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Abstract—Fractional Fourier transform (FrFT) is a powerful
tool for the non-stationary signals because of its additional degree
of freedom in the time-frequency plane. Due to the importance
of the FrFT in signal processing, most of the bandlimited
sampling theorems in traditional frequency domain have been
extended to fractional Fourier bandlimited signals based on the
relationship between the FrFT and regular integer order Fourier
transform (FT). However, the implementations of those existing
extensions are not efficient because of the high sampling rate
which is related to the maximum fractional Fourier frequency
of the signal. Compressed Sensing (CS) is a useful tool to
collect information directly which reduces sampling pressure,
computational load as well as saving the storage space. The
construction of sensing matrix is the basic issue. Most of CS
demand that the sensing matrix is constructed by random under-
sampling which is uncontrollable and hard to be realized by
hardware. This paper proposes a deterministic construction of
sensing matrix for the multiband signals in the fractional Fourier
domain (FrFD). We give the sparse basis of the signal and derive
the sensing matrix based on the analog to information conversion
technology. The sensing matrix is constructed by random sign
matrix and Toeplitzed matrix. The sub-sampling method is used
to obtain the structural signal. Theoretically, the matrix satisfies
the incoherent condition and the entire structure of system is
practical. We show in this paper that the sampling rate is
much lower than the Nyquist rate. The signal reconstruction
is studied based on the framework of compressed sensing. The
performance of the proposed sampling method is verified by the
simulation. The probability of the successful reconstruction and
the mean squared error (MSE) are both analyzed. The numerical
results suggest that proposed system is effective for a spectrum-
blind sparse multiband signal in the FrFD and demonstrate its
promising potentials.

Index Terms—Fractional Fourier Transform; Fractional Ban-
dlimited Signal; Compressed Sensing; Chaotic Sensing Matrix;

I. INTRODUCTION

Fractional multiband signals consist of a relatively small

number of narrowband across a wide spectrum rang in the

fractional Fourier domain (FrFD). They are widely used in the

radar and communication [1–4]. A typical signal of fractional

bandlimited signal is linear frequency modulation (LFM or

chirp) which is widely used in imaging radars [1]. Most of

operations for these signals are conversion from analog to

digital to get information or back to the analog for further

transmission. As the development of electronic technology,

the frequency of manual signal is becoming higher which

leads to the wider spectral rang of multiband signals and

higher requirement of the analog-digital converter (ADCs).

The high sampling rate also means a big capacity of storage. It

would be disappointing to put the Nyquist sampling law into

practice. Recently, Compressed Sensing (CS) provides us a

good solution. Compressed Sensing is an extension of Nyquist

law which combines the compression and the sampling at the

same time [5, 6]. In the signal sparse prior knowledge, the

original signal can be sampled and accurately recovered from

sub-Nyquist sampling frequency.

In CS theory, the original signal x ∈ R
N×1 can be projected

from a high-dimensional space to a low-dimensional space

RM×1 through a linear projection matrix Ψ, if the original

signal is sparse or have the sparsity in a transform domain.

The low-dimensional space projection vector Ψ contains all

the information of the original signal. The original signal x
can be recovered from a measurement vector y accurately. It

can be expressed as following:{
y = Φx

x = Ψa
→ y = Θa where Θ = ΦΨ, (1)

where Φ ∈ CM×N (M � N) is the observation matrix (or

measurement matrix) for x. a ∈ CN is a linear sparse repre-

sentation for x on an appropriate sparse matrix Ψ ∈ CN×N .

Θ is sensing matrix which combines Φ and Ψ. It’s not easy

to solve the equation y = Θa, because it is a NP problem [7].

It can be handled via �1 norm minimization min ||a||1. Most

of optimal methods have been proposed base on the convex

optimization problem [8].

CS has attracted lots of attention by suggesting that it

is possible to breakthrough the limits of traditional Nyquist

sampling theory in signal processing. Many research organi-

zations have made substantial effort to promote the CS theory

and try to put it into practice, for example: MRI (Magnetic
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Resonance Imaging) [9] in medical imaging field, compressed

sensing SAR (Synthetic Aperture Radar) [10], tomographic

SAR imaging in urban environment [11], MIMO (Multiple

Input Multiple Output) radar [12] and wireless sensor network

[13], UWB (ultra wide band) LFM [3, 4] and so on. Most of

research about CS focused on three directions: observation

matrix (measurement matrix Φ) construction, signal sparse

representation and reconstruction algorithm design. Sensing

matrix construction is the most active research area which

must guarantee any sparse signal to be recovered from it.

Tao [8] deeply analyzed the geometry of sensing matrix and

proposed a well-known criterion named restricted isometry

property (RIP). The RIP theorem can be expressed as: the

observation matrix Φ must satisfy the following condition for

any K-sparse signal x.

(1− δk)||x||22 ≤ ||Φx||22 ≤ (1 + δk)||x||22, (2)

where δk ∈ (0, 1). If there exist δ2k ∈ (0, 1) to make Φ

satisfying the 2K-sparse RIP condition, the K-sparse x will

be unique which can be recovered from y.

It is a complex work to judge whether the observation

matrix Φ meets the RIP condition. Fortunately, researchers

introduce a statistical correlation between row vectors and

column vectors to reduce the complexity of the observation

matrix design, and it is called incoherence. Incoherence means

there is small coherent in the sensing matrix. Some random

matrixes whose elements satisfy independent and identically

distributed (iid) [6, 14] have very high probability to satisfy

the RIP condition, such as Gaussian distribution, Bernoulli

distribution and sub-Gaussian distribution. Thus, the random

observation matrixes become the first choice, such as random

demodulation, modulated wideband convertor (MWC) [15]

and other systems which take advantages of the random ±1
matrix to construction.

In summary, a major issue for the practical compressed

sensing is to construct a structurally observation matrix. Most

of CS demand that the target signal should already be sampled

completely. Otherwise, the random sampling cannot be reflect-

ed by common analog-to-digital converter (ADC). Thus, the

sampling problem remains unsolved. Despite many previously

mentioned efforts have been achieved on the sparse signal

in the frequency domain, few contribute to the fractional

order bandlimited signal. Sometimes, signals which are not

sparse in the conventional frequency domain (FD) may be

sparse in the fractional Fourier domain (FrFD), but the signals

cannot have the same sparsity in both FrFD and FD [16]

simultaneously. Liu etc. [1] proposed the dechirped method

for high-speed target echo which is of sparsity in the FrFD,

and gave an optimization search algorithm based on sparsity of

the reconstructed range profiles, but it is based on the accurate

estimation of the order which is not easy to be realized. In this

paper, we extend the CS from the FD to the FrFD, and propose

a structured chaotic sensing matrix for multiband signal in the

FrFD.

The outline of this paper is organized as follows. In section

II, some basis theorems and problem formulation are intro-

duced, including the definition of α-bandlimited signal and

its sampling method in the FrFD. In section III and IV, a

constructed chaotic matrix and a Toeplitzed sensing matrix

for the α-bandlimited signals is proposed. Detailed analysis

of mutual coherence are presented. In section V, the result of

the simulation and the potential application are discussed.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Fractional Fourier Transform

The definition of fractional Fourier transform [17] is given

as following:

Fα(u) = Fα{f(t)} =

∫ +∞

+∞
Kα(u, t)f(t)dt, (3)

where Fα denotes FrFT operator. The kernel function

Kα(u, t) is given by following:

Kα(u, t) =

⎧⎪⎨
⎪⎩
Aαe

j t2+u2

2 cotα−jtu cscα, α �= kπ,

δ(u − t), α = 2kπ,

δ(u + t), α = (2k + 1)π,
(4)

where Aα =
√

1−j cotα
2π , k ∈ Z.

The FrFT operator Fα satisfies the following properties.

1) Reversibility: the inverse FrFT operator is −α fractional

Fourier transform, denoted by:

K−α(u, t) = A−αe
−j t2+u2

2 cotα+jtu cscα. (5)

2) Boundary: the relationship between the FrFT and FT as

following:

Fα{f(t)}(u)
=
√
2πAαe

j u2

2 cotα
F

[
f(t)ej

t2

2 cotα
]
(u cscα),

(6)

where F is the integer order Fourier transform operator.

The α order FrFT is simplified to be the traditional

Fourier transform Fα{f(t)}(u) = F [f(t)] when α =
2nπ + π

2 .

3) Additivity: the operator Fα is additive.

FαFβ = Fα+β .

B. Definition of Fractional Bandlimited Signal

A Ωα fractional bandpass signal f(t) satisfies that its energy

is finite. Fα(u) is zero outside the region (−Ωh,−Ωl) ∪
(Ωl,Ωh).

Fα(u) = 0, for |u| ≥ Ωh and |u| ≤ Ωl, 0 ≤ Ωl ≤ Ωh, (7)

and its Parseval expression as following:

〈x(t), x∗(t)〉 = 〈Xα(u), X
∗
α(u)〉, (8)

where Ωα = Ωh −Ωl denotes bandwidth. Ω0 = (Ωh +Ωl)/2
denotes fractional carrier “frequency”. If the fractional carrier



“frequency” Ω0 was known, the signal f(t) can be restored

as following [18, 19]:

f(t) =Aαe
− j

2 t
2 cotα

+∞∑
n=−∞

f(nTs)e
j
2 (nTs)

2 cotα

× sin[(t− nTs)Ωα cscα]

(t− nTs)Ωα cscα
ejΩ0 cscα(t−nTs).

(9)

If Ωl is unknown, f(t) can be restored as following:

f(t) =

√
1 + j cotα

2π
e−

j
2 t

2 cotα
+∞∑

n=−∞
f(nTs)

× e
j
2 (nTs)

2 cotα sin[(t− nTs)Ωh cscα]

(t− nTs)Ωh cscα
,

(10)

where Ts = π sinα/Ωh. This basic result is the well-known

sampling theorem by Xia [16] in the FrFD. It is observed that

the sampling rate depends on its maximum fractional Fourier

frequency Ωh when the signal is bandlimited in the region

(−Ωh,−Ωl)∪(Ωl,Ωh) with Ωl unknown. The analog to digital

converter must work at very high rate in case of spectrum

aliasing, it is difficult to be realized in practice.

C. Problem Formulation

A sparse multiband signal in αth order FrFD contains

N -nonzero narrow fractional Fourier bandlimited signals. Its

energy concentrates in limited disjoint fractional frequency

bands. There is no prior information of position in advance.

Taking the number of active bands of signal as a prior, the

FrFT of the sparse multiband signal is as Fig. 1, N is even

due to the conjugate symmetry of the signal.

Fig. 1. The illustration of a multiband signal in α-order FrFT domain

1) The fractional Nyquist sampling rate is consider to be

2bN/2 where bN/2 is the maximum fractional “frequen-

cy” of the signal.

2) The valid fractional “frequency” components of sig-

nal x(t) are the set of non-zero frequency Fα =

U
N/2
i=1 Fα,i, and the maximum width of the signal is

Bα = max (bi − ai), i ∈ [1, N/2], and 2Bα cscα is

considered to be the minimum sampling frequency for

the multiband signal [16].

In this situation, the high sampling rate may be not neces-

sary. It is necessary to propose a practical sampling method

for fractional Fourier bandlimited signal.

III. CONSTRUCTION OF SENSING MATRIX

A. Matrix Design

Suppose x(t) is a α-order fractional Fourier bandlimited

signal with the maximum bandwidth not exceed Bα. It is

easy to prove exp(jπt2 cotα)x(t) is also a bandlimited signal

in the FD. The basis of the fractional bandlimited signal

exp(jπt2 cotα)x(t) is as following:

Xα(u) =[e−
j

2 (u−L0Bα)2 cotαXα(u− L0Bα),

e−
j

2 (u−lBα)2 cotαXα(u− lBα),

· · · ,Xα(u), · · · ,
e−

j

2 (u+lBα)2 cotαXα(u + lBα),

e−
j

2 (u+L0Bα)2 cotαXα(u+ L0Bα)].

(11)

The original signal x(t) can be recovered from the

sparse basis Xα(u). We propose a sensing matrix of

exp(jπt2 cotα)x(t) with a cascade of three matrices, and it

is denoted by following:

Θ = SFD, (12)

where Θi(·) is the DFT of ith sign pattern. F ∈ RM×M is

an orthogonal matrix which can be derived by the FFT (fast

Fourier transform), the DCT (discrete cosine transform) or the

WHT (Walsh Hadamard transform ). The elements of DFT

kernel matrix are defined as follow:

Flk =
1√
N

e−j 2πlk
M , l ≥ 0, k ≤ M − 1, (13)

where M = 2bi/Bα + 1
D = diag(dL0 , · · · , dl, · · · , d−L0) ∈ RM×M is a diagonal

matrix, where dl is denoted by following:

dl =

{
1
M , l = 0,
1−θl

2jπl , l �= 0.
(14)

where θ = e−j 2π
M

S ∈ Rm×M is the sub-sampling operator which randomly

selects subset of the rows of the FD matrix. S is a chaotic-

based matrix which is a uniform random permutation matrix

(i.e. stochastic vector with entries taking the values ±1 with

probability 1/2). m is the number of rows can be interpreted

as the number of sampling channels.

B. Incoherence Analysis

Incoherence implies that the maximum magnitude of the

entries of the measurement matrix Θ is relatively small.

Generally speaking, the smaller the mutual coherence, the

better quality of reconstruction is achieved. Incoherence is

much easier to verify than the RIP.

Theorem 1 (Incoherent Measurement [20]). Φ ∈ Rm×M

is the observation matrix, Ψ ∈ RM×M is the sparse basis

matrix, and suppose all the column vector of matrix are

normalized. The definition of μ mutual coherent for Φ and

Ψ as following:

μ(Φ,Ψ) =
√
Mmax

i,j
〈φiψj〉, (15)

where φi is the ith row of the Φ. ψj is the jth column of the

Ψ. For any K-sparse signal x,

m > aμK logM, (16)



where a is positive number. There is a big probability for

reconstruction of original signal x by y = Φx.

The parameter μ is denoted as following [21]:

1 < μ(ΦΨ) <
√
M. (17)

It is observed that the smaller coherent μ between the

observation matrix Φ and sparse basis Ψ, the less number

of observation points. This method is also called the inco-

herent measurement. The Gaussian sensing matrix is highly

incoherent with all matrices Ψ. The incoherence between S

and FD is small which has been proved in Ref. [14].

Random observation matrix has following advantages:

1) Every observed value in the observation matrix S has the

same power for the result, so the loss of a small amount

of observations does not affect the signal recovery;

2) If signal x is sparse in some transform domain Ψ

rather than in the actual application environment. At this

situation, the sensing matrix Θ needs to meet the RIP

condition. It is easy to prove Θ = ΦΨ satisfying RIP,

if Φ is random matrix and Ψ is orthogonal matrix [14].

Θ is also a random matrix which has the same feature

with the Φ.

3) A complete random matrix is hard to realize practically.

Some results like random demodulation and modulated

wideband converter (MWC) have proved that the partial

random matrix also satisfy the RIP.

IV. OPTIMAL SENSING MATRIX

Most of CS matrixes are completely random whose ele-

ments are compliance with the independent and identically

distributed. There are some disadvantages. Firstly, putting the

completely stochastic into practice means high computational

complexity; Secondly, the random matrix must be stored

before used, so the high degree of freedom in the matrix equals

to the high design complexity, and big capacity of storage.

Some researchers make effort to improve the complexity of

the complete random unstructured matrix. Tropp etc. [22] in-

troduce a random filter system, the proposal makes convolution

with the input signal and a random filter, then the product can

be sub-sampled. The relationship between sampling value and

the input signal can be expressed as Toeplitz random matrix.

Romberg [23] made the input signal circular convolution with

a specially constructed random vector. Haupt etc. [24] used

random Toeplitzed matrix to construct observation matrix, and

gave the RIP constraint, and utilized it to identify the discrete

linear time invariant system. In this part, we use a circulant

measurement matrix to construct the sensing matrix.

A. Circulant Sensing Matrix

The circulant matrix S can be constructed by following:

V =
1

M
G∗PG, (18)

where the factor 1
M is used to keep the columns of S have

the normalized norm.

The matrix G is denoted by:

Gt,w = ej2π
(b−1)(w−1)

M , 1 < b,w < M, (19)

where b, w are the index of the matrix. The nonzero entries of

diagonal matrix P is defined by follows:

1) w = 0, pw = {1,−1} with the equal probability;

2) 0 < w < (M − 1)/2, pw = ejθ(w) where θ(w) is the

random phase, drawn uniformly in [0, 2π];
3) (M − 1)/2 < w < M − 1, pw = p∗M−w;

The random sampling matrix S is a full random matrix

whose elements are selected in {±1} with equal probability.

The proposed matrix V is constructed by circulant shift of

ith vector to get another vector of the matrix. vi is the ith
column of circulant matrix V which is generated by i-order

circulant shift of vj , vi = vj+τi . τi is defined by {τi}1≤i≤m ⊂
{0, 1, · · · ,M − 1} and τi is a random variable of discrete

uniform distribution.

B. Incoherent Analysis

Theorem 2. [23], Suppose Φ is an orthogonal matrix. The

matrix V is construct by the above circulant method, for 0 <
η < 1, then the correlation coefficient μ(V ,Ψ) between V
and Ψ is as following:

μ(V ,Ψ) ≤
√

2 log
M2

η
. (20)

The proof is as follows. Rewrite (18) as:

V =
( 1√

M
G
)∗
P
( 1√

M
G
)
, (21)

where Ω = 1√
M
G is M × M discrete Fourier transform

matrix.

The correlation coefficient is computed by finding the

maximum factor of the product of the two matrixes as:

μ(ΦΨ) =
√
Mmax

i,j
〈φiψj〉

=
√
Mmax

i,j
(ΦΨ)i,j .

(22)

The above function can be expressed as following based on

the relationship between circulant matrix and discrete Fourier

matrix.

μ(ΦΨ) =
√
Mmax

i,j
(V

1√
M

G)i,j , (23)

where Ω is conjugate, symmetry and orthogonal matrix. V Ω

is computed as:

V G =(
1

M
G∗PG)G

=
1

M
G∗P (GG)

=
1√
M

G∗P

(
1 01×(M−1)

01×(M−1) IT

)
,

(24)



where I is (M − 1)× (M − 1) identity matrix. P is diagonal

matrix, then:

V G =
1√
M

G∗
(

1 01×(M−1)

01×(M−1) 0(M−1)×(M−1)

)

=

( 1√
M

01×(M−1)

01×(M−1) 0(M−1)×(M−1)

)
.

(25)

From the above equation, the matrix V Ω only have a

nonzero element, then we get

μ(ΦΨ) = 1. (26)

There is the minimum correlation between V and G, so

circulant matrix V is optimal for signals sparse in fractional

Fourier frequency domain and achieves the minimal measure-

ments.

V. NUMERICAL SIMULATION AND DISCUSSIONS

A. Signal Model

To evaluate the performance of the sensing matrix, we use

chirp signal as the test subject to simulate the proposed sensing

matrix. Chirp signal is a typical fractional bandlimited signal.

The original signal is given by following:

x(t) =

N/2∑
i=1

xi(t) + n(t)

=

N/2∑
i=1

Eie
j2πkt2 cos(2πfi(t− τi)) + n(t),

(27)

where xi(t) is the ith signal component. n(t) is zero-mean

Gaussian noise. Ei is the amplitude of signal. k = 1M is the

signal modulated frequency, sampling time is 5s, B = kt =
10MHz is the fractional maximum bandwidth of signal. τi
is the time delay between different signals, and fi is random

frequency carrier. In terms of the CS algorithm, the sparsity

level is equal to N , which is the total number of band occupied

by the signal during the observation interval time. The signal

is bandlimited with order α = −1.11×10−6, and its fractional

bandwidth is Bα = 1M .

We assume signal’s Nyquist sampling rate fNYQ = 1GHz,

and the carrier frequency is fi which is less than 0.95GHz.

The sampling rate is 10MHz. The compressed rate can be

computed as M/m. The OMP algorithm was run to recovery

the original signal. A set of 500 trials were carried out for each

value to ensure statistically stable results. We choose signal

components with a fixed time delay. The SNR (signal to noise

ratio) is defined by 10 log(||x||2/||n||).
We can use successful recovery rate and the normalized

mean squared error (NMSE) to measure the performance of

the compressed sampling by proposed signal. The successful

recovery rate is defined as the ratio of the number of empir-

ical successful reconstruction and total trials, and successful

recovery means that the recovered support coincides with the

basis. The computation of NMSE is as following:

NMSE =

∫ +∞
−∞ |x(t)− x̂(t)|2dt∫ +∞

−∞ |x(t)|2dt
, (28)

where x(t) is the original signal and x̂(t) is denoted the

recovered signal.

B. Sensing Performance

Fig. 2 gives the performance of successful recovery rate

for the full random matrix and circulant matrix with different

channels and number of bandlimited signals in the noise free

situation. The experimental condition is set as follows: the

number of channels is fixed to be 34; The horizontal axis is

the number of channels rang from 10 to 60 with a 2-channel

step; The number of sampling points is 91, the number of

bands is {4, 6, 8}. It is observed that the successful recovery

rate of the circulant matrix is little bit higher that the full

random matrix in the noise-free.
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Fig. 2. Comparison between the random and circulant matrix with different
Channels and Sparsity

The tradeoff between successful recovery rate and sparsity

is shown in Fig. 3, the successful recovery rate decreases with

the increasing of sparsity of the signal. The circulant matrix

shows better robust compare with Fig. 2.
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Random_Sign:Channels = 24
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Fig. 3. Performance of the random and circulant matrix with different
Sparsity

Fig. 4 shows the performance of robustness in the noisy

condition by comparison between the full random matrix and

circulant matrix. The experimental condition is as follows: The

length of record time is 5s. The “SNR” is signal to noise ratio

in statistics which range from 5dB to 35dB with a 2dB step.

The number of channels is fixed to be {24, 34, 44}. The num-

ber of bands is 6. The compressed ratio can be compute as the

ratio of the total sampling rate and the Nyquist sampling rate.

In this situation, the compressed ration is {0.21, 0.34, 0.44}
for different number of channels {24, 34, 44} respectively. The

result of the successful recovery rate and the NMSE are shown

in Fig. 4(a) and Fig. 4(b) respectively. It is observed that the

circulant matrix with greater recovery rate and less NMSE

has better performance than the full random sensing matrix.



That means the circulant matrix has better robustness. The

decrease of degree of freedom for circulant sensing matrix

does not come with sacrifice of recovery accuracy. Full random

measurement matrix is sufficient for the signal recovery but

not necessary.
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(a) Empirical recovery rate
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Fig. 4. Performance of the random and circulant sensing matrix with different
SNR and Channel

Fig. 5 shows the relationship between number of sampling

points and successful recovery rate with different number of

sparse signals. The length of sampling time changes with the

number of sampling points. Fig. 5(a) and Fig. 5(b) gives the

performance of the successful recovery probability and NMSE

respectively. The experimental condition is as follows: the

SNR is fixed to be 35dB, the number of bands is fixed to

{4, 6, 8}. The number of sampling points as a self-variable

varies from 3 to 95 with a 4-point step. In Fig. 5(a), the

performance of the circulant sensing matrix is almost coincide

with the full random. They have the equal performance with

the same number of sampling points. Fig. 5(b) shows the equal

performance for NMSE. In some applications, it is possible to

get part of information with short sampling time.
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Fig. 5. Performance of the random and circulant with different compressed
rate

The circulant random sensing matrix shows the better

performance which is mainly due to the mutual incoherence

provided by the corresponding matrices. Comparing Fig. 2,

Fig. 3 and Fig. 4, the circulant matrix has better robustness

in a noisy environment, which would broad more application

prospects. The random sign construction is referred to as

the global randomizer. The circulant matrix is referred to as

the local randomizer. In both cases the sensing matrixes are

randomly generated. The random sign matrix needs m × M
bits to store the sensing matrix since it is comprised by

±1. The circulant matrix needs n × m × M/2 bits where

n stands for the number of bits used to represent each non-

integer entry θ(w). To some extent, the implementation of the

deterministic circulant matrices is more hardware demanding

than the Gaussian matrix.

C. Potential Applications

Fractional Fourier transform is a generalization of the

frequency Fourier transform which can effectively spread the

frequency space. Some applications in frequency domain can

be extend to the fractional Fourier domain as a potential

candidate, just like fractional Fourier domain communication

system [25], image compression and encryption [1, 26]. Those

promising applications also have to face the bottleneck of

sampling rate and storage space, so compressed sampling in

fractional Fourier domain is necessary for those promising ap-

plications. Compressed sampling in FrFD opens up a potential

orientation for some non-sparse signal processing in the FD.

VI. CONCLUSION

This paper extended the classical CS from frequency domain

to the fractional Fourier domain, since the frequency domain is

a special case of the FrFD. This paper takes the fractional ban-

dlimited as priors and introduces construction of the sensing

matrix for multi fractional bandlimited signals in the FrFD.

We proposed two typical methods for the sensing matrix,

and both of them can work well for the bandlimited signal.

The proposed sensing matrixes have their own advantages

respectively. The optimal method with circulant matrix has

higher successful recovery rate for the noised signal, and

the classic random matrix has the less capacity of storage

requirement compared with the circulant matrix. It is hard

to judge which on is more optimal, they both have their

respective suitable applications. The circulant sensing matrix

is more practical in some actual applications since it has more

robustness in noisy circumstance. There is also a future work

to do before the system can be put into the practise, including

reducing the computational complexity of the algorithm.
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