is robust to initial location of
evolution curve. This is because our method adds the global G-L
fractional gradient into the RSF model, which increase the driv-
ing force of evolution curve and avoid falling into local optimal
in the regions with weak edge and texture. So our method can
solve well the problem that RSF model is sensitive to evolution
curve initial location.

6 CONCLUSION

An improved RSF model based on fractional calculus is pro-
posed in this paper. This model combines G-L fractional global
gradient with RSF model, which is capable of solving the prob-
lem that RSF is sensitive to evolution curve initial location. On
one hand, global fractional order gradient fitting is added in RSF
model, evolution drive force is strengthened, which can avoid
curve evolution falling into local optimal in the regions with
weak weak and texture, thus segmentation accuracy is improved.
On the other hand, G-L fractional differentiation enhances the
gradient of the intensity inhomogeneity and weak texture re-
gions, driving force of curve evolution is amplified, so segmen-
tation efficiency is approved too. Theoretical analysis and ex-
perimental results show that the proposed algorithm is capable
of segmenting the intensity inhomogeneity and weak texture im-
ages. It can deal with the problem that RSF model is sensitive
to initial location of evolution curve, and improve the efficiency
of segmentation. Future works involve designing the optimiza-
tion algorithm of fractional order and applying this algorithm in
ultrasonic image processing system.
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(a) First group

(b) Second group

FIGURE 4. Robust to initial location. The first row of each groupin-
put images and five different initial locations (red squares); second row:
segmentation results using RSF model; third row: segmentation results
using our model
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