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An Iterative Learning Approach to Identify

Fractional Order KiBaM Model
Yang Zhao, Yan Li, Fengyu Zhou, Zhongkai Zhou, and Yangquan Chen, Senior Member, IEEE

Abstract—This paper discusses the parameter and differenti-
ation order identification of continuous fractional order KiBaM
models in ARX (AutoRegressive model with eXogeneous inputs)
and OE (Output Error model) forms. The least squares method is
applied to the identification of nonlinear and linear parameters,
in which the Grünwald-Letnikov definition and short memory
principle are applied to compute the fractional order derivatives.
An adaptive P-type order learning law is proposed to estimate
the differentiation order iteratively and accurately. Particularly,
a unique estimation result and a fast convergence speed can be
arrived by using the small gain strategy, which is unidirectional
and has certain advantages than some state-of-art methods. The
proposed strategy can be successfully applied to the nonlinear
systems with quasi-linear characteristics. The numerical simula-
tions are shown to validate the concepts.

Index Terms—Fractional calculus, KiBaM model, system iden-
tification, iterative learning identification.

I. INTRODUCTION

DYNAMIC system identification which deals with set-
ting up mathematical models to represent input-output

relationships has attracted considerable research interest from
engineering and science. For nonlinear dynamic systems iden-
tification, numerous real applications exist such as neural
networks [2], fuzzy logic [3], kernels models [4], multi-
models [5], and the well known block-oriented KiBaM model
[6]. Although the introduction of KiBaM model dates back
to the 1960’s [7], with its structural simplicity and quasi-
linear properties, its identification is still an active area of
research [8]-[9]. The model has been effective in several
practical application fields, such as pH neutralization process
[10], RF amplifiers technology [11], biological systems [12],
physiology [13], acoustics [14] and identification of nonlinear
systems [15]. To date, many algorithms were elaborated for
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the identification of the KiBaM system, for instance, the over-
parameterization method [16], the stochastic method [17], the
least squares approach [6], the blind method [15], the subspace
method [18] and so forth. All the methods have their superi-
ority and effectiveness and limitations in finding the desir-
able parameters. Well-established strength of fractional-order
system characterization and identification looks a promising
alternative to be merged into this domain.

As a generalization of traditional calculus, fractional cal-
culus has witnessed a growing development in various fields
in the past few decades [19]-[21]. It also shows that some
unique characteristics of fractional order operator, for instance
hereditary, have given great advantages in describing real
dynamic systems more accurately. Identification of fractional
order systems was initiated in the late nineties [22]-[23].
The fractional order models have been utilized for a wide
spectrum of physical systems including thermal diffusion [24],
viscoelastic materials [25], lithium-ion batteries [26], crowd
of pedestrians [27] as well as electrical circuit [28], etc. In
view of the present achievements on modeling of fractional
order systems, different types of fractional order nonlinear
models have been proposed. Boroomand et al. [29] applied a
generalized capacitor whose voltage and current are related by
the fractional-order differential equation to propose a fractional
order Hopfield neural network. Extended Volterra series to
fractional order models, [30] estimates the thermal system
for large temperature variations. Fractional multi-models were
proposed to model heat diffusion process [31] and gastrocne-
mius muscle structure [32].

Since 1994, the ubiquitous of fractional order capacitors
has become the new norm that opens a new era of fractional
calculus and its engineering applications [33]. In the 21st
century, a series of fundamental researches [34] points out
that ion batteries are also fractional order ones due to the
anomalous diffusion in different parts inside the battery. For
example, the fractional order of Warburg impedance (constant
phase element) are about 0.5 for many Li-ion batteries. This
fact of fractional order battery, super capacitor or ion battery,
has become more and more clear in various levels covering
atomic scale and external characteristics [35]. The accurate
modeling of battery is a key factor to battery states estimations
and simulation, thus fractional order modeling undoubtedly
becomes cutting edge. It should be noted that the model
structure of batteries usually is a single-input single-output
system, where the linear part can be determined by impedance
spectroscopy analysis. Besides, the nonlinearity of battery can
be successfully described by using the KiBaM structure [36]
that represents temporary and available capacities. Given
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the structural information, all parameters are expected to be
identified approximately or accurately by using part of input-
output data.

In this paper, we will focus on the problem of complete
parametric identification of commensurate fractional order
KiBaM model which is assumed to be a quasi-linear one.
The remainder of this paper is organized as follows: Some
mathematical preliminaries are introduced in Section II. Sec-
tion III presents the proposed solution in details. Section IV
is devoted to testify the proposed method with simulation
examples. Finally, we conclude this paper with some remarks
on future research.

II. PRELIMINARIES

A. Fractional Calculus

Fractional calculus [37], [38] is the general expression of
calculus, which plays an important role in modern science.
There are several commonly used definitions for fractional
derivatives, such as the Grünwald-Letnikov(GL) definition,
Riemann-Liouville(RL) definition and Caputo definition.

The GL fractional derivative of continuous function f(t) is
defined as

t0D
α
t f(t) = lim

h→0

1
hα

[ t−a
h ]∑

j=0

ω
(α)
j f(t− jh),

ω
(α)
j =

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

,

and the discrete GL form is:

t0Dt
αf(t) ≈ ∆α

hf((k + 1)h)

=
1
hα

k+1∑

j=0

(−1)j

(
α

j

)
f((k + 1− j)h). (1)

In this equation, α ∈ R is the fractional order, t0 is the initial
time instant, t is the current time, h ∈ R is the sampling period
or time increment. The term

(
α
j

)
is calculated by

(
α

j

)
=

{
1 j = 0,
α(α−1)···(α−j+1)

j! j > 0,

where t−t0
h represents a truncation.

Remark 1: The short memory principle is employed to
obtain the approximate solutions for the differential equation
of fractional order.

t0D
α
t f(t) ≈t−L Dα

t f(t), (t > a + L). (2)

The above equation denotes that we consider behaviour of f(t)
only for the “recent past”, i.e. in the interval [t−L, t], where
L is the “memory length”.

B. Identification Problem Statement

Two continuous-time KiBaM models are considered which
are shown in Fig.1 [39]. The stimulation input u is firstly
scaled by the static nonlinear function f and then passed to
a linear time-invariant system described by a fractional order
transfer function G(p) = B(p)/A(p). The internal signal w is

not measurable and the noise v is white noise. The difference
between the two KiBaM models lies in the form of the noisy
part. In Fig.1(a), an Auto Regerssive External (ARX) model is
used, in which the noise filter H = 1/A(p) is coupled to the
linear component of the plant model. In Fig.1(b), an Output-
Error (OE) model is illustrated with H = 1.

Fig. 1. Two continuous-time KiBaM model structures: (a)ARX
model and (b) OE model, where f̂(u) = f(u, θ̂n).

The special class of linear systems considered in this paper
is of commensurate order α that is represented by the transfer-
function

G(p) =
B(p)
A(p)

=

r∑
i=0

bip
iα

1 +
h∑

j=1

ajpjα

. (3)

The given system can be approximated by rational transfer
functions of n zeros and m poles, depending on the order
of approximation. When model (3) is applied, the linear
parameter vector is composed of a vector of h + r + 1
coefficients,

θl =
[

θa

θb

]
= [ah, · · · , a1, br, · · · , b0]T .

The values of two positive integers r and h are assumed
to be known, pαk denotes the kαth fractional differentiator.
And the fractional orders α is allowed to be arbitrary positive
constants.

The nonlinear static characteristic function f(u) is known
up to a finite number of parameters β0, · · · , βm and is a
generalized polynominal

f(u) = β0 + β1u + β2u
2 + · · ·+ βmum. (4)

The nonlinear parameter vector is composed of a vector with
m + 1 coefficients

θn =
[

β0 β1 β2 · · · βm

]T
.

The physical meaning of θn is the diffusions in different
parts of battery, and the nonlinear part is corresponding to
the “buffer of electrons” relating to various working load and
electrode materials.

The identification problem is now defined as follows: given
the collected input/output data

((u(1), y(1)), . . . , (u(N), y(N))),
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find a parameter vector

θ =
[

θl

θn

]
= [ar, · · · , a1, bh, · · · , b0, β0, · · · , βm]T

that minimizes the cost function

‖v‖22 =
N∑

k=1

v2(k) (5)

where

1
Â(p)

v = y −G(p, θ̂l)f(u, θ̂n) = y − B̂(p)
Â(p)

f(u, θ̂n) (6)

in the case of the ARX noise model and

v = y −G(p, θ̂l)f(u, θ̂n) = y − B̂(p)
Â(p)

f(u, θ̂n) (7)

in the case of the OE noise model.
The models in Fig.1 have more names such as Hammerstein

model, Quasi-linear model, KiBaM model, etc. To improve
readability, some useful information can be found in [39].

C. Motivations of Fractional Order Modeling

A detailed modeling of all processes that may occur in
batteries is a mission impossible, or too complicated to warrant
the initial motivation. Until today, for engineers and electro-
chemists, the most widely used model of battery is based on
the so called equivalent circuit model that is made up of
ideal resistors, capacitors, inductances, perhaps memristors,
and possibly various element networks. In such a way, a
resistor can correspond to a conductive path, or even some
chemical steps. Similarly, capacitors and inductances represent
polarization, adsorption and electrocrystallization processes,
etc. Furthermore, the I/V characteristics, state estimations, and
simulations are also closely related to those equivalent circuits.
It should be noted that traditional circuit elements, such as
resistors and capacitors, are always considered as ideal ones.
But, all real resistors are of finite size, and involve some
inductance, capacitance, and time delay of response as well
as resistance. For capacitors, the ideal ones are universally
unexisted [33][40], and also contain side effects in certain
frequency ranges. Nevertheless, the above facts have not
impacted the extensive use of ideal equivalent circuits, because
some residual properties are unimportant over wide frequency
domains such as (jω)α or 1

1+(jω)α tends to a constant with
respect to ω →∞ or ω → 0 in spite of α = 1 or α ∈ (0, 1),
where α 6= 1 is nonideal but widely existed in reality. Now, we
cannot wait to show out the word “fractional order”, but before
that there are two more concerns relating, but in different ways,
to the extension of real batteries. The first is directly pointed
to the nonlocal property that can be easily observed in both
frequency and time domains, and in both micro- or macro-
scales [41]-[42]. The other one is associated with the constant-
phase element (CPE) that is related to the inhomogeneous
and anisotropic natures of materials, and represents some
physical and chemical properties of different batteries [43]-
[44]. Totally, nonideal, nonlocal and CPE can be finally and
uniformly defined as “fractional order” ones [45]-[46].

In engineering fields of batteries, which usually are power
batteries, the test, simulation and management systems in-
evitably involve dynamic characteristics, extreme situations,
true traffic conditions, etc that are far beyond the above
electrochemistry test that runs in a small region of interest. The
modeling of such nonlinearities is still cutting edge. Totally,
the modeling of electrochemical impedance spectroscopy is
non-destructive but only suitable for static situations; the iden-
tification method requires structural information and the esti-
mated parameters can maintain physical meanings if and only
if the effective structure is applied; the KiBaM model focuses
on the modeling of real-time condition, extreme situation, low
SOC of battery, where some physical meanings are omitted.
In this paper, allow for the ubiquitous nature of fractional
order battery and a number of external characteristics of power
batteries, such as the nonlinear capacity, the fractional order
KiBaM (FO-KiBaM) model and its parametric identification
are proposed that provide an efficient and practical strategy
to many power battery relevant fields. By doing so, the
advantages of equivalent circuits can be completely inherited,
and some nonlinear problems can be solved as well in this
scheme.

III. IDENTIFICATION ALGORITHM

The objective of this section is to identify the fractional
commensurate order continuous time KiBaM model. To start
the process, an initialization of the linear parameter and differ-
entiation order are first given so that the nonlinear parameters
can be estimated firstly. Then the linear parameters and the
system order can be renewed with the identified nonlinear
parameters, and so forth. The identification procedures are
shown in Fig.2.

A. Nonlinear Parameter Identification

Assume that an initial estimation of the linear parameter
vector θ̂l and differentiation order vector α̂ are available.
Then the nonlinear parameters can be identified by using the
following strategy.

1) ARX Model: Multiplying (6) by Â(p) and substituting
the resulting expression for v in (5) yields

θ̂n = arg min
θn

‖Â(p)y − B̂(p)f(u, θn)‖2. (8)

From (4), it follows that f(u, θn) is linear in θn, and hence

(B̂(p)f(u, θn))(k)

=β0 (b̂r + · · ·+ b̂0)︸ ︷︷ ︸
f0(u(k),θ̂b)

+β1 (b̂rp
αru(k) + · · ·+ b̂0u(k))︸ ︷︷ ︸

f1(u(k),θ̂b)

+ · · ·+ βm (b̂rp
αru(k)m + · · ·+ b̂0u(k)m)︸ ︷︷ ︸

fm(u(k),θ̂b)

.

Therefore, (8) can be rewritten as an ordinary least squares
problem

θ̂n = arg min
θn

‖Yn(y, θ̂a)− Φn(u, θ̂b)θn‖2, (9)

where assuming that h > r,
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Fig. 2. System parameters identification procedure.

Yn(y, θ̂a) =




âhpαhy(t1)+ · · ·+ y(t1)
âhpαhy(t2)+ · · ·+ y(t2)

...
. . .

...
âhpαhy(tN )+ · · ·+ y(tN )


 ,

and

Φn(u, θ̂b) =




f0(u(t1), θ̂b) · · · fm(u(t1), θ̂b)
f0(u(t2), θ̂b) · · · fm(u(t2), θ̂b)

...
. . .

...
f0(u(tN ), θ̂b) · · · fm(u(tN ), θ̂b)


 .

The solution of (8) is

θ̂n = (Φn(u, θ̂b)T Φn(u, θ̂b))−1Φn(u, θ̂b)T Yn(y, θ̂a). (10)

2) OE Model: Rewriting (7) as:

v = Â(p)
(

1
Â(p)

y
)
− B̂(p)

(
1

Â(p)
f(u, θn)

)

= Â(p)y∗ − B̂(p)f∗(u, θn).
(11)

where y∗ = 1
Â(p)

y and f∗(u, θn) = 1
Â(p)

f(u, θn).
Substituting (11) into (5) yields

θ̂n = arg min
θn

‖Â(p)y∗ − B̂(p)f∗(u, θn)‖2, (12)

and

(B̂(p)f∗(u, θn))(k)

=β0
1

Â(p)
(b̂r + · · ·+ b̂0)

︸ ︷︷ ︸
f∗0 (u(k),θ̂b)

+β1
1

Â(p)
(b̂rp

αru(k) + · · ·+ b̂0u(k))
︸ ︷︷ ︸

f∗1 (u(k),θ̂b)

+ · · ·+ βm
1

Â(p)
(b̂rp

αru(k)m + · · ·+ b̂0u(k)m)
︸ ︷︷ ︸

f∗m(u(k),θ̂b)

.

Therefore, (12) can be rewritten as the following matrix
equation

θ̂n = arg min
θn

‖Y ∗
n (y, θ̂a)− Φ∗n(u, θ̂b)θn‖2, (13)

where assuming that h > r,

Y ∗
n (y, θ̂a) =




âhpαhy∗(t1)+ · · · +y∗(t1)
âhpαhy∗(t2)+ · · · +y∗(t2)

...
. . .

...
âhpαhy∗(tN )+ . . . +y∗(tN )


 ,

and

Φ∗n(u, θ̂b) =




f∗0 (u(t1), θ̂b) · · · f∗m(u(t1), θ̂b)
f∗0 (u(t2), θ̂b) · · · f∗m(u(t2), θ̂b)

...
. . .

...
f∗0 (u(tN ), θ̂b) · · · f∗m(u(tN ), θ̂b)


 .

The solution of (8) is

θ̂n = (Φ∗n(u, θ̂b)T Φ∗n(u, θ̂b))−1Φ∗n(u, θ̂b)T Y ∗
n (y, θ̂a). (14)

B. Linear Parameters Identification

Given an estimation of θ̂n, the internal signal w can be
estimated as: w(k) = f(u, θ̂n)u(k), which is the input of
the linear system. Then the fractional order linear part can
be written as follows:

ahpαhyk + · · ·+ a1p
αyk + yk = brp

αrŵk + · · ·+ b0ŵk.

The above equation can be rewritten as



Yk

Yk−1

...




Yl

=




ϕ̂k

ϕ̂k−1

...




Ψl

θl, (15)

where

ϕ̂k =
[ −pαhytk

· · · − pαytk
pαrŵtk

· · · ŵtk

]
,

θ̂l =
[

ah · · · a1 br · · · b0

]T
, Yk = [ytk

] .

The estimated value of θ̂l can be calculated as

θ̂l = (Ψl
T Ψl)−1)Ψl

T Yl.
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C. Differentiation Order Estimation

After the above coefficient identification method, a general
and applicable iterative learning identification technique is
applied to differentiation orders by using the P-type order
learning law [47].

For systems (3) and (4), the linear and nonlinear coefficients
are derived from the above proposed identification methods
with the knowledge of αk−1. The order identification is to
estimate the value of α from the following P-type order
learning law

αk+1 , αk + Γkek(T ), (αk+1 ∈ [0, 1]), (16)

where , denotes

αk+1 =





0, (αk + Γkek(T ) < 0),
αk + Γkek(T ), (0 ≤ αk + Γkek(T ) ≤ 1),
1, (αk + Γkek(T ) > 1).

Theorem 1: For system (3)(4) and order learning law (16), it
can be proved that αd−αk → 0 monotonically if there exists
a ρ ∈ [0, 1) satisfying either of the following conditions:

C1: any Γk satisfying |1− ΓkΛk| ≤ ρ,
C2:{ ‖Γ̂k‖ · [max

αξ,αη

‖Λ̃k‖] ≤ 1 + ρ,

1 ≤ Γ̃kek−1(T ),
⇒ Γk =

Γ̃k

(−1)ksgn{δα0} ,

C3:{ ‖Γ̂k‖ · [max
αξ,αη

‖Λ̃k‖] ≤ 1,

1− ρ ≤ Γ̃kek−1(T ),
⇒ Γk =

Γ̃k

sgn{δα0} ,

where Λk, Λ̃k, Γ̂k, Γ̃k and the order learning gains Γk are
defined in the following proof, f is locally Lipschitz on yk

with Lipschitz constant K, and

‖Λ̃k‖ =
∫ T

0

(T−τ)αξ−1Eαξ,αξ
[K(T−τ)αξ ]

∥∥∥∥∥
∂εk(τ)

∂α

∣∣∣∣
α̃ξ

∥∥∥∥∥ dτ.

Proof 1: This proof is divided into two parts.
Part I:
It can be proved that

y
(αd)
d (t)− y

(αk)
k (t) = f(t, yd, ud)− fk(t, yk, ud)

⇔ ∂y
(α)
d (t)
∂α

∣∣∣∣
αξ

δαk + e
(αk)
k (t) = f(t, yd, ud)− fk(t, yk, ud),

where ek(t) = yd(t) − yk(t) and δαk = αd − αk, It follows
from yd0 = yk0 that there exists a kernel function H(·) and
the order sensitivity function ∂εk

α satisfying

ek(t) =
∫ t

0

H(t, τ, αk, hk(t, τ))
∂εk(τ)

∂α

∣∣∣∣
α̃ξ

dτδαk, (17)

where hk(t, τ) is iteration dependent and related to the esti-
mation of other coefficients. Thus the convergence condition
can be written as

|1− ΓkΛk| ≤ ρ < 1, (18)

where Λk =
∫ T

0
H(T, τ, αk, hk(t, τ))∂εk(τ)

∂α

∣∣∣∣
α̃ξ

dτ .

Part II:
It is obvious that (18) holds if either of the following

conditions is satisfied:

1 ≤ ΓkΛk ≤ 1 + ρ, (19)

1− ρ ≤ ΓkΛk ≤ 1, (20)

which are sufficient conditions.
Moreover, applying Lemma 1 of [47] to ΓkΛk yields

ΓkΛk ≤ ‖Γk‖‖Λ̃k‖.
On the other hand, because δαk = [1− ΓkΛk]δαk−1,
• for(19), sgn{δαk} = −sgn{δαk−1} = (−1)ksgn{δα0},
• for(20), sgn{δαk} = sgn{δαk−1} = sgn{δα0}.
Firstly, for (19), the order leaning gain Γk is derived from

the following steps:

S1: Find Γ̂k satisfying ‖Γ̂k‖ ·
[
max
αξ,αη

‖Λ̃k‖
]
≤ 1 + ρ

S2: Choose Γ̃k ∈ {Γ̂k,−Γ̂k} satisfying 1 ≤ Γ̃kek−1(T )
S3: It follows that

1 ≤ Γ̃kek−1(T ) ≤ Γ̃kek−1(T )
sgn{δαk} δαk =

Γ̃kek−1(T )
(−1)ksgn{δα0}δαk

S4: Let Γk = Γ̃k

(−1)ksgnδα0
, we have

{
ΓkΛk ≤ ‖Γk‖‖Λ̃k‖ ≤ 1 + ρ,

1 ≤ Γkek−1(T )
δαk

= ΓkΛk.

It follows from δαk = [1− ΓkΛk]δαk−1 that lim
k→∞

αk = αd.
Secondly, for (20), the order learning gain Γk is derived

from the following steps:

S1: Find Γ̂k satisfying ‖Γ̂k‖ ·
[
max
αξ,αη

‖Λ̃k‖
]
≤ 1

S2: Choose Γ̃k ∈ {Γ̂k,−Γ̂k} satisfying 1−ρ ≤ Γ̃kek−1(T )
S3: It follows that

1−ρ ≤ Γ̃kek−1(T ) ≤ Γ̃kek−1(T )
sgn{δαk} δαk =

Γ̃kek−1(T )
(−1)ksgn{δα0}δαk

S4: Let Γk = Γ̃k

sgnδα0
, we have

{
ΓkΛk ≤ ‖Γk ‖ ‖Λ̃k‖ ≤ 1,

1− ρ ≤ Γkek−1(T )
δαk

= ΓkΛk.

It follows from δαk = [1− ΓkΛk]δαk−1 that lim
k→∞

αk = αd.
Lastly, the universal way to determine sgn{δα0} is

sgn{δα0} = sgn{αd − α0} =
{

+1 if α0 = 0,
−1 if α0 = 1.

Remark 2: Comparing to the identification of integer order
KiBaM model, an extra parameter ”fractional order α” is
introduced to the linear part of the model, and the com-
putations of other parameters are accordingly related to the
fractional order derivatives of certain variables. Thus, there
exist two essential difficulties: how to find α accurately, and
how to compute fractional order derivatives accurately. On
one hand, the identification of α is just dependent on the
structure of system, i.e. the linear part of the model is a SISO
one due to the physical meanings of the system such as the
distributed property or the averaging method, and the input
and output can represent the current and voltage. A small gain
can always guarantee the convergence of the iterative learning



6 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

identification method. Besides, this method arrives at a unique
value of α̂, and the initial α0 can be chosen as 0 or 1. Besides,
it will be shown in the next section that a number of state-
of-art methods such as internal partition method, GA, NN,
etc may fail to find the real α. On the other hand, the short
memory principle guarantees the accuracy of fractional order
derivatives, and reveals the importance of preconditioning
before real experiments [48]. To sum up, because of the
adaptiveness of α estimation, a faster convergence speed and
a more accurate result can surely be expected.

IV. ILLUSTRATED EXAMPLES

Example 1: In this simulation example a FO-KiBaM model
is considered where the nonlinear and linear parts (structural
information) are assumed as:

f(u, θn) = βu3,

G(s) =
b1s

α + b0

a2s3α + a1s2α + a0sα + 1
, (21)

where the true values are

α = 0.5, β = 2,

b1 = 3, b0 = 2, a2 = 2, a1 = 3, a0 = 5,

and the input signal is u = 0.5 sin(t).
Given the initial value of α0 = 0.1, and N = 6693

samples of the input/output data for the identification of
structure (21). The linear coefficient vector was initialized as
a2 = 1, a1 = 1, a0 = 1, b1 = 1, b0 = 1. The matrices of Φn

and Yn in the nonlinear identification process are:

Yn(y, θ̂a) =




â2p
3αy(t1)+ · · ·+ y(t1)

â2p
3αy(tk+1)+ · · ·+ y(tk+1)

...
. . .

...
â2p

3αy(tN )+ · · ·+ y(tN )


 ,

and

Φn(u, θ̂b) =




b̂1p
αu3(t1) + b̂0u

3(t1)
b̂1p

αu3(tk+1) + b̂0u
3(tk+1)

...
b̂1p

αu3(tN ) + b̂0u
3(tN )


 .

The matrices of ϕ̂k and Yk in the linear identification process
are:

ϕ̂k =
[ −p3αytk

· · · − pαytk
pαŵtk

· · · ŵtk

]
,

θ̂l =
[

a2 · · · a1 b1 · · · b0

]T
, Yk = [ytk

] .

Refer to the above fractional order KiBaM system (21),
two identification strategies are discussed by using different
order identification methods, i.e. the interval partition method
and the iterative learning order identification method. With
the interval partition method, the identification procedure is
basically as follows:
• Given the increment of α, such as ∆α = 0.1, that

divides [0, 1] into α/∆α parts, identify the linear and nonlinear
parameters with the α/∆α values of α respectively.

• Compare the α/∆α identification results according to the
2−norm of their output error. Find the two smaller results
which construct the renewed domain of α.
• Repeat the above procedure until the domain cannot be

divided or the precision of α has arrived to the requirement.
Fig.3 illustrates the 2−norms of output errors according to

different α ∈ [0, 1]. As shown in Fig.3, the 2-norm of the iden-
tified system’s output error is not monotonically convergent to
the real value α = 0.5, which restricts the validation of the
interval partition method in fractional order identification, and
this phenomenon always happens in fractional order nonlinear
system identifications.

Fig. 3. The 2-norms of output errors by using the interval partition
method, where the minimum point corresponds to α = 0.79 instead
of the true value 0.5.

On the other hand, by using the iterative learning order
identification method, the learning laws of αk are assumed as:

αk+1 , αk + 0.01ek(T ).

Combined with the nonlinear and linear parameters learning
laws (10) and (14), the identification process is proceeded as
Fig.2 shown and the result is shown as follows:

f(u, θn) = 1.6174u3,

G(s) =
1.7397s0.4988 + 2.1601

0.9852s1.4964 + 1.7439s0.9976 + 3.2185s0.4988 + 1
,

which is very precise for there is no noise introduced into the
example system. Simulate the above identified system with the
input data u. After 12 iterations, the iteration converges when
the 2−norm of the output error arrived at 0.0388. Comparison
between the identified system output and the original system
output is illustrated in Fig.4.

Example 2: Consider a FO-KiBaM model described as

f(u, θn) = βu2,

G(s) =
b1s

α + b0

a1s2α + a0sα + 1
, (22)

with

α = 0.5, β = 1,

b1 = 3, b0 = 2, a1 = 3, a0 = 1,

and the input signal is u = 0.5 sin(t).
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Fig. 4. Comparisons of the outputs between the ideal system and
the identified one in Examples 1.

With N = 6693 samples of the input/output data of the
structure (22), parameter estimation is performed using the
approaches proposed in Section III. Besides the order learning
law is assumed as: αk+1 , αk + 0.01ek(T ). Fig.5 presents
the results of modeling of the actual and modeled outputs of
the KiBaM system (22). The estimation results are:

f(u, θn) = 1.496u2,

G(s) =
1.9965s0.4988 + 1.2598

2.9216s0.9976 + 0.9464s0.4988 + 1
.

Fig. 5. Comparisons of the outputs between the ideal system and
the identified one in Examples 2.

Example 3: A real-world application of this paper is illus-
trated in this example. Given the structure of fractional order
KiBaM model in Fig.6, where Rs represents the nonlinear
term, and a linear circuit is cascaded after it. Based on the
standard of dynamic stress test (DST), the I/V data is applied
to estimate those parameters, where the order of Warburg
impedance β = 0.5 is assumed due to the property of Lithium-
ion battery (β = 0.25 for fuel cells), then it follows that Rs =
19.1mΩ, Rp = 15.6mΩ, Y0 = 1.24Mho, Y1 = 370Mho,
α = 0.665. Thus the electrochemical impedance spectroscopy
is

G(s) = Rs +
(RpY0s

α + RpY1s
β + 1)

(RpY0Y1sα+β + Y1sβ),

where the nonlinear term Rs is varying according to the error
e. The measured fractional order and fractional order KiBaM
outputs are compared in Fig.7, where Rs ∈ [34, 37.7]. It can

be seen that the nonlinear term plays crucial role in the above
real-time traffic test.

Fig. 6. Structural information of a fractional order KiBaM model.

Fig. 7. Comparisons of the outputs between the fractional order
model (FOM) and the discussed fractional order KiBaM model in
Example 3.

Remark 3: It should be noted that, given an accurate α, many
methods can derive accurate models for sure, such as the prony
technique. This α is a key parameter in FO KiBaM model
which reveals a number of physical, chemical and distributed
characteristics as introduced in Section II C. Besides, the
computations of other parameters are accordingly related to
the fractional order derivatives of certain variables. Thus how
to find α accurately, and how to compute fractional order
derivatives accurately become primary tasks. In Example 1, the
interval partition method failed to work because a too different
α was obtained. But, the proposed method in Section III C is
adaptive to those linear parameters, and can converge to the
real α in terms of other parameters in less than 20 iterations,
where the errors are set to be in range 0.01−0.05. The similar
convergence accuracy and speed can be observed in various
other simulations that we have done previously which are
excluded in this paper such as more complicated nonlinear
terms [49]-[56].

Lastly, in the above examples, the small gain learning law
guarantees the convergence, but sacrifices the convergence
speed. But fortunately, this learning gain can be tuned from
a small enough one to a large and optimized one so that the
convergence speed is improved accordingly, where the whole
tuning process is unidirectional. By doing so, the accuracy and
convergence speed can be improved simultaneously.

V. CONCLUSIONS AND FUTURE WORKS

This paper deals with the parameter and order identifica-
tions of commensurate fractional order KiBaM systems in
continuous-time domain. The least square method is applied
to the linear and nonlinear parameters identification. A P-type
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order learning law associated with the terminal value of system
error is applied to identify the system order accurately. The
performance of the proposed algorithms has been testified by
illustrative examples. Based on results presented in this paper,
it is anticipated that the proposed identification algorithms will
lead to more precise construction of fractional order quasi-
linear systems. The other part of this work is the identification
of variable order system which is another representation of
nonlinearity.
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