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ABSTRACT
Existence of periodic solutions of fractional order dynamic

systems is an important and difficult issue in fractional order sys-
tems field. In this paper, the non existence of completely periodic
solutions and existence of partly periodic solutions of fractional
order linear time varying periodic systems and fractional order
nonlinear time varying periodic systems are discussed. A new
property of Laplace transform of periodic function is derived.
The non existences of completely periodic solutions of fractional
order linear time varying periodic systems and fractional or-
der nonlinear time varying periodic fractional order systems are
presented by Laplace transform method and contradiction ap-
proach. The existence of partly periodic solutions of fractional
order dynamic systems are proved by constructing numerical ex-
amples and considering Laplace transform property approaches.
The examples and state figures are given to illustrate the effec-
tiveness of conclusion presented.

1 INTRODUCTION
Fractional calculus is a mathematical topic of more than 300

years old, but its application to physics and engineering has been
reported only in recent years. It has been found that in many
practical cases, systems can be more adequately described by
the fractional order differential equations. Nowadays, fractional-
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order dynamics, which are defined based on fractional-order dif-
ferential equations (Podlubny, 1999), play a significant role in
different control applications. In recent years, fractional calculus
has attracted the attention of researchers in many fields such as
engineering, biology, economics etc. One of the areas of interest
in this field is existence of period solutions of the dynamical sys-
tems and chaos character of solutions which is investigated by
many researchers

Due to the growing interest of fractional-order dynamics to
be applied in different control applications, it seems analysis of
this type of system is of great importance. This problem, i.e.
analysis of fractional-order systems, is a motivation for some re-
cent research works. In one of these works, the non-existence
of periodic solutions in a class of fractional-order systems de-
fined based on Caputo definition has been proved. By using the
proof given by the property of Laplace transform a remarkable
property for fractional-order derivatives of periodic functions is
presented in this paper.

Thus for chaos control in fractional order systems, it is im-
portant to show that periodic solutions exist in such systems.
Tavazoei and Haeri (2009) have proved that in these systems,
periodic solution cannot be detected under any circumstances. In
this paper, it is proved that this is not a general claim and periodic
solution can be detected by considering some conditions.

The time varying fractional order systems presented in this
paper does not have any so called completely periodic solution.
It has been shown that by this assumption, harmonic balance
method can be applied to fractional order systems. In the past
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ten years, the study of dynamical behavior of fractional order
systems has attracted increasing attention. In this paper, a basic
and simple proof approach of nonexistence completely periodic
solution for dynamic fractional order systems is given by a new
property of Laplace transform. The examples and state figures
are given to illustrate the methods presented.

2 PRELIMINARIES
Let us denote by Z+ the set of positive integer numbers, de-

note by C the set of complex numbers, denote by Rn×n the set of
n× n dimension real numbers .We denote the real part of com-
plex number α by Re(α).

Caputo derivative has been often used in fractional order
systems since it has the practical initial states like that of inte-
ger order systems.

Definition 1. The Caputo derivative of fractional order α
of function x(t) is defined as

C
0 Dα

t x(t) =
1

Γ(n−α)

∫ t

0
(t− τ)n−α−1x(n)(τ)dτ,

where n−1 < α < n ∈ Z+.
Definition 2. The Riemann-Liouvile derivative of fractional

order α of function x(t) is defined as

RL
0 Dα

t x(t) =
1

Γ(n−α)
(

d
dt

)n
∫ t

0
(t− τ)n−α−1x(τ)dτ,

where n−1 < α < n ∈ Z+.
Definition 3. The Grunwald-Letnikov derivative of frac-

tional order α of function x(t) is defined as

GL
0 Dα

t x(t) = lim
h→0

h−α
[(t−α)/h]

∑
r=0

(−1)rCr
α x(t− rh),

where n−1 < α < n ∈ Z+.
Definition 4. The Mittag-Leffler function is defined as

Eα(t) =
∞

∑
k=0

tk

Γ(kα +1)
,

where Re(α) > 0, t ∈C. The two-parameter Mittag-Leffler func-
tion is defined as

Eα,β (t) =
∞

∑
k=0

tk

Γ(kα +β )
,

where Re(α) > 0,β , t ∈ C.
Property 1. The Laplace transform of Caputo derivative

x(t) is

L(C
0 Dα

t x(t)) = sα X(s)−
n−1

∑
k=0

sα−k−1xk(0),

where X(s) = L[x](s),n−1 < α < n ∈ Z+.
Property 2. Let α ∈ (0,∞)\N. Then, we have

RL
0 Dα

t x(t) =GL
0 Dα

t x(t) =C
0 Dα

t x(t)+
n−1

∑
i=0

x(i)(0)
Γ(i−α +1)

tk−α ,

where n−1 < α < n ∈ Z+.
Lemma 1 The Laplace transform of Acos(ωt) is:

L(Acos(ωt)) =
As

s2 +ω2 .

The Laplace transform of Asin(ωt) is:

L(Asin(ωt)) =
Aω

s2 +ω2 .

Lemma 2 The Laplace transform of tβ−1Eα,β (−ωtα) is:

L(tβ−1Eα,β (−ωtα)) =
sα−β

sα +ω
.

Lemma 3 The Laplace transform of n order derivative f n(t)
is:

L( f (n)(t)) = snF(s)−
n−1

∑
i=0

sn−1−i f (i)(0).

3 PROPERTY OF LAPLACE TRANSFORMS FOR PE-
RIODIC FUNCTION
For T−periodic function x(t +T ) = x(t), from

d
dt

x(t +T ) =
d

d(t +T )
x(t +T )

d
dt

(t +T ) = x′(t +T ),

it is easy to see that x(k)(t +T ) = x(k)(t). From Fig.1, we can see
that the state curves of fractional order systems are completely
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different from that of integer order systems. Integer order sys-
tems can exist periodic solution. Can fractional order systems
also exist periodic solution? In the paper, the answer is negative,
i.e. fractional order systems can not exist any periodic solution
at all.

From Lemma 3, it is easy to verify the following property.
Theorem 1 The Laplace transform of a T−periodic function

x(t) is given as

L(x(t)) =
∫ T

0 e−sτ x(τ)dτ
1− e−sT .

proof By taking Laplace transform for x(t), we have

L(x(t)) =
∫ ∞

0
e−stx(t)dt

=
∞

∑
i=0

∫ (i+1)T

iT
e−stx(t)dt

=
∞

∑
i=0

∫ T

0
e−s(τ+iT )x(τ)dτ

=
∞

∑
i=0

e−isT
∫ T

0
e−sτ x(τ)dτ

=
∫ T

0 e−sτ x(τ)dτ
1− e−sT .

Property 3. The Laplace transform of a T−periodic func-
tion x(t) must be expressed as a integer power items series of s.
i.e.

L(x(t)) =
∞

∑
i=0

fi(T )si.

Remark 1. Property 3 is only a necessary condition but not
a sufficient condition. To illustrate this, we can give the following
examples.

Example 1 For periodic function f (t) = t,0≤ t < 1, f (t +
1) = f (t), it is easy to obtain its Laplace transform as follows.

L( f (t)) =
∫ ∞

0
e−ts f (t)dt =

∞

∑
i=0

∫ i+1

i
e−tstdt

=
∞

∑
i=0

∫ i+1

i
e−tstdt

=
∞

∑
i=0

esi
∫ 1

0
e−tstdt

=
∞

∑
i=0

esi(
1
s2 −

e−s

s
− e−s

s2 ),

= s−2 + s−1 +1+2s2 + · · · .

It can be seen that Laplace transform of periodic function f (t) = t
can be expressed as an integer power series of s. And Laplace
transforms of periodic function cos(t) and sin(t) can also be ex-
pressed as the integer power series of s.

L(cos(t)) =
s

s2 +1
=

∞

∑
i=0

(−1)is2i+1,

L(sin(t)) =
1

s2 +1
=

∞

∑
i=0

(−1)is2i.

But for aperiodic function g(t) = t, t > 0, it is easy to see that
L(g(t)) = 1

s2 also can be expressed as the integer power series of
s.

4 NON EXISTENCE OF COMPLETELY PERIODIC SO-
LUTIONS FOR FOS
Theorem 2 Suppose that f (t) is a non-constant periodic

function with period T , i.e. f (t) = f (t +T ), for all t > 0. If f (t)
is n−times differentiable, function CDα

t f (t), where 0 < α < n
and n is the first integer greater than α , cannot be a periodic
function with period T .

3 Copyright © 2017 ASME

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 11/09/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



0 1 2 3 4 5
0

1

2

3

4

5

6

Time(Sec.)

D
0 .5

f(
t)

FIGURE 1. States figure of D
1
2 f (t), f (t) = t,0 ≤ t < 1, f (t + 1) =

f (t)

Proof
Taking Laplace transform for CDα

t f (t), from Property 1,we
have

L(C
0 Dα

t f (t)) = sα F(s)−
n−1

∑
k=0

sα−k−1 f k(0),

As F(s) can be expressed as a series of s, then CDα
t f (t) can be

be expressed as a series of s unless α is an integer number. By
the way, any definition of fractional derivative hold the above
conclusion.

For simplicity, suppose Dα
t f (t) =C Dα

t f (t). From Fig. 2, we
can see the curve of D

1
2 f (t),

f (t) = t,0 ≤ t < 1, f (t + 1) = f (t) is aperiodic but monopoly
increasing.

Example 2 By Property 3, it follows that

Dα sin(t) = t1−α E2,2−α(−t2),

Dα cos(t) = t−α E2,1−α(−t2)− tα−1

Γ(α)
,

L(Dα sin(t)) =
sα

s2 +1
− sα−1 sin(0),

L(Dα cos(t)) =
sα+1

s2 +1
− sα−1 cos(0).

It is noted that L(Dα sin(t)) and L(Dα cos(t)) cannot be ex-
pressed as the series of s so that they are not periodic functions.
From Fig 3. we can see the curves of Dα sin(t),0 < α < 1 are
aperiodic.
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FIGURE 2. States figure of Dα sin(t), for parameter α varying from
0.2 to 1

Theorem 3 For fractional order periodic system

C
0 Dα

t x(t) = A(t)x(t), (1)

where A(t +T ) = A(t), then this system has no completely peri-
odic solution which means that the each sub vector xi(t) is peri-
odic.

Proof By contradiction. Suppose the system has a com-
pletely periodic solution x(t), where x(t + T ) = x(t). Then, we
have that y(t) = A(t)x(t) is a periodic vector function and the
Laplace transform of y(t) is denoted as Y (s).

Taking the Laplace transform for periodic system

C
0 Dα

t x(t) = A(t)x(t),

from Property 1 we get

sα X(s)− sα−1x(0) = Y (s).

The left of the above equation is a fractional power series of s,
whereas the right of the above is an integer power series of s.
This means for non zero periodic x(t) can not be a solution of
fractional order periodic system.
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The system equation in Theorem 7 can be extended to time
varying nonlinear systems.

Theorem 4 For a fractional order nonlinear system

C
0 Dα

t x(t) = f (x(t)),

then this system has no completely periodic solution.
Proof The proof is similar to the proof of Theorem 7 and is

omitted.
Example 3 Linear time invariant fractional system with or-

der 0 < α < 1, in Theorem 6 with parameter A(t) = A has no
completely periodic solution.

Proof By contradiction. Suppose the linear time invariant
fractional system has a periodic solution. From Theorem 7, tak-
ing Laplace transform for

CDα x(t) = Ax(t),

we have that

sα X(s)− sα−1x(0) = AX(s).

If we denote

F(s) = sα X(s)− sα−1x(0),

then F(s) cannot be expressed as the integer power series of s but
AX(s) can. And f (t) is aperiodic function but Ax(t) is a periodic
function. So, the system can not have any completely periodic
solution.

5 EXISTENCE OF PARTLY PERIODIC SOLUTIONS OF
FOS
For integer order system, it is easy to give examples to show

that not only there exist completely periodic solutions but also
there exist partly periodic solutions.

Example 4 An example owning completely periodic solu-
tions of integer order periodic for system

ẋ(t) =
[

0 1
−1 0

]
x(t). (2)

Example 5 An example owning partly periodic solutions of
integer order periodic for system

ẋ(t) =




0 1 0
−1 0 0
1 1 1


x(t). (3)

From Section 4, we have that there do not exist completely
periodic solutions for fractional order periodic system (1). For
system (1) it follows from Property 3 that if all sub-vectors x(t)
in system (1) are periodic then CDα x(t) can not be periodic, vice
versa. Wether there exist partly periodic solutions of fractional
order periodic system (1) or not is still an open problem. In
the following discussion, we construct an example according to
Property 3 to show that there do exist partly periodic solutions of
fractional order periodic system (1). From Property 3 we know
that if sub-vectors xi(t) in system (1) are periodic then CDα xi(t)
can not be periodic, vice versa. Based on Property 3, we can
construct the following valid example of owning partly periodic
solutions by simply setting xi+1 =C Dα xi(t).

Example 6 An example owning partly periodic solutions of
fractional order periodic for system

CD0.5x(t) =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


x(t). (4)

0 1 2 3 4 5 6 7
−1.5

−1

−0.5

0

0.5

1

1.5

Time(Sec.)

x 1−
x 4

FIGURE 3. States figure of x1− x4 for Example 6

From Fig. 3, we can see that the states x1 = sin(t) and x3 =
cos(t) are periodic but x2 = D0.5 sin(t) and x2 = D0.5 cos(t) are
aperiodic, respectively.
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6 CONCLUSIONS
In this paper, it is proved that the fractional-order derivatives

(obtained based on the Grunwald-Letnikov definition, Riemann-
Liouville definition, or Caputo definition) of a periodic function
with a specific period cannot be a periodic function with the same
period. Based on this proved statement, it is concluded that the
existence of completely periodic solutions in autonomous frac-
tional order systems is impossible. By using the proof given
by the property of Laplace transform a remarkable property for
fractional-order derivatives of periodic functions is presented in
this paper. The time varying fractional order systems do not have
any completely periodic solution. A basic and simple proof ap-
proach of nonexistence of the periodic solution for dynamic frac-
tional order systems is given by a new property of Laplace trans-
form. The examples and state figures are given to illustrate the
method presented. The method presented in paper deduces not
only the non existence of completely periodic solutions of pe-
riodic fractional order systems but also helps to find the partly
periodic solutions. The existence of partly periodic solutions for
dynamic fractional order systems is the future research topic.
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