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Mechanical response and simulation for constitutive equation with distributed order
derivatives were considered. We investigated the creep compliance, creep recovery, relax-
ation modulus, stress–strain behavior under harmonic deformation for each case of two
constitutive equations. We express these responses and results as easily computable
forms and simulate them by using MATHEMATICA 8. The results involve the expo-
nential integral function, convergent improper integrals on the infinite interval (0, +∞)
and the numerical integral method for the convolution integral. For both equations,
stress responses to harmonic deformation display hysteresis phenomena and energy dis-
sipation. The two constitutive equations characterize viscoelastic models of fluid-like and
solid-like, respectively.

Keywords: Fractional calculus; constitutive equation; response; distributed order der-
ivative.

1. Introduction

Fractional calculus has been applied to mathematical description of real problems
arising in different fields of science and engineering, such as viscoelasticity, anoma-
lous diffusion, control theory, relaxation and oscillation, etc.1–16 It is capable for
describing memory and hereditary properties of various materials and processes.
In viscoelasticity theory, fractional calculus has been used to establish constitutive
equations conveniently and effectively.1–8,17–20 The part reasons for the development

∗Corresponding author.
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of the viscoelasticity theory are the wide use of polymers in various fields of engi-
neering. Also viscoelastic materials are extensively applied to cushion shock, from
running shoes to packing materials.

Let f(t) be piecewise continuous on (0, +∞) and integrable on any finite subin-
terval of (0, +∞). Then the Riemann–Liouville fractional integral of f(t) of order
β is defined as

0J
β
t f(t) =

∫ t

0

(t − τ)β−1

Γ(β)
f(τ)dτ, t > 0, (1)

where β is a positive real number, and Γ(·) is Euler’s gamma function. For comple-
mentarity, we define 0J

0
t f(t) = f(t).

Let α be a positive real number satisfying m − 1 < α ≤ m and m ∈ N
+, where

N
+ is the set of positive integers. Then the Riemann–Liouville fractional derivative

of f(t) of order α is defined, when it exists, as

f (α)(t) = 0D
α
t f(t) =

dm

dtm
(0Jm−α

t f(t)), t > 0. (2)

Scott-Blair1,2 proposed a fractional constitutive equation σ(t) = E ε(α)(t), where
E and α are material-dependent constants and 0 < α < 1, to characterize a vis-
coelastic material whose mechanical properties are intermediate between those of a
pure elastic solid (Hooke model) and a pure viscous fluid (Newton model). In Refs. 7
and 21, this relation was called as the Scott-Blair model. In Ref. 5, a fractional cal-
culus element whose constitutive law obeys stress is proportional to a fractional
derivative of strain is said to be a spring-pot.

Macromolecule polymers such as polybutadiene and butyl are typical viscoelas-
tic material whose constitutive relation may be modeled by using fractional deriva-
tives.18 Different fractional constitutive equations have been proposed, such as the
fractional Maxwell, Kelvin–Voigt, and Zener models by replacing Newton’s classical
elements by the Scott-Blair element.17–20,22

The distributed order derivative and associated equations were proposed in
Refs. 23–25. In Refs. 23 and 24, distributed order equations were analyzed by
expressing them as equivalent distributed order integral equations. In Ref. 25, dis-
tributed order equations were used to model dielectric induction and diffusion.

In Refs. 26 and 27, the following distributed order constitutive equation was
proposed ∫ 1

0

φσ(α)σ(α)(t)dα =
∫ 1

0

φε(α)ε(α)(t)dα, (3)

where φσ(α) and φε(α) are given functions or constitutive functions. In Refs. 28–30,
stability, simulation and applications of distributed order systems are discussed. In
Eq. (3), the functions φσ(α) and φε(α) assign weights to the order α. So we expect
Eq. (3) could be used to describe viscoelastic materials with complex structure.

In this paper, we investigate the response and its modeling for the distributed
order constitutive equation (3) for two cases: Case A φσ(α) = δ(α), φε(α) = E (τ0)α
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and Case B φσ(α) = (τσ)α, φε(α) = E (τε)α, where δ(α) is the Dirac delta function,
E, τ0, τσ, τε are constants. We demonstrate characteristics of viscoelastic materials
such as creep, relaxation, energy dissipation or hysteresis under deformation, etc.,
by using the distributed order constitutive equation.

The involved functions of a single variable t are of causality requirement, that
is, they are vanishing for t < 0. The unit step function or the Heaviside function is
denoted by H(t).

We use the definition of the Laplace transform of f(t)

f̄(s) = L[f(t)] =
∫ ∞

0−
f(t)e−stdt, Re(s) > c, (4)

and its inversion formula

f(t) = L−1[f̄(s)] =
1

2πi

∫
Br

f̄(s)estds, (5)

where Br denotes the Bromwich contour, i.e., the straight line from s = c − i∞ to
s = c + i∞.

Applying the Laplace transform to Eq. (3), we have

σ̄(s) =

∫ 1

0 φε(α)sαdα∫ 1

0
φσ(α)sαdα

ε̄(s). (6)

Creep compliance and relaxation modulus are two important material functions
describing mechanical characteristics of viscoelastic materials. Creep compliance is
the strain response to an instantaneous applied fixed unit stress described by the
Heaviside function σ(t) = H(t). The relaxation modulus G(t) is the behavior of
stress decreasing or relaxing over time under a suddenly applied fixed unit strain
ε(t) = H(t). Both the material functions are nonnegative. Furthermore, for 0 < t <

+∞, J(t) is nondecreasing and G(t) is nonincreasing.
Thus, the Laplace transforms of the creep compliance J(t) and the relaxation

modulus G(t) satisfy

sJ̄(s) =
1

sḠ(s)
, Ḡ(s) =

∫ 1

0 φε(α)sαdα

s
∫ 1

0
φσ(α)sαdα

. (7)

With the creep compliance J(t) and the relaxation modulus G(t), the strain
response and stress response are

ε(t) = J(t) ∗ σ̇(t), σ(t) = G(t) ∗ ε̇(t), (8)

respectively, where the convolution is defined as

f(t) ∗ g(t) =
∫ t+

0−
f(t − τ)g(τ)dτ. (9)

The limiting values of the material functions for t → 0+ and t → +∞ are
related to the instantaneous and equilibrium behaviors of the viscoelastic body,
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Table 1. The four types of viscoelasticity.

Type J(0+) J(+∞) G(0+) G(+∞)

I > 0 < ∞ < ∞ > 0
II > 0 = ∞ < ∞ = 0
III = 0 < ∞ = ∞ > 0
IV = 0 = ∞ = ∞ = 0

respectively. It follows from the limiting theorems for the Laplace transform that

J(0+) = 1/G(0+), J(+∞) = 1/G(+∞). (10)

According to the instantaneous and equilibrium responses, viscoelastic bodies are
classified in four types4,7,8 as in Table 1. We note that such interesting classifi-
cation was introduced in 1971 by Caputo and Maidardi.4 The Kelvin–Voigt, the
Maxwell and the Zener models are the simplest viscoelastic bodies of types III, II,
I, respectively.8

In next section, we investigate the creep compliance, creep-recovery, relaxation
modulus, energy dissipation or hysteresis under periodic deformation, etc., by using
the distributed order constitutive equation for two cases of the constitutive func-
tions. We express these responses and results as easily computable forms and sim-
ulate them by using MATHEMATICA 8.

2. Response Analysis and Simulation

We consider two cases of the constitutive functions, respectively. Case A character-
izes viscoelastic materials of type IV while Case B belongs to type I according to
Table 1. For each case, we investigate (i) creep compliance and creep recovery, (ii)
relaxation modulus, and (iii) harmonic deformation and stress–strain behavior.

Case A. φσ(α) = δ(α), φε(α) = E (τ0)α, where δ(α) is the Dirac delta function,
E and τ0 are positive constants.

In this case, the distributed order constitutive relation degenerates to

σ(t) = E

∫ 1

0

(τ0)αε(α)(t)dα. (11)

Applying the Laplace transform and then integrating with respect to α yield

σ̄(s) =
E (τ0s − 1)

ln(τ0s)
ε̄(s). (12)

(i) Creep compliance and creep recovery
The Laplace transform of creep compliance J(t) is

J̄(s) =
ln(τ0s)

E s (τ0s − 1)
. (13)
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From the initial value and final value theorems, we have

J(0+) = lim
s→∞ sJ̄(s) = 0, J(+∞) = lim

s→0
sJ̄(s) = +∞. (14)

In order to express the creep compliance J(t), we use the formula

L−1

[
ln(s + 1)

s

]
= E1(t), Res > 0, (15)

where E1(t) is the exponential integral function defined by

E1(t) =
∫ ∞

t

e−u

u
du. (16)

Hence, from the properties of Laplace transform we derive

L−1

[
ln(τ0s)
τ0s − 1

]
=

1
τ0

e
t

τ0 E1

(
t

τ0

)
, Res >

1
τ0

, (17)

and the creep compliance

J(t) =
1

Eτ0

∫ t

0

e
t

τ0 E1

(
t

τ0

)
dt. (18)

We note that the exponential integral function E1(t) is a built-in function in
most computer algebra systems such as MATHEMATICA 8. In Fig. 1, creep com-
pliance J(t) for E = 1 and for τ0 = 0.5, τ0 = 1 and τ0 = 2 are shown, where the
time interval is taken on [0, 20] and we calculate each values for t = 0.05k, k =
0, 1, . . . , 400. The continuous curves are formed by linear interpolation.

Note that no instantaneous elastic deformation is possible and the model under-
goes creep indefinitely, which is a characteristic of a viscoelastic fluid.

5 10 15 20
t

1

2

3

4

J t

Fig. 1. Curves of creep compliance J(t) for E = 1 and for τ0 = 0.5 (solid line), τ0 = 1 (dash
line) and τ0 = 2 (dot line).
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5 10 15 20
t

0.5

1.0

1.5

t , t

Fig. 2. Suddenly applied and then removed fixed stress σ(t) (dash line) and the creep recovery
response ε(t) (solid line) for E = 1, τ0 = 2 and T = 5.

To examine the creep recovery response, we remove the load suddenly. Thus, the
applied stress can be expressed as σ(t) = H(t) − H(t − T ). Its Laplace transform
is σ̄(s) = 1

s (1 − e−Ts). We obtain the creep recovery response

ε(t) = J(t) − J(t − T )H(t − T ), (19)

where the final value is ε(+∞) = 0. In Fig. 2, we display the curve of creep recovery
response ε(t) for E = 1, τ0 = 2 and T = 5.

We note that for elastic materials, such strain recovery is instantaneous and
complete. Here, the model exhibits an eventually complete creep recovery.

(ii) Relaxation modulus
The Laplace transform of relaxation modulus G(t) takes the form

Ḡ(s) =
E(τ0s − 1)
s ln(τ0s)

= E

(
τ0

ln(τ0s)
− 1

s ln(τ0s)

)
. (20)

The initial value and final value of relaxation modulus G(t) are given as

G(0+) = +∞, G(+∞) = 0.

In order to inverse Eq. (20), we present the Laplace inverse formula

L−1

[
1

ln(s)

]
= et +

∫ +∞

0

e−rt

ln2(r) + π2
dr. (21)

To prove the formula (21), we start with the complex integral formula for the inverse
transform (5). The function 1

ln(s) has a pole s = 1, and branch points s = 0 and
s = ∞, so we take the negative real axis as a cut and consider the one-valued
branch satisfying −π < arg s < π.
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We express the Laplace inversion integral as a Hankel contour integral plus the
residue at s = 1, i.e.,

L−1

[
1

ln(s)

]
=

1
2πi

∫
Ha(ε)

1
ln(s)

estds + Res
(

1
ln(s)

est, s = 1
)

, (22)

where the Hankel path Ha(ε) denotes a counterclockwise loop constructed by a
small circle |s| = ε with ε → 0 and by the two sides of the negative real axis.

Decomposing the integral by substituting s = re±iπ along the upper and lower
sides of the cut and s = εeiθ along the small circle |s| = ε and calculating the
residue, we have

L−1

[
1

ln(s)

]
=

1
2πi

[∫ ∞

0

(
1

ln(r) − iπ
− 1

ln(r) + iπ

)
e−rtdr

+ lim
ε→0+

∫ π

−π

iεeiθeεteiθ

ln(ε) + iθ
dθ

]
+ et.

The limitation vanishes so we obtain the formula in Eq. (21).
Utilizing properties of Laplace transform, we further obtain

L−1

[
1

ln(τ0s)

]
=

1
τ0

[
e

t
τ0 +

∫ +∞

0

e−rt/τ0

ln2(r) + π2
dr

]
, (23)

and

L−1

[
1

s ln(τ0s)

]
= e

t
τ0 − 1 +

∫ +∞

0

1 − e−rt/τ0

r(ln2(r) + π2)
dr. (24)

From Eqs. (20), (23) and (24), we derive the relaxation modulus as

G(t) = E

[
1 +

∫ +∞

0

(r + 1)e−rt/τ0 − 1
r(ln2(r) + π2)

dr

]
, t > 0, (25)

or more concisely as

G(t) = E

∫ +∞

0

(r + 1)e−rt/τ0

r(ln2(r) + π2)
dr, t > 0. (26)

We note that the integral in Eq. (26) is divergent if t = 0, which verifies the
initial value G(0+) = +∞. In Fig. 3. We plot the curves of the relaxation modulus
G(t) versus t for E = 1 and for τ0 = 0.5, 1 and 2, where the values of G(t) are
calculated at t = 0.001 + 0.05k for k = 0, 1, . . . , 400 and interpolated linearly.

Note that the stress relaxes out completely over time, which is a characteristic
of a viscoelastic fluid.
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0 5 10 15 20
t

0.5

1.0

1.5

2.0

2.5

3.0
G t

Fig. 3. Curves of the relaxation modulus G(t) versus t for E = 1 and different values of τ0:
τ0 = 0.5 (solid line), τ0 = 1 (dash line) and τ0 = 2 (dot line).

(iii) Harmonic deformation and stress–strain behavior
If strain is of harmonic deformation ε(t) = sin(2πt), we use formulas (8), (26)

and

eat ∗ cos(bt) =
aeat − a cos(bt) + b sin(bt)

a2 + b2
H(t), (27)

and obtain the stress response

σ(t) = 2πG(t) ∗ cos(2πt)

= 2πEτ0

∫ +∞

0

(r + 1)(r cos(2πt) + 2πτ0 sin(2πt) − re
− rt

τ0 )
r(r2 + 4π2τ2

0 )(ln2(r) + π2)
dr. (28)

It is readily to find out the initial value σ(0+) = 0 and asymptotic periodic behavior

σ(t) ∼ 2πEτ0(C1 cos(2πt) + C2 sin(2πt)), t → +∞, (29)

where C1 and C2 are constants

C1 =
∫ +∞

0

(r + 1)
(r2 + 4π2τ2

0 )(ln2(r) + π2)
dr,

C2 =
∫ +∞

0

2πτ0(r + 1)
r(r2 + 4π2τ2

0 )(ln2(r) + π2)
dr.

In Fig. 4, curves of stress response σ(t) versus t are shown for E = 1 and
τ0 = 0.5, 2, 4, respectively. The values of σ(t) are calculated at t = 0.005k for
k = 0, 1, . . . , 1000 and interpolated linearly. Phase difference between stress and
strain is obvious, which means hysteresis and energy dissipation. In Fig. 5, stress–
strain hysteresis loop for E = 1 and τ0 = 2 is shown by using the same data as
in Fig. 4. Stress response rapidly approaches a steady state. We note that since
σ̇(0+) = +∞, the value of σ(0.005) changes obviously from the value σ(0) = 0.
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1 2 3 4 5
t

6

4

2

2

4

6

sin 2 t , tσπ

Fig. 4. Curves of sin(2πt) (dot-dash line) and stress response σ(t) for E = 1 and τ0 = 0.5 (solid
line), τ0 = 2 (dash line) and τ0 = 4 (dot line).

1.0 0.5 0.5 1.0

4

2

2

4

σ

∋

Fig. 5. Stress–strain hysteresis loop for E = 1 and τ0 = 2.

Any materials that exhibit hysteresis, creep or stress relaxation can be consid-
ered viscoelastic materials. In comparison, elastic materials do not exhibit energy
dissipation or hysteresis as their loading and unloading curve is the same.

We note that the constitutive equation (11) characterizes viscoelastic materials
of type IV according to Table 1. Such viscoelastic materials exhibit a complete stress
relaxation and an infinite strain creep. They do not present equilibrium elasticity
or instantaneous elasticity.

Case B. φσ(α) = (τσ)α, φε(α) = E (τε)α, where E, τσ, τε are positive constants
satisfying τσ < τε.

The inequality τσ < τε follows from the second law of thermodynamics.27,31 In
this case, the distributed order constitutive relation degenerates to

∫ 1

0

(τσ)ασ(α)(t)dα = E

∫ 1

0

(τε)αε(α)(t)dα. (30)
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Applying the Laplace transform and then integrating with respect to α yield

σ̄(s) =
E (τεs − 1) ln(τσs)
(τσs − 1) ln(τεs)

ε̄(s). (31)

(i) Creep compliance and creep recovery
Laplace transform of creep compliance J(t) satisfies

J̄(s) =
(τσs − 1) ln(τεs)

Es(τεs − 1) ln(τσs)
. (32)

By the limiting theorem, we have the limiting values

J(0+) =
τσ

Eτε
, J(+∞) =

1
E

, (33)

two positive finite values which are different from that in Case A.
To inverse Eq. (32), we make the decomposition

τσs − 1
s(τεs − 1)

=
1
s

+
τσ − τε

τεs − 1
,

ln(τεs)
ln(τσs)

= 1 +
ln( τε

τσ
)

ln(τσs)
.

Then inverse transform for Eq. (32) yields

J(t) =
1
E

(
H(t) +

(
τσ

τε
− 1

)
e

t
τε

)
∗

(
δ(t) + ln

(
τε

τσ

)
L−1

[
1

ln(τσs)

])
.

Utilizing formula (23) and calculating convolution with respect to t we obtain the
creep compliance

J(t) =
1
E

[
H(t) +

(
τσ

τε
+ ln

(
τε

τσ

)
− 1

)
e

t
τε

]

+
1
E

ln
(

τε

τσ

) ∫ +∞

0

r(τσ − τε)e
t

τε − τσ(1 + r)e−
rt
τσ

r(rτε + τσ)(ln2(r) + π2)
dr. (34)

Taking t = 0 in Eq. (34), we have the same initial value as in Eq. (33). In Fig. 6,
curves of creep compliance J(t) versus t for E = 1 and different values of τσ and τε

are shown, where the values of J(t) are calculated at t = 0.05k for k = 0, 1, . . . , 300,
and interpolated linearly. Note that the model allows an instantaneous deformation
to occur, and overtime the displacement creeps to an asymptotic level.

The creep recovery response to the stress input σ(t) = H(t) − H(t − T ) is
ε(t) = J(t) − J(t − T )H(t− T ). In Fig. 7, we plot the creep recovery response ε(t)
for E = 1, τσ = 2, τε = 8 and T = 4. The model allows an instantaneous elastic
deformation, but does not allow for a permanent strain.

(ii) Relaxation modulus
The Laplace transform of relaxation modulus G(t) reads

Ḡ(s) =
E(τεs − 1) ln(τσs)
s(τσs − 1) ln(τεs)

. (35)
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2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

J t

Fig. 6. Curves of creep compliance J(t) versus t for E = 1 and τσ = 0.25, τε = 0.5 (solid line),
τσ = 2, τε = 8 (dash line) and τσ = 0.25, τε = 4 (dot line).

2 4 6 8 10 12 14
t

0.2

0.4

0.6

0.8

1.0

t , tσ ∋

Fig. 7. Suddenly applied and then removed fixed stress σ(t) (dash line) and the creep recovery
response ε(t) (solid line) for E = 1, τσ = 2, τε = 8 and T = 4.

So relaxation modulus G(t) is obtained by replacing E by 1/E and the interchange
of τε and τσ in Eq. (34),

G(t) = E

[
H(t) +

(
τε

τσ
+ ln

(
τσ

τε

)
− 1

)
e

t
τσ

]

+ E ln
(

τσ

τε

) ∫ +∞

0

r(τε − τσ)e
t

τσ − τε(1 + r)e−
rt
τε

r(rτσ + τε)(ln2(r) + π2)
dr. (36)

Its initial and final values are G(0+) = Eτε

τσ
and G(+∞) = E, two positive finite

values. In Fig. 8, curves of relaxation modulus G(t) versus t for E = 1 and different
values of τσ and τε are shown, where the values of G(t) are calculated at t = 0.025k
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1 2 3 4 5 6 7
t

2

4

6

8

G t

Fig. 8. Curves of relaxation modulus G(t) versus t for E = 1 and τσ = 0.25, τε = 0.5 (solid line),
τσ = 2, τε = 6 (dash line) and τσ = 0.25, τε = 2 (dot line).

for k = 0, 1, . . . , 280, and interpolated linearly. Note that the stress relaxes from a
finite value and approaches to a nonzero value, which is different from Case A.

(iii) Harmonic deformation and stress–strain behavior
The stress response to the harmonic deformation ε(t) = sin(2πt) is σ(t) =

G(t) ∗ 2π cos(2πt), where G(t) is given by Eq. (36). Here, we use the composite
trapezoidal rule to calculate the convolution integral for each fixed value of t.

Suppose an equal step-size partition for variable t: tn = nh, n = 0, 1, . . . , N.

Then the convolution integral is calculated numerically as σ(t0) = 0, and

σ(tn) = 2π

∫ tn

0

G(τ) cos(2π(tn − τ))dτ

= 2π

n∑
i=0

ωn,iG(ti) cos(2πtn−i), n = 1, 2, . . . , N, (37)

where G(ti) is computed by using Eq. (36) and the weights ωn,i are given as

ωn,0 = ωn,n = h/2, ωn,i = h, i = 1, 2, . . . , n − 1. (38)

In Fig. 9, we plot the curves of strain ε(t) = sin(2πt) and the stress response σ(t)
for E = 1 τσ = 2 and τε = 6 on interval 0 ≤ t ≤ 5, where the stress response σ(t)
is computed with the step-size h = 0.0025 and the continuous curve is generated
by linear interpolation on the numerical results. In Fig. 10, stress–strain hysteresis
loop is shown, where the stress rapidly approaches a steady state oscillation.

We note that the model (30) characterizes the viscoelastic material of type I
according to Table 1. It exhibits both instantaneous and equilibrium elasticity, so
their behavior appears close to the purely elastic one for sufficiently short and long
times.
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1 2 3 4 5
t

2

1

1

2

sin 2 t , tσπ

Fig. 9. Curves of strain sin(2πt) (dash line) and the stress response σ(t) for E = 1τσ = 2 and
τε = 6 (solid line).

1.0 0.5 0.5 1.0

2

1

1

2

Fig. 10. Stress–strain hysteresis loop for E = 1, τσ = 2 and τε = 6.

3. Conclusions

In this paper, we investigate the response and its modeling for the distributed order
constitutive equations

σ(t) = E

∫ 1

0

(τ0)αε(α)(t)dα

and ∫ 1

0

(τσ)ασ(α)(t)dα = E

∫ 1

0

(τε)αε(α)(t)dα,

respectively, where E, τ0, τσ and τε are positive constants satisfying τσ < τε.
For each case, we consider the creep compliance, creep recovery, relaxation

modulus, stress–strain behavior under harmonic deformation. We express these
responses and results as easily computable forms and simulate them by using
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MATHEMATICA 8. In order to achieve our results, we present a Laplace inverse
formula

L−1

[
1

ln(s)

]
= et +

∫ +∞

0

e−rt

ln2(r) + π2
dr.

For the first constitutive equation, we derive the creep compliance in terms of the
exponential integral function, the relaxation modulus and stress response to har-
monic deformation as convergent improper integrals on the infinite interval (0, +∞).
For the second constitutive equation, we derive the creep compliance and the relax-
ation modulus as convergent improper integrals on the infinite interval (0, +∞). We
obtain the stress response to harmonic deformation by using the numerical inte-
gral method for the convolution integral. For both equations, stress responses to
harmonic deformation display hysteresis phenomena and energy dissipation.

The first constitutive equation characterizes viscoelastic materials of type IV
while the second constitutive equation models viscoelastic materials of type I
according to Table 1. The viscoelastic model of type IV is fluid-like whereas model
of type I is solid-like.

All the figures are generated by using MATHEMATICA 8 based on our results.
Figure 1 is generated directly by using the exponential integral function. For the
other figures, we use the built-in command ‘NIntegrate’ in MATHEMATICA 8 to
calculate the improper integrals on the interval (0, +∞) numerically. There are no
other errors in the formation of Figs. 2–8. In Figs. 9 and 10, the composite trape-
zoidal rule to calculate the convolution integral is used. So the figures are accurate
enough and we do not have to resort to numerical Laplace inverse transformation.
To offer a continuous representation, we use linear interpolation on our discrete
numerical results.
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