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The paper considers the stabilization issue of linear continuous singular systems by dealing with strict
linear matrix inequalities (LMIs) without invoking equality constraint and proposes a complete and ef-
fective solved LMIs formulation. The criterion is necessary and sufficient condition and can be directly
solved the feasible solutions with LMI toolbox and is much more tractable and reliable in numerical
simulation than existing results, which involve positive semi-definite LMIs with equality constraints. The
most important property of the criterion proposed in the paper is that it can overcome the drawbacks of
the invalidity caused by the singularity of Ω = +PE SQT for stabilization of singular systems. Two
counterexamples are presented to avoid the disadvantages of the existing condition of stabilization of
continuous singular systems.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Singular systems are governed by the so-called singular dif-
ferential equations, which endow the systems with many special
features that are not found in normal systems. Singular systems
have comprehensive practical background and their applications
can be found in various fields such as electrical circuit networks,
robotics, and social economic systems, and so on [1]. Stability is an
important and fundamental property. An unstable system does not
work in practice. Singular system are fundamentally different form
normal system. The following features in singular system are not
usually found in normal system. The transfer function of a singular
system may not be proper. Regularity means that for a considered
system there exist Laplace transformation of −sE A and there exist
a unique solution. Impulse-freeness guarantees that the system
there does not exist impulse solution which can reduce the cost
index of a system. For an arbitrary finite initial condition, the time
response of a singular system may exhibit undesired impulsive
behavior which can be generated by infinite dynamic modes. Even
if a singular system is impulse-free, it can be still have initial finite
discontinuities due to inconsistent initial conditions. Admissibility
is the least constraint for a controlled singular system. In recent
years, considerable effort has been devoted to the analysis of
controllability and observability, pole assignment [2], stability and
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stabilization [3–7], admissibility [8,9], robustness [10–15], ∞H
control [16,17], state feedback stabilization of impulsive systems
[18], −D stability and −D stabilization [19], dissipativity [20], sta-
bility and stabilization of T-S fuzzy systems [21,22] and admissi-
bility analysis with time-varying delay of singular systems [23].
Most recently, there has been an increasing interest in the stability
and stabilization issues, e.g. approximate discretization of singular
systems with impulsive mode [24], mixed ∞H and passive control
for singular systems with time delay via static output feedback
[25], fuzzy normalization and stabilization for rectangular de-
scriptor systems [26], extension of diagonal stability and stabili-
zation for fractional positive systems [27] and impulsive stabili-
zation of singular systems with time-delays [28].

However, the most commonly proposed LMI-type conditions
contain equality constraints, which may be of little problem the-
oretically, but may cause a big trouble in checking the conditions
numerically. For the criterion of stabilization of continuous sin-
gular systems, the latest feasible results is Lemma 3.1 [10] which
gives an LMI-based necessary and sufficient condition for stabili-
zation issues of singular systems without any additional equality
constraints. The same as strict LMIs conditions presented in other
literatures, Lemma 3.1 need to introduce the basis of null space of
singular matrix of system [10,14]. Besides Lemma 3.1 asserts that
without loss of generality the involved matrix Ω = +PE SQT is
assumed to be nonsingular, but in some cases the solution of Ω
solved by (13) is probably singular. When the case of singularity of

Ω occurs, some θ ∈ ( )0, 1 needs introducing such that Ω Ω θ^ = + P̄
is nonsingular and holds (13), in which P̄ is an arbitrary
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i
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nonsingular matrix satisfying LMI ¯ = ¯ ≥EP P E 0T T . In this case, it
means the criterion needs to append a new equality constraints
and introduces positive semi-definite and non-strict inequality.
Examples 4.2 and 4.3 presented in this paper are two counter-
examples whose Ω = +PE SQT solved from LMI (13) is actually
singular so that Lemma 3.1 is invalid to deal with the stabilization
issues of singular systems.

Paper [7] presents strict LMI criteria without invoking equality
constraint for stability and stabilization of continuous singular
systems by introducing a simple assumption. While the two strict
LMI conditions proposed in [7] for stability and stabilization of
singular systems are only sufficient conditions but not necessary
conditions which are more restrictive and are incomplete to sta-
bilization issues of continuous singular systems. Up to now, to the
best of our knowledge, a complete and effective LMI-based ne-
cessary and sufficient condition which is strict and does not in-
volve equality constraint and may avoid the invalidity caused by
the singularity of Ω = +PE SQT (see in Examples 4.2 and 4.3) re-
mains an open problem on the stabilization issues of singular
systems. The criterion proposed in the paper does not involve the
basis of null space of the singular matrix E. They just consider the
simple full rank decomposition for the singular matrix E, without
the decompositions of system matrix A and input matrix B. The
conditions can be easily extended to other singular systems e.g.
singular fractional order systems.
2. Strict LMIs condition for stability of singular systems

Consider a continuous singular system

̇( ) = ( ) + ( ) ( )Ex t Ax t Bu t 1

where ( ) ∈x t Rn is the physical state of the system, ( ) ∈u t R ,l is the
control input, and ∈ ×E Rn n is the system singular matrix. It can be
singular, and we assume ≤0 rank ( ) = ≤E m n. ∈ ×A Rn n is the
system matrix, and ∈ ×B Rn l is the system input matrix.

Definition 2.1. [1,2] System (1) is regular if det ( − )sE A is not
identically zero. System (1) is impulse-free if deg(det ( − )) =sE A
rank(E). System (1) is stable if all the roots of det ( − ) =sE A 0 have
negative real parts. System (1) is admissible if it is regular, im-
pulse-free and stable.

For System (1), we define its generalized spectral abscissa [10]
as

α λ( ) ≜ ( )
λ∈{ | ( − )= )}

E A, max Re .
s sE Adet 0

For simplicity, we note α α( ) = ( )A I A, which is the usual spectral
abscissa.

Lemma 2.1. [10] System (1) is admissible if and only if there exists a
matrix P such that

= ≥ ( )E P P E 0, 2T T

+ < ( )P A A P 0. 3T T

It is pointed out that the conditions in (2) and (3) are non-strict
LMIs, which contain equality constraints. It may result in numer-
ical troubles when checking such non-strict LMI conditions since
equality constraints are fragile and usually do not hold effectively.
In most cases the non-strict LMIs do not have any feasible solution,
and the equality constraints can not be directly dealt with LMIs. So
strict LMI conditions are more desirable than non-strict ones from
Please cite this article as: Zhang X, Chen Y. A solid criterion based on
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the numerical simulation point of view. To overcome the equality
constraint in (2), papers [10,14] utility matrices ∈ ×( − )S Rn n m which
are of full column rank and are composed of basis of null space of
ET . The main result in paper [10,14] is introduced as in the
following lemma.

Lemma 2.2. [10,14] System (1) is admissible if and only if there exist
a positive definite matrix P and a matrix Q which satisfy the LMI

( + ) + ( + ) <A PE SQ PE SQ A 0.T T

where ∈ ×( − )S Rn n m is any matrix with full column rank and satisfies
=E S 0.T

When the regularity of the pair ( )E A, in System (1) is not given.
it is always possible to obtain two nonsingular matrices M and N
satisfying

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= =MEN

I
MAN

A A

A A
0

0 0
, .m 1 2

3 4

For the above decomposition, we have the following result.

Lemma 2.3. [1,2](a) System (1) is impulse-free if and only if A4 is
nonsingular.

(b) System (1) is admissible if and only if A4 is nonsingular and

α( − ) <−A A A A 0.1 2 4
1

3

Many results concerning LMI-based control use LMIs, such as
Lemma 2.1, but with additional equality constraints, which, un-
fortunately, often cause numerical problems in computation. Al-
though using the results of the strict LMIs conditions without
equality constraint in Lemma 2.2, we can analyze and design
singular systems in almost the same way as what we do in the case
of state-space models, while sophisticated manipulations are
needed to derive the results in Lemma 2.2. That is, the adjective
and non-unique parameter S need introducing. It is necessary and
essential to present a new strict LMI condition for admissibility of
System (1) to avoid the troubles caused by the singularity of
Ω = +PE SQT mentioned in Introduction. It is caused by just in-
troducing a variable P that conditions (2) and (3) in Lemma 2.1 are
non-strict LMIs, and contain equality.

If we denote the P in Lemma 2.1 as P in the following theorems,
thenwe have that = −P M PNT 1 is restricted equivalent to P. WhereM
and N are chosen to satisfying Theorem 2.1. By using the restricted
equivalent transformation and the block matrix, Lemma 2.1 can be
improved as Theorem 2.1 whose format is standard LMIs. Now, we
are in a position to give the new strict LMI condition without
equality constraint. Although Equation (2) with non-strict inequality
is used throughout the proof almost everywhere, the novelty of the
proof lies in it addresses an approach on how P can be constructed
without involving Eq. (2) of Lemma 2.1.

Theorem 2.1. System (1) is admissible if and only if for arbitrary two

chosen nonsingular matrices M and N satisfying ⎡⎣ ⎤⎦=MEN ,I
0

0
0

m

∈ ×M N R, n n , there exist matrices P P,1 2, and nonsingular ∈ ×P P R, ,m m
3 1

∈ ∈( − )× ( − )×( − )P PR R,n m m n m n m
2 3 such that

> ( )P 0, 41

+ < ( )P MAN N A M P 0. 5T T T T

where =m rank ⎡
⎣⎢

⎤
⎦⎥( ) =E P, P

P P
01

2 3
.

Proof. ( )Sufficiency For System (1), it is easy to choose two
nonsingular matrices M and N such that
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i
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⎡
⎣⎢

⎤
⎦⎥=MEN

I 0

0 0
.m

Suppose (4) and (5) hold. Let

⎡
⎣⎢

⎤
⎦⎥= =− −P M PN M

P

P P
N

0
.T T1 1

2 3

1

Then, considering (2) and (3), we have

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=

= ≥

=

= ≥

+

= +

= ( + ) <

− − −

− −

− − −

− −

− −

E P N
I

M M PN

N
P

N

P E N P MM
I

N

N P N

P MAN N A M P

N P M MAN N A M M PN

N P A A P N

0

0 0

0

0 0
0,

0

0 0

0

0 0
0,

0.

T T m T T

T

T T T m

T
T

T T T T

T T T T T T

T T T

1

1 1

1 1

1 1

1

That is, the matrix P satisfies (2) and (3). By Lemma 2.1, we have
System (1) is admissible.

( )Necessity Suppose System (1) is admissible. According to Lemma 2.3,
from the full rank decomposition of singular matrix E, for the two
chosen nonsingular matrices M and N satisfying

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= =MEN

I
MAN

A A

A A
0

0 0
, ,m 1 2

3 4

A4 is nonsingular, and

α( − ) <−A A A A 0.1 2 4
1

3

Noting the above inequality and for the following slow subsystem
̇ ( ) = ( − ) ( )−x t A A A A x t1 1 2 4

1
3 1 , applying Lyapunov stability theory, it can

be seen that there exists a matrix >P 01 such that

( − ) + ( − ) <− −A A A A P P A A A A 0.T
1 2 4

1
3 1 1 1 2 4

1
3

Let

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

=
−

=
−

¯ =
−

−

−

−
−

−

M
I A A

A

N
I

A A I

P
P

I

0
,

0
,

0

0
.

m

m

n m

n m

1
2 4

1

4
1

1
4

1
3

1

Then, M1 and N1 are nonsingular and we have

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

= =

=

=
− −

−

M MENN M
I

N
I

M MANN M
A A

A A
N

A A A A

I

0

0 0

0

0 0
,

0

0
.

m m

n m

1 1 1 1

1 1 1
1 2

3 4
1

1 2 4
1

3

Therefore, it is easy to see

¯ + ¯ < ( )PM MAN N N N A M M P 0. 6T T T T T
1 1 1 1

Pre-multiplying and post-multiplying (6) by −N T
1 and −N1

1, respectively,
Please cite this article as: Zhang X, Chen Y. A solid criterion based on
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we have

¯ + ¯ <− −N PM MAN N A M M PN 0.T T T T T
1 1 1 1

1

Let

= ¯ −P M PN .T
1 1

1

Therefore,

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

= ¯

=
− −

× =
− − −

−

− −
−

−
−

− − − −

P M PN

I

A A A

P

I

I

A A I

P

A A P A A A A

0 0

0

0 0
.

T

m

T T T
n m

m

n m
T T T T

1 1
1

4 2 4

1

4
1

3

1

4 2 1 4 4
1

3 4

Therefore the matrices P1 and nonsingular P satisfies (4) and (5),
respectively. This completes the proof.

By duality of System (1), the following corollary is introduced
as a lemma.

Lemma 2.4. [5] System (1) is admissible if and only if there exists a
matrix P such that

= ≥ ( )EP P E 0, 7T T

+ < ( )P A AP 0. 8T T

Taking into account Lemma 2.4 and Theorem 2.1 and simply invoking
duality, we can obtain the following corollary.

Corollary 2.1. System (1) is admissible if and only if there exist

matrices P P,1 2, and nonsingular ∈ ∈ ∈× ( − )×P P P PR R, , ,m m n m m
3 1 2 3

( − )×( − )R n m n m such that

> ( )P 0, 91

+ < ( )P N A M MANP 0. 10T T T T

where P M N, , and m are the same specification as those of
Theorem 2.1.

Remark 2.1. The decision variables P1 and P in (4), (5), (9) and (10)
of Theorem 2.1 and Corollary 2.1 are restrictive to the different
chosen matrices M and N. The given different M and N lead to
different pairs ( )MEN MAN, which are restrictively equivalent to
each other. The matrices M and N are constructed by the matlab
command ‘rref’. Command rref ( )A produces the reduced row
echelon form of A which is listed in the lines 2–4 of Appendix.
3. Conditions of stabilization of singular systems

For singular systems, it is natural to consider the criteria that
guarantee that the considered singular systems are not only stable
but also impulse-free and regular and then admissible.

For System (1), with the following state feedback control law:

( ) = ( ) ∈ ( )×u t Kx t K R, , 11l n

exerting control law (11) to System (1), the closed-loop system is
obtained as follows:

̇( ) = ( + ) ( ) ( )Ex t A BK x t . 12

In [10] there exists the following stabilization result.

Lemma 3.1. [10,11] Consider the continuous singular System (1).
There exists a state feedback controller (11) such that the closed-loop
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i

http://dx.doi.org/10.1016/j.isatra.2017.08.022
http://dx.doi.org/10.1016/j.isatra.2017.08.022
http://dx.doi.org/10.1016/j.isatra.2017.08.022


X. Zhang, Y. Chen / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
System (12) is admissible if and only if there exist matrices >P Q0,
and Y such that

Ω Ω+ + + < ( )A A BY Y B 0 13T T T T

where Ω = +PE SQ ,T and ∈ ×( − )S Rn n m is any matrix with full column
rank and satisfies =ES 0. In this case we can assume that Ω is
nonsingular (if this is not the case, then we can choose some

θ ∈ ( )0, 1 such that Ω Ω θ^ = + P̄ is nonsingular and satisfies (13), in

which P̄ is any nonsingular matrix satisfying ¯ = ¯ ≥EP P E 0T T ), then a
stabilizing state feedback controller can be chosen as

Ω( ) = ( )−u t Y x t .1

Lemma 3.1 is a important tool to deal with the stabilization of sin-
gular systems. Although Lemma 3.1 proposes a strict LMIs criterion
which implies that it is definite LMIs without equality constraint, it is
not always effectively tractable and reliable in solving LMIs with
MATLAB. By using Lemma 3.1, we have the following illustrative
counterexample which does not satisfy the singularity condition of
Ω = +PE SQT . So do Examples 4.2 and 4.3.

Example 3.1. Consider an unstable singular System (1) with
parameters as follows:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥= = = −

−
E A B1 0

1 0
, 2 5

2 4
, 1

2
.

Where we can obtain

⎡
⎣⎢

⎤
⎦⎥= ( ) =S Enull 0

1
,

which is with full column rank and satisfies =ES 0. Then, it can be
found that the LMI in (13) is feasible. By Lemma 3.1, we can obtain

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= = − − = −P Q Y1 0

0 1
, 1 1 , 0.5 0 ,

⎡
⎣⎢

⎤
⎦⎥Ω Ω+ + + = − −

− −
<A A BY Y B 5 4

4 4
0,T T T T

where

⎡
⎣⎢

⎤
⎦⎥Ω = + =

− −
PE SQ 1 1

1 1
.T

In this example, from Lemma 3.1, as Ω is singular, in order to find
stabilizing state feedback controller for System (1), we need to
involve another matrix P̄ which satisfies the following non-strict
LMI with equality constraint

¯ = ¯ ≥ ( )EP P E 0. 14T T

It is a difficult task to solve this kind of LMI. In fact, P̄ can not be
directly obtained by LMI (14) and what only can be done is for a
given P̄ to be tried to verify if it satisfies LMI (14). Unfortunately,
most given P̄ s do not satisfy LMI (14). It is noted the solution of
(13) is not unique. If we choose

⎡
⎣⎢

⎤
⎦⎥ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − − = −Q Y5 0

0 5
, 3 2 , 1 3 ,

then it is found that these matrices are solutions to (13), but the
matrix Ω is calculated as

⎡
⎣⎢

⎤
⎦⎥Ω =

− −
5 5
3 2

,

which is obviously non-singular. In this example, Eq. (13) fails to
conclude whether closed-loop system of (1) is admissible or not by
the criteria in Lemma 3.1. In the example, the matrix A is a second
Please cite this article as: Zhang X, Chen Y. A solid criterion based on
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order matrix whose solved matrices ΩP Q Y, , , can be chosen ea-
sily. But for high order matrix, the corresponding solved matrices

ΩP Q Y, , , can only be obtained from a computer. If Eq. (13) fails to
conclude a solid solution, it is difficult to draw another valid so-
lution manually. Now, we are in a position to give the strict LMI
criterion without equality condition of stabilization of continuous
singular systems.

Considering the closed-loop singular System (12) follows from
Corollary 2.1, we have

+
+ + <

P N K B M P N A M
MANP MBKNP 0.

T T T T T T T T T

Since from the proof of Theorem 2.1, it follows the solved matrix P
is nonsingular. If denote =Q KNP , we have the following results
desired immediately.

Theorem 3.1. For the continuous singular System (1), there exists a
state feedback controller (11) such that the closed-loop System (12) is
admissible if and only if there exist appropriate dimensional matrices

>P 01 , nonsingular P and Q such that

+ + + < ( )Q B M P N A M MANP MBQ 0. 15T T T T T T T

where P M N, , andm have the same specification as those of Theorem 2.1.
Then a stabilizing state feedback controller can be chosen as

( ) = ( ) = ( )− −u t Kx t K QP N, . 161 1

The inequality in (15) is a kind of standard LMI which can be
directly solved with the MATLAB LMI toolbox. The detailed ex-
planations on how to construct the matrices P and Q in Theorem 3.1
can be found on the lines 7–13 of the formulation in the Appendix.
Different from Lemma 3.1 which may cause invalidity such as in the
case of Examples 4.2 and 4.3, Theorem 3.1 works well all the time.
With the program in the Appendix, the control gain matrix is easy to
obtain ⎡⎣ ⎤⎦=K 0.7412 1.3647 .

Remark 3.1. The M and N introduced in Theorem 3.1 are easy to
be obtained in the steps of deducing the singular matrix E as its
diagonal normalized form. The conditions in Theorem 3.1 does not
need to introduce the bases of null space of singular matrix E. The
results in Theorem 3.1 are strict LMIs conditions, the matrix P in
(15) is easy to be calculated with LMI box.

Remark 3.2. The conditions in LMI (15) do not involve equality
constraint, such as =E P P ET T and include the less solved variables
of LMIs than that in Lemma 3.1.

Remark 3.3. In the case of =E I the singular System (1) reduces to
a normal system. So we have = = = =m n M N I P P, , 1 . Then
Theorem 3.1 coincides with the Lyapunov stabilization theory in
[11]. Therefore, Theorem 3.1 can be regarded as an extension of
Lyapunov stabilization theory for continuous normal systems to
continuous singular systems.

Remark 3.4. Compared with [10–11], the contribution of the pa-
per is to facilitate the design of stabilizing controllers via state
feedback based on strict LMI without invoking equality constraint.

The criterion ensures much more tractable and reliable in nu-
merical simulation compared to the existing results [10–11]. The
most important merit of the criterion proposed in the paper is that
it can overcome the drawbacks of the invalidity caused by the
singularity of Ω = +PE SQT for stabilization of singular systems.
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i
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Fig. 1. Electrical circuit illustration to Example 4.1.
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4. Simulation examples

4.1. Singular electrical circuit systems

The two following practical examples are given to illustrate the
practicability of singular systems discussed in the paper.

Example 4.1. Consider electrical circuit shown on Fig. 1 with given
resistance R, capacitances C C C, ,1 2 3 and source voltages e1 and e2.
Using the Kirchhoff's laws, we can write for the electrical circuit
the equations

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡
⎣⎢

⎤
⎦⎥−

̇
̇
̇

=
− −

− −
+

RC

C C C

u

u

u

u
u
u

e
e

0 0

0 0 0

1 0 1
0 0 0
0 1 1

1 0
0 0
0 1

.
1

1 2 3

1

2

3

1

2

3

1

2

Setting = = = =R C C C0.5, 2, 1, 31 2 3 , with Lemma 2.3, it is easy
to judge that det ( − ) = ( + ) ≢sE A s s2 2 3 0 which means that
System (1) is regular. It is easy to verify that deg(det ( − ))=sE A
rank ( ) =E 2 which implies that System (1) is impulse-free. The all
eigenvalues of the polynomial det ( − ) =sE A 0 are −1.5 and 0.
Their eigenvalues have negative real parts or equal to 0. It shows
that System (1) is stable.

Example 4.2. Consider electrical circuit shown on Fig. 2 with gi-
ven resistances R R R, ,1 2 3, inductances L L L, ,1 2 3 and source voltages
e1 and e2. Using the Kirchhoff's laws, we can write for the electrical
circuit the equations
Fig. 2. Electrical circuit illustration to Example 4.2.
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⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⎡
⎣⎢

⎤
⎦⎥

̇

̇

̇
=

− −
− −

−

+
L L

L L

i

i

i

R R

R R

i

i

i

e
e

0

0

0 0 0

0

0

1 1 1

1 0
0 1
0 0

.
1 3

2 3

1

2

3

1 3

2 3

1

2

3

1

2

Setting = = = = = =R R R L L L2, 1, 3, 1, 3, 21 2 3 1 2 3 , it is easy to

verify that det ( − ) = + + ≢sE A s s11 25 11 02 implying that
System (1) is regular and deg(det ( − ))=sE A rank ( ) =E 2 implying
that System (1) is impulse-free. The all eigenvalues of the poly-

nomial det ( − ) =sE A 0 are − ±25 141
22

. All of their eigenvalues have

negative real parts. It shows that System (1) is stable. From
Lemma 2.3, it follows that System (1) is admissible. The matrices
M and N in Theorem 2.1 can be calculated by the MATLAB com-
mands appended on the lines 2–4 of the formulation in the Ap-
pendix. i.e.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= = −

−

M N

1 0 0

0 0

0 0 1

,

0 0 1

1

0

1
3

1
3

1
3

1
2

1
2

With MATLAB to solve the LMIs (4) and (5) in Theorem 2.1, we
have the feasible results:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

=
− −

=

P

P

0.8451 0.1082 0
0.1082 2.1589 0
0.0964 0.9894 0.6173

,

0.8451 0.1082
0.1082 2.1589

.1

It is easy to check that matrix P1 is symmetric and the two ei-
genvalues of matrix P1 are 0.8363 and 2.1677, respectively. All of
them are greater than zero. So we have >P 01 . According to
Theorem 2.1, let

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=
− − −

−P M PN
0.8451 0.1082 1.7623
0.0361 0.7196 0.5519
0.5209 0.9894 0.4667

,

T 1

then, from (2) and (3), it is easy to verify that

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=

E P P E
0.8451 0.1082 1.7623
0.1082 2.1589 1.6556
1.7623 1.6556 4.6284

,

T T

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

+

=
− − −
− − −
− − −

A P P A

4.4222 1.7627 6.1140
1.7627 3.4181 2.5125
6.1140 2.5125 12.9517

.

T T

From Example 4.2, we can see that both the matrices E PT and

+A P P AT T are symmetric. The eigenvalues E PT are 5.9827, 1.6497

and 0, respectively. The eigenvalues of +A P P AT T are -16.8322,
-2.8237 and -1.1361, respectively. So we have ≥E P 0T and

+ <A P P A 0T T . From the simulation result it follows that matrix P
satisfies with Eqs. (2) and (3).

The following a numerical simulation example (Example 4.3)
and a counterexample (Example 4.4) with given parameters are
presented to illustrate the availability of criteria obtained in the
paper.
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i
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4.2. Stability of singular systems
Example 4.3. Consider System (1) with parameters as follows:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

− −

− − −
− −

=

− − −
− − − −

− − −
− − − −

E A

0 1 0 1
1 2 0 1
2 2 1 2
1 1 0 0

,

2 2 0 1
2 4 1 2

0 1 7 1
1 2 1 5

.

With Lemma 2.3, it is easy to judge that det ( − ) =sE A s9 3

+ + + ≢s s65 142 103 02 which means that System (1) is regular.
It is easy to verify that deg(det ( − ))=sE A rank ( ) =E 3 which im-
plies that System (1) is impulse-free. The all eigenvalues of the
polynomial det ( − ) =sE A 0 are − ± i1.6205 0.4986 and -3.9812. All
of their eigenvalues have negative real parts. It shows that System
(1) is stable. So we can obtain that System (1) is admissible. The
matrices M and N in Theorem 2.1 can be obtained by using the
simple MATLAB commands which are listed on the lines 2–4 of the
formulation in the Appendix. Therefore, it follows

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

− −

−
= −

−
−

M N

0 1 0 2
0 1 0 1
0 0 1 2
1 1 0 1

,

0 0 0 1
1 1 0 1
2 0 1 2
1 0 0 1

With MATLAB to solve the LMIs (4) and (5) in Theorem 2.1, we
have the feasible results:

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
−
−

= −
−

P

P

0.3592 0.3805 0.072 0
0.3805 1.3581 0.0412 0
0.072 0.0412 0.1666 0
0.19 0.5919 0.1222 0.0418

,

0.3592 0.3805 0.072
0.3805 1.3581 0.0412
0.072 0.0412 0.1666

.1

It is easy to see that matrix P1 is symmetric and the three eigen-
values of matrix P1 are 0.1111, 0.2861 and 1.4867, respectively. All of
them are greater than zero. So we have >P 01 . According to
Theorem 2.1, let

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

− −

− −
− −

−P M PN
0.2318 0.5919 0.1222 1.0263
0.2531 0.3857 0.009 0.1564
0.072 0.0412 0.1666 0.4464
0.2501 0.0876 0.3962 1.1719

,

T 1

then, from (2) and (3), we have

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

−
−

− −
− −

E P P E
0.3592 0.3805 0.072 0.1227
0.3805 1.3581 0.0412 1.06
0.072 0.0412 0.1666 0.4464
0.1227 1.06 0.4464 2.0755

,

T T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

=

− − −
− − −

− −
− −

A P P A

1.4394 0.723 0.3732 1.0084
0.723 0.986 0.1605 1.0467

0.3732 0.1605 1.558 3.4707
1.0084 1.0467 3.4707 9.3992

.

T T

From Example 4.3, we can see that both the matrices E PT and

+A P P AT T are symmetric. The eigenvalues E PT are 2.8957, 0.9425,
Please cite this article as: Zhang X, Chen Y. A solid criterion based on
continuous singular systems. ISA Transactions (2017), http://dx.doi.o
0.1212 and 0, respectively. The eigenvalues of +A P P AT T are
-10.9286, -1.9737, -0.4185 and -0.0619, respectively. So we have

≥E P 0T and + <A P P A 0T T . From the simulation result it means
matrix P also satisfies with Eqs. (2) and (3).
4.3. Stabilization of singular systems

The following example is an alternative counterexample like
Example 3.1 which conflicts with Lemma 3.1.

Example 4.4. Consider System (1) with parameters as follows:

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

=
−

− =
−

−

E

A B

1 0 0
0 1 0
0 0 0

,

2 0 3
0 1 0
0 1 0

,
2 0

0 1
0 3

It is easy to verify the system is not regular, has impulse mode and
is unstable. In order to use Lemma 3.1, we first use matlab com-
mand

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥= ( ) =S Enull

0
0
1

,

which is with full column rank and satisfies =ES 0. By solving the
LMIs (13) in Lemma 3.1, we can obtain

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥Ω

= >

= −

=
− −

= + =
−

P

Q

Y

PE SQ

444.8246 0 0
0 401.0714 0
0 0 444.8246

0,

10 3.5451 0 0 ,

5.3732 0 0
0 0.0162 0.0075

,

10
0.0445 0 0

0 0.0401 0
3.5451 0 0

.T

4

4

From Lemma 3.1, as Ω is singular, in order to find stabilizing
state feedback controller for System (1), we need to involve an-
other matrix P̄ which satisfies the following non-strict LMI with
equality constraint (14). In this example, Eq. (13) does not work
and fails to conclude whether closed-loop System (12) is ad-
missible or not by the criteria in Lemma 3.1. Although the feasible
solution of Equation (13) is not unique, but whenever singularity
of Ω arises in the computer simulation, the approach in Lemma 3.1
is incapable of action. Lemma 3.1 assumes that Ω is nonsingular (if
this is not the case, then one can choose some θ ∈ ( )0, 1 such that

Ω Ω θ^ = + P̄ is nonsingular and satisfies (13), in which P̄ is any

nonsingular matrix satisfying ¯ = ¯ ≥EP P E 0T T , in this case a non-
strict LMI with equality constraint is involved).

However this example can be perfectly and completely solved
by the approaches presented in Theorem 3.1. Using the standard
command ’feasp’ in MATLAB LMI control toolbox to solve for LMI
feasibility problems of LMI (15) in Theorem 3.1, the feasible solu-
tion can be highly and effectively obtained. Detailed algorithm
refers to in the program of the Appendix. Therefore we get the
feasible solution in detail as follows:
strict LMI without invoking equality constraint for stabilization of
rg/10.1016/j.isatra.2017.08.022i
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Fig. 3. The closed-loop singular system in Example 4.4.

X. Zhang, Y. Chen / ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

=
−

= − −
− −

= − −
− −

P

Q

K

444.8246 0 0
0 401.0714 0

346.1933 7.4544 222.4123
,

36.7408 4.9696 285.1651
32.3022 162.2516 74.7451

,

1.0805 0.0362 1.2821
0.3342 0.4108 0.3361

.

With the control gain matrix K obtained in Example 4.4, we can
draw the state curves of the closed-loop system in Example 4.4
shown as in Fig. 3. It is easy to see that although the open loop
singular system is unstable and is not impulse free, by Fig. 3, the
closed-loop singular system is admissible and it can be stabilized
by the control law (16) in about 5 s. Compared with the result in
Lemma 3.1 (Theorem 3.1 in [10] and Theorem 2 in [11]), from
Examples 3.1 and 4.1 it is shown that Theorem 3.1 works effec-
tively even when Lemma 3.1 does not work.

From Example 4.4, it is easy to conclude that the stabilization
criterion (Theorem 3.1) of strict LMI algorithm without invoking
equality constraint for singular systems is effective and easy to
operate.
5. Conclusions

This paper considers new criteria for stability and stabilization
of continuous singular systems in light of strict LMIs, that is, de-
finite and adjective parameter free criteria without equality con-
straint. The Pi matrices constituted with the conditions in
Theorems 2.1 and 3.1 depend only on the matrix E not on A and B.
The LMIs in the criteria are much more effective and reliable,
specially in the case that the other approaches become invalid. The
similar fruits of robust stabilization, H2 control, ∞H control and
stabilization with time delay of linear time-invariant uncertain
singular systems with strict LMIs can also be expanded by the
same approaches as in Theorem 3.1. The conditions can also be
extended to singular fractional order systems.
Appendix

The main LMI simulation formulation of Theorems 2.1 and 3.1
is listed as follows.
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= ( ) = ( )
= ([ ( )]) = ( + * )

= ( )′ = ([ ( )])
= ( + * )′
= * * = *

([])
[ ] = ( [ ])
[ ] = ( [ − ])
[ ] = ( [ − ])
[ ] = ( [ …

( ( ) − ( )) ])
= ( [ ( ) ( )])

([ − ] )
([ ] ′ ′)
([ ] ′ ′)
([ − ] ′ ′)

n size B, 1 ; m rank E ;
op rref E, eye n ; M op : , n 1: 2 n ;

y op : , 1: n ; z rref y, eye n ;
N z : , n 1: 2 n ;
A M A N; B M B;
setlmis ;
X1, n1, sX1 lmivar 1, m1 ;
X2, n2, sX2 lmivar 2, n mm ;
X3, n2, sX3 lmivar 1, n m1 ;
X, n1, sX lmivar 3, sX1,

zeros m 1 , n m 1 ; sX2, sX3 ;
Y lmivar 2, n 2 , n 1 ;
lmiterm 111X1 , 1, 1 ;
lmiterm 211X , A, 1, s ;
lmiterm 211Y , B, 1, s ;
lmiterm 311X3 , 1, 1, s
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