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This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based
on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI
controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying
control. For the proposed control force, convergence analysis of the system described by mobile actuator
dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal
Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-
based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order
Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-
FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are pre-
sented to verify the effectiveness of our proposed fractional-order PI controllers.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Tempered anomalous diffusion is a diffusion process with a non-
linear relationship to time, unlike normal diffusion applied in bio-
medical systems [1,2], in which the mean squared displacement is a
linear function of time. In contrast to anomalous diffusion, tem-
pered anomalous diffusion is described by an exponentially tem-
pered power law, whose equations based on tempered fractional
derivatives [3] form a useful extension. Specifically, in our work, we
study the tempered anomalous diffusion system governed by the
time tempered fractional diffusion equation. As we know, tempered
time fractional derivatives are generated by tempered power law
waiting times, which arise in the Fokker-Planck equation corre-
sponding to the continuous time random walk (CTRW) model with
tempered waiting time measure [4,5]. A tempered fractional cal-
culus where power laws were tempered by an exponential factor,
was promoted in [6], as a more flexible alternative for practical
applications. It is proven that the tempered fractional diffusion
model is very useful to finance [7,8] and geophysics [9,10] in some
applications. In a tempered anomalous diffusion process, static
sensors for pollution measurement are deployed to cover the whole
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polluted area and gather pollution concentration information while
the mobile actuators equip with limited chemical neutralizers for
eliminating pollution by properly spraying chemical substances.

Our work on controlling the tempered anomalous diffusion
process with a static pollution source is motivated by the appli-
cation of Centroidal Voronoi Tessellations (CVTs) [11,12], mobile
actuator-sensor networks (MASs) [13], and Unmanned Aerial
Systems (UASs) [14]. Coverage control was provided by Cortés
et al. [12] for multivehicle networks, which can be viewed as a
novel approach to coordination algorithm for mobile sensing
networks. Notable work on several probabilistic algorithms and
their parallel implementations for determining CVTs was pre-
sented in [15]. Additionally, monitoring and controlling of the
spatially distributed diffusion process based on MASs have been
primarily investigated by Chen et al. [13,16] in the past few years.
As technology advances beyond our ability to keep track of it, UASs
are used for agricultural applications, for example, solving minimal
negative impact caused by pest and pesticide to the soil based on
the simulation platform named Fractional-Order Diffusion Mobile
Actuator-Sensor 2-Dimension (FO-Diff-MAS2D) [17].

Motivated by the argument of why consider fractional-order
controllers even when integer-order controller can implement
comparatively well for fractional-order systems in [18] and the
application of tempered anomalous diffusion systems, in this pa-
per, we try to solve the pollution neutralization spraying control
problem for a tempered anomalous diffusion system utilizing the
fractional-order PI controllers. The fractional-order proportional
tempered anomalous diffusion system using fractional-order PI
2017.04.005i
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integral derivative (FO-PID) controller proposed in [19], which
involves the fractional-order integrator and the fractional-order
differentiator. More recently, there has been some considerable
contribution on the fractional-order controller [20] and the frac-
tional-order system [21,22]. Oustaloup [20] developed CRONE
controller for controlling dynamic systems, which had better
performance than the conventional proportional integral deriva-
tive (PID) controller when it was used to control fractional-order
systems. In the work [23], Özdemir also verified that the frac-
tional-order λPI controller was more effective than the classical
proportional integral (PI) controller for the system subject to input
Duhem hysteresis. In [21,22], Chen et al. first investigated the ro-
bust stability problem of uncertain fractional-order linear time-
invariant systems with interval coefficients and used Lyapunov
inequality to test robust stability of the linear time-invariant in-
terval fractional-order system.

Despite the considerable contribution of neutralization control
for the anomalous diffusion process and the tempered anomalous
diffusion process based on the integer-order controller in [17,24],
very few results are available on diffusion control for the tempered
anomalous diffusion system utilizing the fractional-order con-
troller. Actually, from engineering point of view, computation
maybe faster and memory maybe cheaper, which make the ap-
plication of fractional calculus, including fractional-order systems
and fractional-order controllers, available and reasonable [18,25].
What's more, the fractional-order controller can adjust the dyna-
mical properties of the fractional-order system thanks to the
flexible property of the fractional-order controller [19], and frac-
tional-order control is ubiquitous based on real world dynamic
systems examples with distributed parameter nature [18]. In the
context, we argue that one needs to take into account the in-
tegration that encompasses the tempered anomalous diffusion
system and the fractional-order PI controller. More specifically, we
introduce the fractional-order PI controller for controlling the
tempered fractional anomalous diffusion system with a static
pollution source and a moving pollution source. Furthermore,
based on Diff-MAS2D [26] and FO-Diff-MAS2D [24,17], a modified
simulation platform called FO-Diff-MAS2D-FOPI is introduced. We
hope that our results here could provide some insights into the
diffusion control analysis of the tempered anomalous diffusion
systems using the fractional-order PI controller.

Preliminaries and mathematical tools are introduced in Sec-
tion 2 briefly. Mathematical modeling and problem statement are
presented in Section 3. Section 4 is contributed to diffusion
control for actuator motion and spraying problems. In Section 5,
we present FO-DIFF-MAS2D-FOPI simulation platform and two
numerical experiments with static and moving pollution sources
based on the proposed fractional-order PI controllers. Finally,
conclusions and some future work can be found in Section 6.
2. Preliminaries and mathematical tools

In this section, we first illustrate the definitions and some
properties on fractional calculus and tempered fractional calculus,
and then introduce the fractional-order PI controller.

2.1. Fractional calculus and tempered fractional calculus

Some definitions about fractional calculus and tempered frac-
tional derivatives are presented. Specifically, we introduce the left
Caputo fractional derivative, the left Caupto tempered fractional de-
rivative, and the Riemann-Liouville fractional calculus, respectively.
Please cite this article as: Juan Chen, et al. Diffusion control for a
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Suppose α< <0 1, λ ≥ 0, the left Caputo fractional derivative
and the left Caputo tempered fractional derivative with respect to
the order of α and the function of f(t) are given by [27,5,28]
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where Γ(·) represents Gamma function defined by Γ α( )=
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Likewise, the left Riemann-Liouville fractional integral of the β-
th order ( β< <0 1) [27,28] can be defined as follows
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The left Riemann-Liouville fractional derivative is described by
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where β< <0 1.
According to the above definitions, we can obtain the property

of the Riemann-Liouville fractional derivative as follows [27]
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where β< <0 1.

Remark 1. According to the above definitions of the left Riemann-
Liouville fractional derivative and the left Caputo fractional deri-
vative, we can get the left Caputo fractional derivative of function f

(t) with initial value ( ) =f 0 0 and the β-th order ( β< <0 1) based
on [25, Property 3] as below
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Since ( ) =f 0 0, we can obtain

( ) = ( ) ( )β βD f t D f t , 7t
C

t0 0

which implies that the left Caputo fractional derivative is equal to
the left Riemann-Liouville fractional derivative with the same
function and the same order when the initial value of function is
equal to 0.

2.2. Fractional-order PI controller

In this section, we propose the generalized fractional-order PI
controller with the integral order β ∈ ( )0, 1 , which can be written
as the fractional-order βPI controller. The transfer function of the
proposed controller is given as below [19]

β( ) = ( )
( )

= + >
( )

β−G s
U s
E s

H H s , 0,
8f p i

where Gf(s), U(s), and E(s) represent the transfer function of the
proposed controller, the output of the proposed controller, and the
tempered anomalous diffusion system using fractional-order PI
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error, respectively. Hp is the proportional gain, Hi is the integral
gain.

Considering the inverse Laplace transform for the above
transfer function (8), we obtain the unit-impulse response of the
proposed controller as follows

β( ) = ( ) + ( ) > ( )β−U t H e t H D e t , 0. 9p i t0

3. Mathematical modeling and problem statement

In this section, we consider the following tempered anomalous
diffusion system to illustrate dynamic process of pollution con-
centration, and then introduce some basic knowledge on CVTs. The
motivation for choosing this system is that the partial differential
equation can describe the dynamic behavior of the anomalous
diffusion process exactly. Moreover, the control force added to this
system takes a considerable effect to the tempered anomalous
diffusion problem.

3.1. Tempered anomalous diffusion system

In a convex polytope Θ ∈ 2, we assume that a tempered
anomalous diffusion process occurs with the time domain ≥t 0 and
a group of m mobile actuators moves to a certain location freely in
this region. Let the set = { … }L l l l, , , m1 2 be the position coordinate
set of mobile actuators, where li denotes the position coordinate of
the i-th mobile robot. φ( )x y t, , represents the pollution concentra-
tion of the areaΘ. The Caputo tempered fractional derivative is used
to formulate the dynamic process, which is given by

⎛
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where (·)α λDt
C ,
0 represents the Caputo tempered fractional derivative,

α λ< < >0 1, 0, li is the location coordinate of the i-th actuator, (·)g
is the shape function, which means the implementation scope of
mobile actuators, (·)usi

represents the control force for the i-th ac-
tuator spraying, (·)fd is the pollution source, k is a positive diffusion
coefficient.

The exact formats of ( ( ))g x y l t, ; i and ( )u tsi
depend on the specific

control performance requirement determined by users. Suppose that
each actuator can receive the information from static sensors. Then,
by taking advantage of the control law, the mobile robots move to
high density of pollution and release the neutralization chemical
materials. The corresponding control objectives are as follows

� To control the tempered anomalous diffusion process rationally
and reduce pollutants.

� To minimize the polluted area that is heavily affected.
� To neutralize the pollutants as quickly as possible.

3.2. Fundamentals of CVTs

First, according to the actuators position, let us divide Θ into a
set of m polytopes Π = { … }V V, , m1 , where ∈l Vi i. Assume that for
every ∈ { … }i m1, , , then there exists

Θ= { ∈ ∣ − < − = … ≠ } ( )V l l l l l j m j ifor 1, , , , 11i i j

where |·| represents the Euclidean distance, and l is an arbitrary
point in the area Θ. We can obtain ∩ = ∅V Vi j for ≠i j and

Θ∪ ¯ = ¯
= Vi

m
i1 , where ¯ = ∪ ∂V V Vi i i, Θ Θ Θ¯ = ∪ ∂ .

Then, we define the set of regions ( ) =
Vi i

m

1
as the Voronoi diagram

which is generated by the set of points ( ) =
li i

m

1
. If Vi is adjacent to Vj,
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we take the point li as a neighbor of the point lj. For each Voronoi
cell Vi and the density function ρ( ) ≥l 0 defined on Θ̄, we suppose
that the density function ρ( )l satisfies

ρ φ( ) = ( )l l .

Define some basic concepts referred to mass and centroid
(center of mass) [12], which are given by

∫ φ= ( ) ∀ ∈ { … }
( )

M l l i m: d , 1, , ,
12V

Vi
i

and

∫ φ¯ = ( ) ∀ ∈ { … }
( )

l
M

l l l i m:
1

d , 1, , .
13

i
V V

i i

It is noticeable that if the generators ( ) =
li i

m

1
are also the cen-

troids of their Voronoi cells, whose mathematical expression can
be described by

= ¯ ∀ ∈ { … } ( )l l i m, 1, , , 14i i

such Voronoi tessellations are called CVTs.
Next, we present an example on CVTs, which can be con-

structed by 20 random points in the area Θ with density function

φ( ) = − ( − ) − ( − )x y e, x y8 0.3 8 0.32 2
, as shown in Fig. 1(a). Generally speak-

ing, in reality, Voronoi configurations are generated by the tra-
jectories of mobile actuators at a certain time rather than the ac-
tuators location, which is shown in Fig. 1(b).
4. Diffusion control for the tempered anomalous diffusion
system

As we know, diffusion control for a tempered anomalous dif-
fusion problem can be separated into two subproblems:

(1) Actuator motion control problem (where to go for mobile
actuators).

(2) Actuator spraying control problem (how much to spray for
mobile actuators).

In what follows, the discussion on them will be presented in
some detail.

4.1. Actuator motion problem formulation

In order to control the tempered anomalous diffusion problem
and reduce the amount of pollutants, it is obvious that if the
mobile actuators get closer to the high-concentration polluted area
and are further from lightly polluted area, control effect will be
better. However, since the diffused pollutants far away from the
source also need to be eliminated timely, it is unreasonable to put
all the mobile actuators close to the pollution source. As is illu-
strated in above analysis, we introduce the below cost function,
which needs to be minimized in [12,16].

 ∫∑Π φ Θ( ) = ( )| − | ∈

| ̇| < |¨ | < ∀ ∈ { … } ( )
=

L l l l l l

l h l h i m
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i

m

V
i

i vel i acc

1

2

i

where φ( )l represents concentration at the point l in the area Θ,
hvel and hacc denote the upper bounds of the velocity and the ac-
celeration of mobile actuators, respectively.

To simplify the expression, we write

  Π= ( )L, .L

Furthermore, as the Voronoi diagrams ( ) =
Vi i

m

1
depend at least
tempered anomalous diffusion system using fractional-order PI
2017.04.005i

http://dx.doi.org/10.1016/j.isatra.2017.04.005
http://dx.doi.org/10.1016/j.isatra.2017.04.005
http://dx.doi.org/10.1016/j.isatra.2017.04.005


Fig. 1. CVTs constructed by 20 random points and trajectories of 4 mobile actuators.

Juan Chen et al. / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
continuously on the set ( )= …L l l, , m1 for all ≠l li j, we can deduce
that the function L is at least continuously differentiable with
respect to time t.

By taking advantage of the parallel axis theorem and some
basic definitions of CVTs given in (12) and (13), the partial deri-
vative of the cost function L can be obtained as below

 ( )∂
∂

= − ¯ ∀ ∈ { … }
( )l

M l l i m2 , 1, , .
16

L

i
V i ii

Following [16,15], that { } =l V,i i i
m

1 is a CVT of Θ can be a necessary
condition to minimize L. For the above function L, the local
minimum points are centroids of their Voronoi cells, which im-
plies that each actuator position is the generator for current Vor-
onoi configuration and its centre of mass. We can describe it as
follows

¯ = ∀ ∈ { … }l i margmin , 1, , .i
l

L
i

To compute the desired location of mobile actuators, we use
Lloyd's method as a deterministic algorithm to generate Centroid
Voronoi cells [16]. Although Lloyd's method converges faster than
probabilistic methods due to fewer iterations, computation re-
quirements are higher for this method, which can be addressed by
a modificatory distribution algorithm [12,16] with the advantage
in reducing the computation amount.

4.2. Fractional-order PI controller for actuator motion planning

In this paper, suppose the mobile actuators are treated as vir-
tual particles. In what follows, each i comes from the set { … }m1, , .
The mobile actuators location follows the second-order dynamical
equation below

¨ = ( )l u . 17i li

We describe the right part of the above equation clearly as
follows

= − ̇ ( )u f h l , 18l i v ii

where fi is the force input to control the motion of the robot by
CVT and is given by a fractional-order PI controller
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( ) ( )= ¯ − + ¯ − ( )
β−f h l l h D l l . 19i p i i i t i i0

Substituting (19) into (18), we can obtain

( ) ( )= ¯ − + ¯ − − ̇ ( )
β−u h l l h D l l h l , 20l p i i i t i i v i0i

where hp and hi are a positive proportional coefficient, and a posi-
tive integral coefficient, respectively. Generally, they are determined
by designer based on practical requirements of engineering.

According to (17), the above equation can be rewritten

( ) ( )¨ = ¯ − + ¯ − − ̇ ( )
β−l h l l h D l l h l . 21i p i i i t i i v i0

Note that, according to the equation (5), it is easy to obtain

( )( ) ( )− ¯ = − ¯
( )

β β− −

t
D l l D l l

d
d

. 22t i i t i i0
1

0

Remark 2. The second term of (18) on the right hand side is the
viscous friction artificially given in [29], in which hv is a positive
constant and ̇li represents the velocity of the i-th mobile robot.
Moreover, hv equals the proportion of viscosity coefficient to agent
mass. In particular, hv¼1 means the viscosity coefficient equals to
agent mass. The viscous term is used to eliminate the oscillation
behavior of mobile robots when the robots are very close to the
destination, which guarantees that the robot will come to a
standstill eventually in the absence of the external force.

4.3. Convergence to centroidal Voronoi tessellations under the frac-
tional-order PI controller

Next, we study the fractional-order PI control design for non-
linear passive-dynamics system [30], which can be regarded as the
extension of integer-order control design [12]. In Section 4.2, we
considered the dynamic system described by a second-order mo-
tion equation (17) for each actuator. In particular, we supposed
that the above controlled system's dynamics is passive with input
uli

and output ̇li in (20), which can infer that the input uli
is equal to

0 with the zero-dynamics manifold ̇ =l 0i . In this paper, we choose
the general form of the fractional-order PI controller for control
input
tempered anomalous diffusion system using fractional-order PI
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( )
( )

= − − ¯

− − ¯ − ̇ ( )
β−

u h M l l

h M D l l h l , 23

l pro V i i

int V t i i v i0

i i

i

where >h 0pro , >h 0int , >h 0v are henceforth called scale positive
gains.

Based on (17) and (23), we can re-write the second-order dy-
namical equation of each actuator as follows

(
( )

¨ = = − − ¯)

− − ¯ − ̇ ( )
β−

l u h M l l

h M D l l h l . 24

i l pro V i i

int V t i i v i0

i i

i

It is known that the CVT can solve the time-invariant en-
vironment problem with the time-independence state function.
However, when the evolution rate of the tempered anomalous
diffusion process is agonisingly slow comparing with the con-
vergence rate of the Lloyd's method, the CVT can still keep the
validation for our problem. Moreover, as the Lloyd's method is
executed periodically, the motion of mobile actuators can be
adaptive to the evolution of the tempered anomalous diffusion
process. Therefore, in this paper, the actuators location can still
converge to a CVT based on the control input (23) with a frac-
tional-order PI controller in the time-varying environment, which
is verified through the simulation results in Section 5.2.

In the following theorem, we design a control input with some
certain conditions, in spirit of results proposed in [12], which can
guarantee that the mobile actuators position converges to the
centroid of Voronoi configuration. The main difference between
the work given in [12] and ours is that we investigate the dyna-
mical behavior of each actuator described by the control input
with a fractional-order PI controller and a certain condition on its
scale gains, instead of the dynamical system represented by a
control input with the integer-order P controller for each sensor.

Theorem 1. For the above second-order dynamical behavior (17)
induced by a control input (23) for each actuator, if the control input
is derived by the fractional-order PI controller and its scale gains
satisfy > >h h 0pro int and hv¼1, then the above second-order dy-
namic system of each actuator (24) is asymptotically stable via the
proposed control input (23), which implies that the actuators location
asymptotically converges to the centroid of Voronoi cell.

proof. Consider the following Lyapunov function

 (
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∑

∑
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i

i

Obviously, the proposed Lyapunov function Υ ( ) >t 0 for
> >h h 0pro int and hv¼1. The derivative of the proposed Lyapunov

function is given by
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h h M l h h M
t

D l l

l h l l l h l

d
d

1
2

d
d

.

i

m

pro int v
L

i
i

i

m

int v V i i

int v V t i i

int v V i int v V t i i

i

m

i v i i i v i

1 1

0

0

1

i

i

i i

Using the formulation of ∂
∂l

L

i
, l̈i and ( )( )− ¯β−D l l

t t i i
d
d 0 given by

(16), (24) and (22), we have
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∑

∑

∑

∑

∑

∑

∑

∑

∑

Υ ( ) = ( − ) ̇( − ¯)

+ ̇( − ¯)

+ ( − ¯) ( − ¯)

+ ̇ ( − ¯)

+ ( − ¯) ( − ¯)
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− ( − ¯)
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β
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β
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=
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−

=

−

=

− −

=

=

−

=

=

−

t
t
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h h M l l D l l

d
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i

m
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i

m
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i

m

int v v i i t i i

i

m

int v v i t i i

i

m

int v v t i i t i i

i

m

pro v i i i

i

m

int v i t i i

i

m
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i

m
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1

1

1

1
0

1
0

1
0

1
0

1

1
0

1

2

1
0

i

i

i

i

i

i

i

i

i

Moreover, since > > =h h h0, 0, 1pro int v , we infer that

( ) ( )

( ) ( )

( )

( ) ( )

∑

∑

∑

∑

Υ ( ) = − ¯ − ¯

+ − ¯ − ¯

− − ¯

− − ¯ − ¯

β

β β

β

=

−

=

− −

=

=

−

t
t

h M l l D l l

h M D l l D l l

h M l l

h M l l D l l

d
d

.

i

m

int v i i t i i

i

m

int v t i i t i i

i

m

pro v i i

i

m

int v i i t i i

1

1
0

1
0

1
0

1

2

1
0

i

i

i

i

In order to simplify the proof, we set

Υ Υ Υ Υ Υ( ) = ̇ ( ) + ̇ ( ) + ̇ ( ) + ̇ ( )t
t

t t t t
d

d
,1 2 3 4

where

( ) ( )

( ) ( )

( )

( ) ( )

∑

∑

∑

∑

Υ

Υ

Υ

Υ

̇ ( ) = − ¯ − ¯

̇ ( ) = − ¯ − ¯

̇ ( ) = − − ¯

̇ ( ) = − − ¯ − ¯

β

β β

β

=

−

=

− −

=

=

−

t h M l l D l l

t h M D l l D l l

t h M l l

t h M l l D l l

,

,

,

.

i

m

int v i i t i i

i

m

int v t i i t i i

i

m

pro v i i

i

m

int v i i t i i

1
1

1
0

2
1

0
1

0

3
1

2

4
1

0

i

i

i

i

Next, let us investigate each function of Υ ̇ ( )tk ( = )k 1, 2, 3, 4 is
positive or negative as follows

(1) Suppose ( ) ( )Υ ̇ ( ) = − ¯ − ¯β−t h M l l D l li int v i i t i i1
1

0i
, then

∑Υ Υ̇ ( ) = ̇ ( )
=

t t .
i

m

i1
1

1

To prove Υ ̇ ( ) ≤t 01 , it is equivalent to prove that

( ) ( )− ¯ − ¯ ≤β−l l D l l 0.i i t i i
1

0

According to the definition of the Riemann-Liouville fractional
derivative, we have
tempered anomalous diffusion system using fractional-order PI
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( ) ( ) ( )∫Γ β
− ¯ − ¯ =

− ¯

( )
( − ) − ¯β β− −l l D l l

l l
t

t s l l s
d
d

d .i i t i i
i i

t

i i
1

0
0

1

Consider the property of CVT algorithm on the convergence
rate of the Lloyd's method, suppose the actuators position li
converges to its CVT centroids faster than β−t 1 [31], then we can

discuss the plus or minus of ( ) ( )− ¯ − ¯β−l l D l li i t i i
1

0 in two following

cases.

� In the first case, let us take ( )− ¯ >l l 0i i , and the integral

( )∫ ( − ) − ¯β−t s l l sd
t

i i0
1 is monotonically decreasing. Hence,

( )∫ ( − ) − ¯ ≤β−

t
t s l l s

d
d

d 0,
t

i i
0

1

it is noticeable that ( ) ( )− ¯ − ¯ ≤β−l l D l l 0i i t i i
1

0 .
� In the second case, let us take ( )− ¯ <l l 0i i , and the integral

( )∫ ( − ) − ¯β−t s l l sd
t

i i0
1 is monotonically increasing, so that the

derivative of the above integral is greater than or equal to 0.
Obviously, we have

( ) ( )− ¯ − ¯ ≤β−l l D l l 0.i i t i i
1

0

Given the above analysis, we can easily obtain ( )− ¯ β−l l Di i t
1

0

( )− ¯ ≤l l 0i i , for each case.

(2) Suppose ( ) ( )Υ ̇ ( ) = − ¯ − ¯β β− −t h M D l l D l li int V t i i t i i2 0
1

0i
, then

∑Υ Υ̇ ( ) = ̇ ( )
=

t t .
i

m

i2
1

2

In order to prove Υ ̇ ( ) ≤t 02 , we have to prove that

( ) ( )− ¯ − ¯ ≤β β− −D l l D l l 0.t i i t i i0
1

0

Consider the Riemann-Liouville fractional derivative definition
given above, we can obtain

( ) ( )

( )

∫

∫
Γ β

Γ β

− ¯ =
( )

( − ) − ¯

=
( + )

( − ) − ¯

β β

β

− −D l l t s l l s

t
t s l l s

1
d

1
1

d
d

d ,

t i i

t

i i

t

i i

0
0

1

0

and

( ) ( )∫Γ β
− ¯ =

( )
( − ) − ¯β β− −D l l

t
t s l l s

1 d
d

d .t i i

t

i i
1

0
0

1

Thus, it is time to discuss the sign of ( ) ( )− ¯ − ¯β β− −D l l D l lt i i t i i0
1

0 in

the below cases.

� In the first case, we assume ( )− ¯ >l l 0i i , then the integral

( )∫ ( − ) − ¯βt s l l sd
t

i i0
is monotonically increasing. Moreover, sup-

pose ( )− ¯ >l l 0i i and ( )∫ ( − ) − ¯β−t s l l sd
t

i i0
1 is monotonically

decreasing. So that,

( )∫ ( − ) − ¯ ≥β

t
t s l l s

d
d

d 0,
t

i i
0

( )∫ ( − ) − ¯ ≤β−

t
t s l l s

d
d

d 0,
t

i i
0

1

respectively. It is easy to obtain ( ) ( )− ¯ − ¯ ≤β β− −D l l D l l 0t i i t i i0
1

0 .

� In the second case, we take ( )− ¯ <l l 0i i . Hence, the integral

( )∫ ( − ) − ¯βt s l l sd
t

i i0
is monotonically decreasing, therefore the

derivative of this integral is less than or equal to 0. In addition,
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since the integral ( )∫ ( − ) − ¯β−t s l l sd
t

i i0
1 is monotonically in-

creasing, then the corresponding derivative is greater than or
equal to 0. As a result, we also have

( ) ( )− ¯ − ¯ ≤β β− −D l l D l l 0.t i i t i i0
1

0

By the above analysis, we get that

( ) ( )− ¯ − ¯ ≤β β− −D l l D l l 0.t i i t i i0
1

0

(3) Suppose ( )Υ ̇ ( ) = − − ¯t h M l li pro v i i3
2

i
, then

∑Υ Υ̇ ( ) = ̇ ( )
=

t t .
i

m

i3
1

3

Using the above assumption, we obtain Υ ̇ ( ) ≤t 03 .

(4) Suppose ( ) ( )Υ ̇ ( ) = − − ¯ − ¯β−t h M l l D l li int v i i t i i4 0i
, then

∑Υ Υ̇ ( ) = ̇ ( )
=

t t .
i

m

i4
1

4

For the purpose of proving Υ ̇ ( ) ≤t 04 , it needs to prove that

( ) ( )− ¯ − ¯ ≥β−l l D l l 0.i i t i i0

Given the definition of Riemann-Liouville derivative, we get

( ) ( ) ( )

( )

∫

∫
Γ β

Γ β

− ¯ − ¯ =
− ¯

( )
( − ) − ¯

=
− ¯

( + )
( − ) − ¯

β β

β

− −l l D l l
l l

t s l l s

l l
t

t s l l s

d

1
d
d

d .

i i t i i
i i

t

i i

i i
t

i i

0
0

1

0

Then, we have to discuss the plus or minus of ( )− ¯ β−l l Di i t0

( )− ¯l li i in two below cases.

� In the first case, we set ( )− ¯ >l l 0i i , then the integral

( )∫ ( − ) − ¯βt s l l sd
t

i i0
is monotonically increasing. Therefore,

( )∫ ( − ) − ¯ ≥β

t
t s l l s

d
d

d 0,
t

i i
0

it implies that ( ) ( )− ¯ − ¯ ≥β−l l D l l 0i i t i i0 .
� In the second case, we set ( )− ¯ <l l 0i i , then the integral

( )∫ ( − ) − ¯βt s l l sd
t

i i0
is monotonically decreasing. It denotes that

the derivative of the above integral is less than or equal to 0.
Hence, we have

( ) ( )− ¯ − ¯ ≥β−l l D l l 0.i i t i i0

By the above analysis, we can easily obtain ( )− ¯ β−l l Di i t0

( )− ¯ ≥l l 0i i which infers Υ ̇ ( ) ≤t 04 .

Now, we conclude that ≤Υ ( ) 0t
t

d
d

, it suffices to apply the above

assumption and combine with the above analysis, since

Υ Υ Υ Υ̇ ( ) ≤ ̇ ( ) ≤ ̇ ( ) ≤ ̇ ( ) ≤t t t t0, 0, 0, 01 2 3 4 .
Finally, the actuators location can asymptotically converge to

the largest invariant set contained in ̇ =l 0i by LaSalle's invariance
principle. According to zero dynamics on above passive-dynamics

system, we easily find that − ¯ =l l 0i i for i¼1,…,m, i.e., LaSalle's
invariance principle can guarantee convergence to a CVT when the
set of centroidal Voronoi configurations is finite. In other words, it
infers that the control input (23) with a fractional-order PI control
law can stabilize the passive-dynamics system (24) to one of its
minima. □

Remark 3. Note that, the proposed theorem also can guarantee
the stability of the second-order dynamic system of each actuator
tempered anomalous diffusion system using fractional-order PI
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(24). Moreover, the study of the tempered anomalous diffusion
system based on the control input with a fractional-order PI con-
trol law (19) can be taken as the extension of the normal diffusion
system under a control input with the integer-order control law.

4.4. Actuator spraying control problem statement

According to the control objective of the tempered anomalous
diffusion problem, pollution should be neutralized as quickly as
possible. However, in reality, due to the tempered stable process with
long-time heavy tail of the tempered anomalous diffusion system, the
total amount of pollution released by the pollution source will de-
crease itself even if there is no control input. Therefore, to reduce the
pollution amount timely, we design a fractional-order PI controller for
spraying control rationally, whose validity can be verified by some
numerical simulations in Section 5.2 and Section 5.3.

4.5. Fractional-order PI controller for spraying control

Motivated by [32, Chapter 7.3.3] and [19, Sec VI] , in this part of
this paper, we turn to use the fractional-order PI controller for
neutralizing chemical releasing in the tempered fractional diffu-
sion process. The fractional-order PI controller is a generalization
of the integer-order PI controller, which is alternative to the in-
teger-order PI controller. In many cases it can be assumed that the
relationship of the amount of chemicals each robot released and
the average pollutant concentration in the Voronoi cell belonging
to that robot can be denoted by

φ φ τ( ) = − ¯ ( ) − ¯ ( ) = … ( )
γ−u t h x y t h D x y i m, , , , , 1, , , 26s pr i ir t i0i

where φ̄ ( ) =
∫

∫

φ( )˜

˜
x y t, ,i

x y t V

V

, , d

d
Vi

Vi

represents the average pollutant

concentration, (·)γ−Dt0 is the left Riemann-Liouville fractional in-
tegral with the integral order of γ, hpr, and hir are positive con-
stants. The above spraying controller gains usually depend on the
practical requirements of engineering.

Take Ṽi as follows

˜ = ∩V V C ,i i i

where { }= ∣ − <C l l l ri i i , i¼1,…,m, ri represents the sensing range
of the i-th actuator, and Vi is the Voronoi cell of the i-th actuator.

4.6. FOPI-based CVT algorithm

In this paper, the FOPI-based CVT algorithm contains two cri-
tical parts of actuator moving control and actuator neutralization
control. We present the new FOPI-based CVT algorithm steps with
a proper pseudo code representation as follows

Algorithm 1. FOPI-based CVT algorithm.
S

S

S

S

S

Please c
controll
tep 1:
 Initial settings: actuator position ∈ { … }l l l, ,i m1 , dis-
turbance fd, response time t ¼ 0.
tep 2:
 Compute Voronoi cells = …V i m, 1, ,i generated by
actuators.
tep 3:
 Get the sensor data within Voronoi cell Vi and compute

the mass centroid l̄i and the average pollution con-
centration φ̄i in range ri.
tep 4:
 Moving and spraying control: according to (20), com-
pute motion control input uli

, then in terms of (26)

compute the spray control input usi
.

tep 5:
 Repeat step 2 - step 4 until no pollution is detected,
then stop.
ite this article as: Juan Chen, et al. Diffusion control for a
ers. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra.
Remark 4. The FOPI-based CVT algorithm is a non-model algo-
rithm, i.e., it does not need to know the exact mathematical form
of the model. Due to the uncertainty of our dynamic model, the
proposed control strategy may be uncommon and may have some
limitations for the uncertain dynamic system.
5. Simulation results

In this section, we will illustrate the FO-DIFF-MAS2D-FOPI si-
mulation platform and two numerical experiments via the pro-
posed fractional-order PI controllers.

5.1. FO-DIFF-MAS2D-FOPI simulation platform

We consider the area given in uniformization by Θ = {( )x y,
∣ ≤ ≤ ≤ ≤ }x y0 1, 0 1 . M�N sensors distribute inΘ evenly, which
forms a network over the area. Meanwhile, it contains m mobile
robots, which are in charge of spraying control through releasing
the neutralization chemical materials.

Given the property of FO-Diff-MAS-2D simulation platform
[24,17], we introduce the fractional-order PI controllers into it for
diffusion control of the tempered anomalous diffusion system,
which forms the new simulation platform called FO-Diff-MAS2D-
FOPI. The time fractional derivative can be discretized by FO-Diff-
MAS2D-FOPI, which leaves the time domain integration to Matlab/
Simulink. Some main features of FO-Diff-MAS2D-FOPI simulation
platform are given as follows

� Sensors and actuators can be collocated or non-collocated.
� Pollution source can be static or moving.
� The mobile actuators can obey first-order or second-order dy-

namical equation while movement of actuators can be open-
loop or closed loop, which is designed by users according to a
certain requirement.

� The control force for actuators motion control and spraying
control can be an integer-order controller or a fractional-order
PI controller, whose algorithm can be an arbitrary control
algorithm.

FO-Diff-MAS2D-FOPI simulation platform use the finite differ-
ence method (FDM), which is based on discretizing the solution
space into grid cells and approximating space fractional derivative
over each cell. With the help of [33, page 225] and the Oustaloup
algorithm, the fractional-order derivative of the tempered anom-
alous diffusion system and the fractional-order integral of the
proposed fractional-order PI controller are both realized. At every
time step, according to the principle of division of the distance
closest point, the CVT algorithm is achieved. As usual, we divide
the area Θ into 30�30 subdivisions, i.e., 29�29 sensors evenly
distributed in Θ.

Dirichlet and Neumann boundary conditions are both available
in this simulation platform. In this paper, we choose Neumann
boundary condition in the following numerical simulation ex-
periments, which can be described as

φ φ∂
∂ ¯

= +
n

P P ,1 2

where P1 and P2 stand for two real constants, n̄ is the outward
direction to the boundary.

FO-Diff-MAS2D-FOPI simulation platform for actuator motion
planing control and actuator spraying control is used to realize
two different scenarios given below
tempered anomalous diffusion system using fractional-order PI
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Fig. 2. Evolution of total pollution amount according to different value of β for
actuator motion control of a static pollution source.
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(a) A tempered anomalous diffusion process with a static pollution
source.

(b) A tempered anomalous diffusion process with a moving pollution
source.

where scenario (a) can represent the bacterium in soil that may be
viewed as a static source and may have some negative effects on soil,
and scenario (b) could be taken as the pest in farmland which may be
a moving source and may exert a great negative influence on agri-
cultural production in realistic issues.

On the other hand, we use the fractional-order PI control force
to realize the goal of making affected area as small as possible and
reducing the total pollution amount as soon as possible. The
control performance of the fractional-order PI control force for the
tempered anomalous diffusion process can be demonstrated by
comparing the following two aspects:

� Variation in the amount of total pollution based on the frac-
tional-order PI controller and without control.

� Evolution of state L2 norm under the fractional-order PI control
force and without control.

In what follows, the simulations for the two scenarios men-
tioned above use the same set of parameters, i.e., = =M N 29
meant 30�30 subdivisions in the area Θ, and m ¼ 4. Fractional-
order PI controller is abbreviated as FO-PI controller in following
simulation figures.

5.2. Case of static pollution source

We discuss a case of static pollution source first. Suppose four
robots work in the case of static pollution source, actuators car-
rying neutralization chemicals achieve the elimination of pollu-
tants released by the static pollution source of a tempered
anomalous diffusion process. The tempered anomalous diffusion
process is given by the PDE (10) with control input, where the
diffusion coefficient k¼0.01, the pollution source (·) = (·)f fd sd is a
static pollution source, ∑ (·) (·)= g ui

m
s1 i

is control input for actuator
motion planning and spraying control of the static issue. Neumann
boundary condition is described as

φ∂
∂ ¯

=
n

0.

We set the static disturbance source as a point disturbance
(·)fsd for the tempered anomalous diffusion process. The dis-

turbance equation is ( ) = −
( = = )f t e20sd

t
x y0.8, 0.2

with position at (0.8,

0.2). The tempered anomalous process evolves at t¼0 to the area
Θ with 4 mobile actuators layout on initial positions at (0.33,
0.33), (0.33, 0.66), (0.66, 0.33), (0.66, 0.66), respectively.

To show howmobile actuators make an effort in controlling the
diffusion of pollutants, control input is added to the tempered
anomalous diffusion process at =t s1.0 . We set the time step
Δ =t s0.004 so that the mobile actuators recompute their desired
position every s0.2 . The total simulation time is =T s6 .

Based on the previous research work [17,24], we choose the
time derivative order α = 0.7 and tempering parameter λ = 1 in
(10) for our numerical simulations. Moreover, to control actuator
motion path, we set the viscous coefficient hv¼1, the proportional
coefficient hp¼6 and the integral coefficient hi¼1. In order to
obtain the optimal fractional order β in (20), we let β vary between
0.4 and 0.9, as shown in Fig. 2. It is worthwhile to note that the
second-order dynamic system of each actuator (21) is divergent
for β ∈ ( )0, 0.4 (see Remark 5 for more details).

For the purpose of making pollution amount be lower, we find
the optimal fractional order β is 0.9 in the actuator motion control
Please cite this article as: Juan Chen, et al. Diffusion control for a
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input (20) from the above simulation results in Fig. 2. Then, the
actuator motion control input is given by the fractional equation

( ) ( )= ¯ − + ¯ − − ̇ ( )
−u l l D l l l6 , 27l i i t i i i

0.9
0i

which also can guarantee the mobile actuators location converges
to the centroid of Voronoi configuration along with the mobile
actuators’ motion, as shown in Fig. 3.

For spraying control, the proportional coefficient is fixed by
=h 10pr . To reduce the total pollution amount as soon as possible,

we set hir to change from 0 to 35 with the step 5 and 10. Under the
proposed condition, the evolution of the pollution amount can be
seen in Fig. 4, which shows that the bigger hir is, the better for
spraying control. In addition, the evolution of pollution amount is not
distinct when ≥h 15ir , but the total pollutant amount still gets lower
as hir is growing in Fig. 4(b). Therefore, without loss of generality, we
take =h 15ir in our simulations. Next, in order to obtain the optimal
fractional order γ in equation (26), we let γ change from 0.4 to 1.0,
the tempered anomalous diffusion system (10) with a static source is
also divergent when the corresponding fractional order γ < 0.4 (see
Remark 5 for more details). Fig. 5 shows the optimal fractional order
γ is 0.7, which can decrease the pollution amount as soon as possible,
then we can obtain the spraying control input described by the
fractional-order PI controller as follows

φ φ τ( ) = − ¯ ( ) − ¯ ( ) ( )
−u t x y t D x y10 , , 15 , , . 28s i t i

0.7
0i

To validate the effectiveness of our proposed fractional-order PI
control strategy for pollution neutralization, we compare variation of
pollutants and evolution of state L2 norm under the fractional-order PI
controllers and without control input in Fig. 6, which shows pollution
amount and state L2 normwith the fractional-order PI control method
descend faster than the counterpart without control force. From Ta-
ble 1, we can find that the amount of total pollution reduces to zero
and the state L2 norm declines to zero after =t s5 with the fractional-
order PI controllers when the counterpart drops to about 0.2 and
approximates zero without control at the end of the simulation. As a
result, the proposed fractional-order PI control strategy has good
control effects for the tempered anomalous diffusion process.

Remark 5. In the case of static pollution source of this paper,
based on the Lyapunov stability theory, the actuator's second-or-
der dynamic system (21) must be stable for arbitrary fractional
order β. However, if the fractional order β is too small, the in-

tegration effect may lead to the stable condition ≤Υ ( ) 0d t
dt

un-

satisfied promptly, since Υ ( )d t
dt

contains the integral term β−Dt
1

0

tempered anomalous diffusion system using fractional-order PI
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which may induce the phase delay or part variation magnitude of
Υ ( )d t
dt

(more details in [34]). Therefore, the above system will be

divergent when the fractional order β is in ( )0, 0.4 . For the frac-

tional order γ of the fractional-order PI controller (26) for spraying
control, we note that the fractional order needs to satisfy some
certain range to make the tempered anomalous diffusion system
stable, which is provided in [35,36] for the general fractional-order

system. Although the range of fractional order γ of the fractional-
order PI controller (26) for the tempered anomalous diffusion
system (10) may not be precisely estimated due to the uncertainty
and disturbance of the tempered anomalous diffusion model, it is
Fig. 3. Movement of mobile actuators when they converge to centroids of Voronoi confi
denote centroids (the desired position of actuators). Red polygons are Voronoi cells. The
yellow area means the actuator sprays too much in this area at the current time.
still reasonable that the above tempered anomalous diffusion

system is divergent when the fractional order γ is in ( )0, 0.4 . In this
paper, we obtain the suitable range of fractional order of the
fractional-order PI controllers for actuators motion and spraying
through the numerical simulation.

5.3. Case of moving pollution source

The tempered anomalous diffusion process with a moving
pollution source and control input is depicted as the PDE (10),
where (·) = (·)f fd md represents a moving pollution source, control
input and boundary conditions are the same as the static scenario.
gurations with a static pollution source. Blue circles represent actuators. Red circles
green area represents the pollution combination of space point in current time. The



Fig. 4. Evolution of total pollution amount with different value of hir for spraying
control of a static pollution source.

Fig. 5. Variation of total pollutant with different value of γ for spraying control of a
static pollution source.

Fig. 6. Evolution of the pollution amount and state L2 norm under the fractional-
order PI control strategy and without control of a static pollution source.

Table 1
Evolution of pollution amount and state L2 norm of a static pollution source.

Time (s) FO-PI control strategy Without control

Amount Norm Amount Norm

1 8.40 0.84 8.40 0.84
2 3.25 0.32 4.80 0.42
3 0.40 0.05 2.30 0.19
4 0.01 0.01 1.00 0.08
5 0.00 0.00 0.45 0.04
6 0.00 0.00 0.20 0.02
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The moving disturbance source is taken as a point disturbance
(·)fmd to the tempered anomalous diffusion process, whose moving

trajectory is given by
Please cite this article as: Juan Chen, et al. Diffusion control for a
controllers. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra
⎪
⎪⎧⎨
⎩

π
π

= + ( )
= + ( )

( )

x t

y t

0.5 0.3cos 2 /50

0.2 0.3sin 2 /50 ,
29

and the moving pollution source equation is represented as below

( ) = ( )π π
−

( = + ( ) = + ( )
f t e20 . 30md

t

x t y t0.5 0.3cos 2 /50 , 0.2 0.3sin 2 /50

First, the proportional coefficient hp, the viscous coefficient hv
and the integral coefficient hi are given by 9, 1, 1, respectively. For
tempered anomalous diffusion system using fractional-order PI
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Fig. 7. Evolution of total pollution amount according to different value of β for
actuator motion control of a moving pollution source.

Fig. 8. Evolution of total pollution amount with different value of hir for spraying
control of a moving pollution source.

Fig. 9. Variation of total pollutant with different value of γ for spraying control of a
moving pollution source.
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obtaining the optimal fractional order β of (20), we let β vary from
0.4 to 0.9 in Fig. 7. From the simulation results, we can find that
the total pollutant has got to the lowest at the end of simulation
time at β = 0.9 in Fig. 7. It is necessary to point out the second-
order dynamic system (21) is divergent when β < 0.4 for each
actuator (see Remark 5, 6 for more details). Then, according to the
optimal fractional order β, it is obvious that we can obtain the
control input equation for actuator motion as follows

( ) ( )= ¯ − + ¯ − − ̇ ( )
−u l l D l l l9 . 31l i i t i i i

0.9
0i

In spraying control process, we let the proportional coeffi-
cient =h 10pr , the integral coefficient hir varying from 0 to 30
with the step 5 and 10, which are shown in Fig. 8(a) and (b),
respectively. With the same explanation as the static issue, we
take =h 10ir in our following simulations. In order to get the
total pollutant lower as soon as possible, we choose the optimal
time fractional order γ of (26) from 0.4 to 1.0. From the simu-
lation results in Fig. 9, it is easy to obtain that the optimal
fractional order γ is 0.5. In addition, for γ < 0.4, the tempered
anomalous diffusion system (10) with a moving source is also
divergent as in the case of the static pollution source (see Re-
mark 5, 6 for more details). Moreover, the spraying control input
can be taken as

φ φ τ( ) = − ¯ ( ) − ¯ ( ) ( )
−u t x y t D x y10 , , 10 , , . 32s i t i

0.5
0i

From Fig. 10, we can find that the pollution amount and state L2
norm under the fractional-order control force fall faster than the
counterpart with no control input to exert. In addition, Table 2
implies that the amount of total pollution decreases to zero after

=t s5 and the state L2 norm falls to zero completely under the
fractional-order PI controllers, while the counterpart approaches
to the approximate values 0.2 and 0.01 without control at last,
respectively. They both verify the validity of our proposed control
method.

Remark 6. In the case of moving pollution source, the fractional
orders β and γ of the fractional-order PI controllers for actuators
motion control and spraying control are also not in some certain
range (0, 0.4) to make the actuator's second dynamic system (21)
and the tempered anomalous diffusion system (10) stable, whose
Please cite this article as: Juan Chen, et al. Diffusion control for a tempered anomalous diffusion system using fractional-order PI
controllers. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra.2017.04.005i
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Fig. 10. Evolution of the pollution amount and state L2 norm under the fractional-
order PI control strategy and without control of a moving pollution source.

Table 2
Evolution of pollution amount and state L2 norm of a moving pollution source.

Time (s) FO-PI control strategy Without control

Amount Norm Amount Norm

1 8.40 0.84 8.40 0.84
2 3.20 0.26 5.00 0.40
3 0.40 0.08 2.20 0.16
4 0.01 0.01 1.10 0.08
5 0.00 0.00 0.45 0.02
6 0.00 0.00 0.20 0.01
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explanation and analytic reason is same as the counterpart of the
static issue.
6. Conclusions and future work

This paper investigated diffusion control problem of the tempered
anomalous diffusion system by the fractional-order PI controllers for
actuator motion and neutralization control. Based on Lyapunov
Please cite this article as: Juan Chen, et al. Diffusion control for a
controllers. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra
stability arguments, stability of the actuators second-order dynamic
system was proved, which illustrated that the control input can
achieve convergence of the actuators location to the centroid of Vor-
onoi cells. By designing a fractional-order PI controller, the spraying
control problem statement was provided. Finally, utilizing FO-Diff-
MAS2D-FOPI simulation platform, two numerical experiments with
static and moving pollution sources were presented, which indicated
that the fractional-order PI control method could be valid to control
the tempered anomalous diffusion process. Namely, improvement
with respect to integer-order PI controllers was not clearly obtained. A
deeper analysis on advantage of the fractional-order controllers
compared with the integer-order controllers for the tempered anom-
alous diffusion system will be investigated in future work.
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