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Abstract— In this paper, we shall discuss the problem of
regional detection of unknown source in a sub-diffusion process.
The notions of sources, detection and regional strategic/spy
sensors are introduced and the relationships between regional
spy sensors and regional strategic sensors in a sub-diffusion
process are explored. Moreover, we show, using an extension of
the Hilbert Uniqueness Methods approach, how to reconstruct
a regionally detectable source for the time fractional diffusion
system based on the output functions. An example is given in
the end to confirm our results.

Index Terms— Regional detection; sources; sensors; sub-
diffusion process; time fractional diffusion systems

I. INTRODUCTION

Recently the environmental problems, especially the pol-
lution problems have drawn increasing attention due to those
past natural disasters and their risks [1], [2]. Moreover,
for the pollution problems, people often worry about their
expansion and are aware that their danger will increase
if the source is still unknown. As cited in [3] (see also
Definition 1 below), a source can be characterized by three
parameters according to its (pointwise, zone, boundary, fixed
or moving), intensity and life duration. The source can be
regarded as an unknown control to be detected by sensors. In
addition, by [4], [5], we see that the time fractional diffusion
systems can be used to well describe those sub-diffusion
processes, which offer better performance not achievable
before using conventional diffusion systems and surely raise
many potential research opportunities at the same time. So in
this paper, we shall study the problem of regional detection
of unknown sources in the sub-diffusion system, which can
be considered as an extension of the previous work (see [3],
[6] and [7] for example).

It is well known that for diffusion system, in general,
not all the sources can be detected in the whole domain of
interest. Then here we try to introduce the notion of regional
detection of unknown sources, where we are interested in the
detection and reconstruction of a source only in a subregion
of the whole domain. As it will be shown, the idea of regional
detection can significantly save energy resources. Moreover,
it is easier to detect a source in a subregion even if for those
cases where we have a possibility to detect whole domain.

1School of Computer Science, China University of Geosciences, Wuhan
430074, PR China (Email: gefd@cug.edu.cn)

2Hubei Key Laboratory of Intelligent Geo-Information Processing, China
University of Geosciences, Wuhan 430074, PR China

3Mechatronics, Embedded Systems and Automation Lab,
University of California, Merced, CA 95343, USA (Email:
ychen53@ucmerced.edu)

4Department of Applied Mathematics, Donghua University, Shanghai
201620, PR China (Email: kouchunhai@dhu.edu.cn)
∗ Corresponding author

To the best of our knowledge, no result is available on this
topic. We hope that the results here could provide some
insights into the qualitative analysis of the study of fractional
diffusion systems.

The rest of this paper is organized as follows. The second
section is devoted to the mathematical concepts of source
and detection. The third section is focused on the regional
strategic sensors, regional spy sensors and their relationships.
In Section 4, our main results on the reconstruction of a
regionally detectable source from the output equation for
the time fractional diffusion system is obtained by using an
extension of the Hilbert Uniqueness Methods approach. An
application is worked out in the end to illustrate our obtained
results.

II. DEFINITION: PRELIMINARIES

In this section, we shall introduce the notions of sources,
detection and some preliminary results, which play key role
to obtain our main results.

A. Sources

Let Ω be an open bounded subset of Rn with smooth
boundary ∂Ω and we state the following definitions of a
source.

Definition 1: [3] A source S is characterized by a triplet
(Σ,g, I), where

1) Σ(·) : t ∈ I→ Σ(t)⊆Ω represents the support of source
that maybe vary in time t;

2) g(t, ·) : ξ ∈ Σ(t) → g(t,ξ ) defines the intensity of
source in ξ at time t;

3) I = {t : g(t, ·) 6= 0 on Σ(t)} denotes the support of g
and represents the life duration of source S;

Generally, it is supposed that I := [0,b]. In particular, if I
is a union of several intervals, we say that the studied system
is excited by consecutive sources. Moreover, note that if we
extend Σ and g of (Σ,g, I) as follows

g(t, ·) =
{

g(t, ·) on I
0 else and Σ(t) =

{
Σ(t) on I
/0 else, (1)

we get that (Σ,g, I) is well defined on whole I.
A source S is said to be pointwise (respectively, zone) if

its support Σ(t) is reduced to a single point (respectively,
a region) of Ω for all t in I. This is the case of a moving
pointwise (respectively, zone) source. The source is said to
be fixed if Σ is not depending on time, which may be a zone
or pointwise. Moreover, it is obvious that a source can be
on the boundary (Σ(t)⊆ Γ, ∀t ∈ I), and in this case, we can
define the similar pointwise/zone fixed or moving boundary
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sources. Finally, we note that when discussing the detection
problem, the pointwise fixed source defined as Σ(t) = {σ} ∈
Ω is usually used.

B. Detection

Let us consider the following time fractional diffusion
system{

0Dα
t y(t) = Ay(t)+S(t), t ∈ I, 0 < α ≤ 1,

lim
t→0+

0I1−α
t y(t) = y0,

(2)

where S = (Σ,g, I) is a source supposed to be unknown,
A is the infinitesimal generator of a strongly continuous
semigroup {Φ(t)}t≥0 in the Hilbert space L2(Ω) and y0 ∈
L2(Ω). In addition, y∈ L2(0,b;V ), where V is a Hilbert space
such that

V ∗ ⊆ L2(Ω)⊆V

with continuous injections (V ∗ is the dual of V ). Here 0Dα
t

and 0Iα
t denote the Riemann-Liouville fractional derivative

and integral respectively, given by [8], [9]

0Dα
t y(t) =

∂

∂ t 0I1−α
t y(t), 0 < α ≤ 1 and

0Iα
t y(t) =

1
Γ(α)

∫ t

0
(t− s)α−1y(s)ds, α > 0.

The output function is given as follows

z(t) =Cy(t), (3)

where C ∈ L
(
L2(0,b;V ),L2(0,b;Z)

)
and Z is a Hilbert

space.

Definition 2: A source S is said to be detectable provided
that it can be reconstructed from the system (2) and the
output function (3).

Note that the detection of the source can be done by
neglecting its life duration, here only consider the source
as a couple (Σ,g). Denoted E the set of such sources, one
has

E ⊆F (0,b;P(Ω))×F (0,b;V ) , (4)

where P(Ω) is the set of parts of Ω, F (0,b;∗) is the space
of functions f : [0,b]→ ∗ and here E may be considered
as a vector space with convenient scalar product operations.
By Definition 2, it is not difficult to see the following remark.

Remark 1: A source S is said to be detectable on I if the
knowledge of system (2), together with the output function
(3) is sufficient to guarantee that the operator

Q : S ∈ E → z ∈ L2(0,b;Z) (5)

is injective, where z is the observation corresponding to
source S.

However, in practice, the reconstruction of all parameters
of a source seems to be difficult (or impossible). Then here
we only detect some parameters of source. This is to say that
the source is regionally detectable.

Let ω be a non-empty, not necessarily connected subregion
of Ω. Consider the subspace

Eω = {(Σ,g) ∈ E : Σ(t)⊆ ω, ∀t ∈ I} (6)

and the operator

Qω : S ∈ Eω → z ∈ L2(0,b;Z), (7)

now we are ready to state the following definition.

Definition 3: A source S is called to be ω−detectable on
[0,b] if the knowledge of system (2), together with output
function (3) is sufficient to guarantee that Qω is injective.

Remark 2: If

ω1 ⊆ ω2 ⊆Ω with Σ(t)⊆ ω1, (8)

then we get that the source is ω1−detectable provided that
it is ω2−detectable

III. REGIONAL STRATEGIC SENSORS AND REGIONAL SPY
SENSORS

The aim of this section is to explore the notion of regional
strategic sensors, regional spy sensors and the relationships.

A. Regional strategic sensors

In this part, let us consider the following autonomous
system

0Dα
t y(t) = Ay(t), t ∈ I,

lim
t→0+

0I1−α
t y(t) = y0 supposed to be unknown.

}
(9)

From [10], [11], it follows that

y(t) = tα−1Kα(t)y0(x), (10)

where

Kα(t) = α

∫
∞

0
θφα(θ)Φ(tα

θ)dθ , (11)

φα(θ) =
1
α

θ
−1− 1

α ψα(θ
− 1

α ) and (12)

ψα :=
1
π

∞

∑
n=1

(−1)n−1
θ
−αn−1 Γ(nα +1)

n!
sin(nπα) (13)

is a probability density function such that [10], [12]∫
∞

0
ψα(θ)dθ = 1 and

∫
∞

0
θ

ν
φα(θ)dθ =

Γ(1+ν)

Γ(1+αν)
, (14)

ν ≥ 0. Then the output function becomes

z(t) =Cy(t) = K(t)y0, (15)

where K(t) :=Ctα−1Kα(t).
Let pω : L2(Ω) → L2(ω) defined by pω y = y|ω is the

projection operator in ω and

p∗ω y(x) :=
{

y(x), x ∈ ω,
0, x ∈Ω\ω (16)

is its adjoint operator. We now give the following definition.
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Definition 4: [13], [14] The system (9) with (15) is said
to be ω−weakly observable if

Ker (K p∗ω) = {0}. (17)
Moreover, to state our main results, it is supposed that the

measurements are made by p sensors (Di, fi)1≤i≤p and then
the out function becomes

z(t) =
(
( f1,y(t))L2(D1)

, · · · ,( fp,y(t))L2(Dp)

)T
, (18)

where t ∈ I and (·, ·)L2(Ω) is the inner product of space
L2(Ω). We then see the following definition.

Definition 5: Sensors (Di, fi)1≤i≤p are said to be
ω−strategic if the system (9) + (18) is ω−weakly
observable.

Moreover, for operator A, assume that we can find a
sequence (λ j,ξ jk) : k = 1,2, · · · ,r j, j = 1,2, · · · such that
• For each j = 1,2, · · · , λ j is the eigenvalue of A with

multiplicities r j and

0 > λ1 > λ2 > · · ·> λ j > · · · , lim
j→∞

λ j =−∞.

• For each j = 1,2, · · · , ξ jk (k = 1,2, · · · ,r j) is the or-
thonormal eigenfunction corresponding to λ j, i.e.,

(ξ jkm ,ξ jkn)L2(Ω) =

{
1, km = kn,
0, km 6= kn,

where 1≤ km,kn ≤ r j, km,kn ∈ N.
We are now ready to state the following result.

Theorem 1: Define p× r j matrices G j as

G j =


ξ 1

j1 ξ 1
j2 · · · ξ 1

jr j

ξ 2
j1 ξ 2

j2 · · · ξ 2
jr j

...
...

...
...

ξ
p
j1 ξ

p
j2 · · · ξ

p
jr j


p×r j

, (19)

where ξ i
jk = (ξ jk, fi)L2(Di)

, i = 1,2, · · · , p and k = 1,2, · · · ,r j.
Then the sensors (Di, fi)1≤i≤p are ω−strategic if and only if

p≥ r = max{r j} and (20)
rank G j = r j for all j = 1,2, · · · . (21)

Proof. It follows from Definition 4 that the sensors
(Di, fi)1≤i≤p are ω−strategic if and only if

Ctα−1Kα(t)p∗ω y = 0⇒ y = 0, ∀y ∈ L2(ω).

Moreover, by [11], we see that

αE2
α,β = Eα,β−1− (1+α−β )Eα,β , (22)

where

Eµ

α,β (z) :=
∞

∑
n=0

(µ)n

Γ(αn+β )

zn

n!
,z ∈ C,α,β ,µ ∈ C,Re α > 0

is known as the generalized Mittag-Leffler function in three
parameters. In particular, when µ = 0, write E0

α,β (z) =

Eα,β (z) for short and when µ = 0, β = 1, write Eα,1(z) =
Eα(z) for short.

Then we have

Kα(t)p∗ω y

= α

∫
∞

0
θφα(θ)Φ(tα

θ)p∗ω ydθ

= α

∫
∞

0
θφα(θ)

∞

∑
j=1

r j

∑
k=1

exp(−λ jtα
θ)(p∗ω y,ξ jk)ξ jk(x)dθ

=
∞

∑
j=1

r j

∑
k=1

αE2
α,α+1(−λ jtα)(p∗ω y,ξ jk)ξ jk(x)

=
∞

∑
j=1

r j

∑
k=1

Eα,α(λ jtα)(p∗ω y,ξ jk)L2(Ω)ξ jk.

Consequently, the necessary and sufficient condition for
strategic sensors (Di, fi)1≤i≤p is that

∞

∑
j=1

r j

∑
k=1

tα−1Eα,α(λ jtα)ξ i
jk(p∗ω y,ξ jk)L2(Ω) = 0,

for all i = 1,2, · · · , p can imply

y = 0 on L2(Ω), (23)

i.e.,

∞

∑
j=1

Eα,α(λ jtα)

t1−α
G j(p∗ω y,ξ jk)L2(Ω) = θ := (0, · · · ,0) ∈ Rp (24)

can imply

y = 0. (25)

Finally, since Eα,α(λ jtα)> 0 for all t ≥ 0, j = 1,2, · · · , we
then show our proof by using the Reductio and Absurdum.

(a) Necessity. If p ≥ r = max{r j} and rank G j <
r j for some j = 1,2, · · · , then we can find a element ỹ ∈
L2(Ω), ỹ 6= 0 satisfying

G j(p∗ω ỹ,ξ jk)L2(Ω) = 0. (26)

Thus, there exists a nonzero element ỹ ∈ L2(Ω) satisfying

∞

∑
j=1

tα−1Eα,α(λ jtα)G j(p∗ω ỹ,ξ jk)L2(Ω) = θ , (27)

which implies that the sensors (Di, fi)1≤i≤p are not
ω−strategic.

(b) Sufficiency. If the sensors (Di, fi)1≤i≤p are not strate-
gic, by Definition 5, we can find a element ŷ 6= 0, ŷ ∈ L2(Ω)
such that

G j∗(p∗ω ŷ,ξ j∗k)L2(Ω) = 0 (28)

for some j∗ = 1,2, · · · . Consequently, if p≥ r = max{r j}, it
is sufficient to see that rank G j∗ < r j. The proof is complete.
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Fig. 1. The relationship between detection problem and observation
problem

B. Regional spy sensors

Consider the system (2) and suppose that the measure-
ments are given by p sensors (Di, fi)1≤i≤p, in this case, the
out function z(t) corresponding S becomes

z(t) = (z1(t),z2(t), · · · ,zq(t))
T ∈ Rp, t ∈ I, (29)

where

zi(t) =
∞

∑
j=1

r j

∑
k=1

Eα,α (λ jtα )

t1−α (ξ jk,y0)L2(Ω)ξ
i
jk

+
∞

∑
j=1

r j

∑
k=1

∫ t
0

Eα,α (λ j(t−τ)α )

(t−τ)1−α (S(τ),ξ jk)L2(Ω)dτξ i
jk

(30)

and ξ i
jk = (ξ jk, fi)L2(Di)

. Now we state the following
definition on regional spy sensors, which may lead to
numerous problems and pose challenging research topics.

Definition 6: Sensors are said to be ω−spy sensors if they
can detect any unknown sources in Eω ⊆ E .

C. The relationships between ω−spy sensors and
ω−strategic sensors

Fig.1 shows that the detection problem and observation
problem are different, which leads immediately to the differ-
ence between ω−strategic sensors and ω−spy sensors.

Lemma 1: Strategic (ω−strategic) sensors are spy
(ω−spy) sensors, while the converse is not true.
Proof. Based on the conclusion that S→ y(t) is injective but
not surjective in [13] (see also in [14]), it is not difficult to
see that if sensors are ω−strategic, they are ω−spy sensors,
while the converse fails. Here ω may be whole domain.
The proof is finished.

Moreover, considering that (2) is a line system, based
on the Proposition 3.1 in [15], it suffices to assume that
y0 = 0 in the following discussion. In particular, if we, for
example, consider a zone persistent sorce S = (Σ,g, I) ∈ Eω .
When g ∈ S and g ∈ L2

(
0,+∞;L2(Ω)

)
, we can obtain the

following result.

Theorem 2: Suppose that g∈ S and g∈ L2
(
0,+∞;L2(Ω)

)
.

Then (Di, fi)1≤i≤p are ω−spy sensors if and only if they are
ω−strategic sensors.
Proof. If the sensors (Di, fi)1≤i≤p are ω−strategic, it then
follows from Lemma 1 that they are ω−spy sensors.

Conversely, if the sensors (Di, fi)1≤i≤p are not
ω−strategic, by Theorem 1, we can find an element
ŷ 6= 0, ŷ ∈ L2(ω) such that for some j∗ = 1,2, · · · ,
r j

∑
k=1

ξ
i
j∗k(p∗ω ŷ,ξ j∗k)L2(Ω) = 0 holds for all i = 1,2, · · · , p.

Moreover, by Definition 6, the necessary and sufficient
condition to the ω−spy sensors (Di, fi)1≤i≤p is that for any
unknown sources S ∈ Eω ⊆ E , the operator

Qω :
Eω → L2(0,b;Z)
S→ z(t) =Cy(t) = (z1(t),z2(t), · · · ,zq(t))

T ∈ Rp (31)

is injective, where

zi(t) =
∞

∑
j=1

r j

∑
k=1

∫ t

0

Eα,α(λ j(t− τ)α)

(t− τ)1−α
ξ

i
jk(S(τ),ξ jk)L2(Ω)dτ,

i = 1,2, · · · , p. Then we see

Qω p∗ω ŷ = 0 and ŷ 6≡ 0. (32)

Therefore, since S ∈ Eω and g ∈ L2
(
0,+∞;L2(Ω)

)
, let

ĝ = g+ p∗ω ŷ,

one has

Qω Ŝ = Qω S, (33)

where Ŝ is the source having ĝ as its intensity. This means
that (Di, fi)1≤i≤p are not ω−spy sensors and the proof is
finished.

Remark 3: The obtained results can be extended to the
cases of pointwise or boundary sensors.

IV. RECONSTRUCTION OF A REGIONALLY DETECTABLE
SOURCE

In this section, we show how to reconstruct a source S ∈
Eω under the hypothesis that the system studied is regionally
detectable.

Consider again system (2) and the output (3), suppose that
operator Qω is injective. Then the semi-norm defined by

‖S‖Fω
= ‖Qω S‖L2(0,b;L2(Ω)), S ∈ Eω (34)

is a norm. So Fω := Eω is a Hilbert space with the inner
product

〈S1,S2〉Fω
= 〈Qω S1,Qω S2〉L2(0,b;L2(Ω)) . (35)

Consider the operator Λω : Fω → F∗ω as follows

Λω S = Q∗ω Qω S

=
∞

∑
j=1

r j

∑
k=1

∫ T
·

 Eα,α (λ
∗
j (r−·)

α )

(r−·)1−α C∗C×∫ r
0

Eα,α (λ j(r−τ)α )

(r−τ)1−α S jk(τ)dτ

drξ i
jk,

(36)

where S jk(τ) = (S(τ),ξ jk)L2(Ω), Q∗ω is the adjoint operator
of Qω . One then has the following result.

Lemma 2: Λω has a unique extension as an isomorphism
from Fω into its dual F∗ω .
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Proof. It follows from Eq. (41) and (36) that

〈Λω S1,S2〉L2(0,b;L2(Ω)) = 〈S1,S2〉Fω
. (37)

Then if we consider the linear mapping

Λ
S1
ω :

Eω → R
S2→ 〈Λω S1,S2〉L2(0,b;L2(Ω)) ,

(38)

we get that∣∣∣∣〈Λ
S1
ω S1,S2

〉
L2(0,b;L2(Ω))

∣∣∣∣≤ ‖S1‖Fω
‖S2‖Fω

.

Therefore, Λ
S1
ω is a continuous operator and has a unique

extension to Fω . Then Λ
S1
ω S1 ∈ F∗ω and

‖ΛS1
ω ‖F∗ω = ‖S1‖Fω

, ∀S1 ∈ Eω . (39)

Moreover, by (39), the linear operator Λω : Fω → F∗ω is a
continuous operator from Fω and then can be extended to Fω .
Hence, from Eq. (37) and (39), we get that Λω : Fω → F∗ω
is an isomorphism. The proof is finished.

Now we are ready to state the following theorem.

Theorem 3: If Qω is injective, the source S is obtained
from the corresponding observation z as the unique solution
of the equation

Λω S = Q∗ω z. (40)
Proof. From the argument above, we get that if Qω is
injective, then ‖S‖Fω

is a norm and Fω = Eω is a Hilbert
space with the inner product

〈S1,S2〉Fω
= 〈Qω S1,Qω S2〉L2(0,b;L2(Ω)) . (41)

Based on the Theorem 1.1 in [16], to complete our proof,
we only need to show that Λω is coercive operator, i.e., there
exists a positive constant γ such that

〈Λω S,S〉Fω
≥ γ‖S‖2

Fω
, ∀S ∈ Fω . (42)

In fact, for any S ∈ Fω , we have

〈Λω S,S〉Fω
= 〈Q∗ω Qω S,S〉Fω

= 〈Qω S,Qω S〉L2(0,b;L2(Ω))

= ‖S‖Fω
.

(43)

Then (40) has a unique solution, which is also the unique
solution of the source. The proof is complete.

V. AN EXAMPLE

Let Ω = [0,1], ω ⊆Ω and consider the following system
0Dα

t y(x, t) = ∂ 2

∂x2 y(x, t)+g(t,η) in Ω× [0,b],
y(0, t) = y(1, t) = 0 on [0,b],
lim

t→0+
0I1−α

t y(x, t) = 0 in Ω,
(44)

where g is the extensity of the source S = (Σ,g, I). For
Laplace operator 4 = ∂ 2

∂x2 y(x, t), ξi(x) =
√

2sin(iπx) is the
orthonormal basis of 4 corresponding the eigenvalue λi =
−i2π2. Then we have

z(t) =Cy(t)

=C
∞

∑
i=1

∫ t
0 (t− τ)α−1Eα,α(λi(t− τ)α)(g(τ,η),ξi)L2(Ω)dτξi.

Assume that the source S is a zone sensor and independent
of time, then we have g(t,η) ≡ g(η), ∀η ∈ ω . Moreover,
suppose that the system (44) is observed by an ω− spy
sensor (D, f ) in Ω. In this case, we get that the operator Qω

is injective and given by

(Qω S)(t)

=
∞

∑
i=1

∫ t
0

Eα,α (λi(t−τ)α )

(t−τ)1−α (g(t),ξi)L2(ω)dτ (ξi, f )L2(D).
(45)

By Theorem 2, we see that if g in Eq. (45) satisfying g ∈
L2
(
0,+∞;L2(Ω)

)
, then (D, f ) is ω−strategic sensor.

Moreover, since the adjoint operator of Qω is

(Q∗ω z)(t)

=
∞

∑
j=1

∫ T
t

Eα,α (λ j(r−t)α )

(r−t)1−α z(r)dr (ξ j, f )L2(D)pω ξ j.
(46)

We get that

(Λω S)(t)

=
∞

∑
j=1

∞

∑
i=1

(∫ T
t
∫ r

0
Eα,α (λ j(r−t)α )

(r−t)1−α

Eα,α (λi(r−τ)α )

(r−τ)1−α (g(r),ξi)L2(ω)dτdr
)

× (ξi, f )L2(D)(ξ j, f )L2(D)pω ξ j.

Then by Lemma 2, Λω has a unique extension as an
isomorphism from Fω := Eω into its dual F∗ω . Moreover, it
follows from Theorem 3 that the source S can be obtained
from the corresponding observation z as the unique solution
of the equation Λω S = Q∗ω z.

VI. CONCLUSIONS

The aim of this paper is to discuss an extension of the
results in [3], [7] on the detection of distributed param-
eter systems. Here we mainly investigate the problem of
regional detection for sub-diffusion process, which is used
to characterize those unknown source. The characteristic
of regional strategic/spy sensors, their relationships and the
reconstruction of a regionally detectable source are explored.
This situation occurs in many practical systems where we
may be concerned with the knowledge of the state only in a
critical subregion.

Moreover, the results presented here can be extended to
more complex fractional order distributed parameter systems.
For instance, the problem of spy sensors configurations of
time-space fractional diffusion systems are of great interest.
For more information on those potential topics, please refer
to [17].
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