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Abstract — Inspired by many real-world
applications, this paper is concerned with the concept
of spreadability for a class of sub-diffusion processes.
The spreading control problems of sub-diffusion
processes are formulated. An approach to guarantee
the existence of solution to the adaptive spreading
control problem based on the regional control results
is proposed. We also introduce a new equivalence of
the solution for the time fractional diffusion system to
support the proof of our obtained results.

1 Introduction
In the past several decades, especially after the first

introduction of the continuous time random walk (CTRW)
by Montroll and Weiss in [1], a growing number of
contributions have been given to the anomalous diffu-
sion process, in which the mean squared displacement
(MSD) is smaller (in the case of sub-diffusion) or bigger
(in the case of super-diffusion) than that in a Gaussian
diffusion process [2, 3, 4]. These anomalous diffusion
processes usually occur in the spatially inhomogeneous
environment. For instance, the flow through porous media
microscopic processes [5], or swarm of robots moving
through dense forest [6] etc. Besides, it is confirmed that
the MSD of anomalous diffusion process is described by a
power law of fractional exponent [7, 8] and the solution of
fractional differential equations can be expressed by using
the Mittag-Leffler function. Based on the properties of
Mittag-Leffler function [9, 10, 11, 12], then the fractional
diffusion systems may provide a natural description of
non-local transport and be used to well characterize those
anomalous processes [13, 14].

The aim of this paper is to explore the spreadability
of sub-diffusion process, in which the subdomains of the
states to the system studied obeying a spatial property
are nondecreasing. Since it is the first time for us to
investigate the spreadability of sub-diffusion process, we
focused on analytic results in this paper first. Simulation
results will be presented in a more application-oriented
journal with a more realistic applications scenario. More-
over, as cited in [15, 16], the applications of spreadability
to the anomalous process are rich in the environmental
processes. For example, the vegetation dynamics, pollu-
tion or medical processes in the spatially inhomogeneous

environment. For more information on spreadability, we
refer the readers to [17, 18, 19] and the references cited
therein.

Motivated by the above discussions, in this paper, using
optimal control techniques and the concepts of regional
analysis [20, 21], an approach leading to the solution of
the adaptive spreading control problem is proposed. To
the best of our knowledge, no result is available on this
topic. We hope that the results here could provide some
insights into the control theory of this field and be used in
real-life applications.

The remainder contents of this paper are structured
as follows. The spreading control theory and some
preliminary results are introduced in the next section and
in Section 3, the adaptive spreading control problems are
investigated. At last, a conclusion is presented.

2 Spreading control theory

In this section, we state some preliminary results to
be used thereafter and formulate the spreading control
problems for the sub-diffusion process.

2.1 Preliminary results

Suppose that Ω ⊆ Rn is an open bounded subset with
certain boundary ∂Ω, I = [0,T ] is a time interval and
Lp(0,T ;Z) (p ≥ 1) is the space of Z-value Bochner in-
tegrable functions on [0,T ] with the norm ‖z‖Lp(0,T,Z) =

(
∫ T

0 ‖z(s)‖pds)1/p.
Let us consider the following system{

0Dα
t z(t) = Az(t), t ∈ I, 0 < α < 1,

lim
t→0+

0I1−α
t z(t) = z0 ∈ L2(Ω), (1)

where A is a linear operator which is densely defined on its
domain D(A)⊆ Z := L2(Ω) and generates a strongly con-
tinuous semigroup {Φ(t)}t≥0, z ∈ L2(0,T ;Z) and z( ·) ∈
Z. Moreover, here 0Dα

t and 0Iα
t denote the Riemann-

Liouville fractional order derivative and integral, respec-
tively, given by [22, 23]

0Dα
t z(t) =

d
dt 0I1−α

t z(t), 0 < α < 1 and
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0Iα
t z(t) =

1
Γ(α)

∫ t

0
(t − s)α−1z(s)ds, α > 0.

Denotes the solution of system (1) by z(x, t), where x ∈ Ω

and t ∈ I are respectively, the space and time variables.
Let P be a given property which may describe a spatial
constraint on the state of the system (1) in space Z and let

ωt = {x ∈ Ω : Pz(x, t)} , t ∈ I (2)

be the zones where the state obeys the property P . At the
initial time t = 0, we have ω0 = {x ∈ Ω : Pz(x,0)}. Then
we state the following definition.

Definition 2.1 The system (1) is said to be P-
spreadability from ω0 in the time interval I if the family
{ωt}t∈I is non-decreasing, i.e. ωt ⊆ ωs for all s ≥ t.

As for the property P , various cases may be con-
sidered. For example, let S1 ⊆ Ω × I × R be a set of
constraints on z(x, t). Then Pz(x, t) can be equivalent
to (x, t,z(x, t)) ∈ S1, i.e., Pz(x, t) ⇔ (x, t,z(x, t)) ∈ S1.
Moreover, consider

Pz(x, t)⇔ z(x, t) = ρ(x, t) (3)

with ρ : Ω × I → R as a desired target trajectory to be
tracked during the time interval I, in this case, we say
that the system (1) is ρ−spreadability. In particular, if
ρ = 0, the system (1) is said to be null-spreadability.
What’s more, similarly, we say that the system (1) is P-
resorbability if ωt satisfies ωt ⊇ ωs for all s ≥ t.

Remark 2.1
(1) The above definition does not imply that ωT = Ω;
(2) In particular, if the system is spreadable up to Ω,

in that case, the property P must be consistent with the
boundary conditions on ∂Ω;

(3) Here we mainly focus on the growing property of
the subdomains ωt and ignore their growth speed.

Spreadability has also been explored from another point
of view in [24] by considering the growth of the areas
of ωt and in [25] by trying to connect the spreadability
to the viability of dynamical systems. However, at this
moment, they do not actually lead to significant results.
In the sequel, we shall investigate the spreading control
of sub-diffusion processes based on Definition 2.1. For
more information on the spreadability, we refer readers to
[16, 15, 26] and the references therein.

2.2 Spreading control problem
The aim of this part is to discuss what is the spreading

control and then state the spreading control problem.
Consider the system (1) excited by the control u as

follows:{
0Dα

t z(t) = Az(t)+Bu(t), t ∈ I, 0 < α < 1,
lim

t→0+
0I1−α

t z(t) = z0 ∈ Z, (4)

where B : Rp → Z is a bounded linear operator and u ∈
L2(0,T ;Rp) is the control input. By [20, 27], let ψα(θ) =
1
π

∞

∑
n=1

(−1)n−1θ−αn−1 Γ(nα+1)
n! sin(nπα),θ > 0 be a prob-

ability density function and φα(θ) =
1
α

θ
−1− 1

α ψα(θ
− 1

α )
satisfying [28, 29]∫

∞

0
ψα(θ)dθ = 1,

∫
∞

0
θ

ν
φα(θ)dθ =

Γ(1+ν)

Γ(1+αν)
,ν ≥ 0,

by using Laplace transform, let Kα(t) =
α
∫

∞

0 θφα(θ)Φ(tα θ)dθ , we recall that the solution
of the system (1), denoted by z(x, t,u), is therefore given
by

z(x, t,u) = tα−1Kα(t)z0+∫ t
0(t − s)α−1Kα(t − s)Bu(s)ds, t ∈ I.

(5)

Given P as in Eq. (3), for any t ∈ I, define

ω
u
t = {x ∈ Ω : Pz(x, t,u)} , u ∈ L2(0,T ;Rp) (6)

and then we state the following definition.

Definition 2.2 The control u is said to be a P-spreading
control if the family {ωu

t }t∈I is non-decreasing, i.e. the
excited system is P-spreadable. In particular, if P = 0,
then we say that u is null-spreading control.

From the above definition, to the best of our knowledge,
it is not difficult to see the following control problems
related to spreadability.

(a) The spreading control problem concerns the exis-
tence and the determination of spreading controls without
concerning with the energy and the areas of spreadable
zones.

(b) In the case where the set of spreading controls is not
empty, it is possible to derive spreadability to the whole
domain Ω in minimum time? What about the energy
associated with these controls?

(c) Given a non-decreasing family of subregions
{σt}t∈I , do controls leading to expanding a property along
the subregions σt exist?

Moreover, suppose that ω0 = {x ∈ Ω : z0 = 0} 6= /0 and
consider the zones

ω
u
t = {x ∈ Ω : z(x, t,u) = 0} , (7)

t ∈ I and u ∈ L2(0,T ;Rp), then the spreading control
problem may be equivalent to

find a control input u ∈ L2(0,T ;Rp) such that:
(1) z(x, t,u) is the solution of the system (4),
(2) the family {ωu

t }t∈I is non-decreasing.

}
(8)

This problem is very difficult and here we only try to find a
control such that the system under consideration is weakly
spreadable, the concept of which is developed in the next
subsection.
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2.3 Weak spreadability
As cited in [30], the above stronger concept of spread-

ability is harder to achieve. So in this subsection, we
shall introduce a concept of weak spreadability and try
to explore its characterization.

Define Gt : L2(0,T ;Rp)→ L2(Ω) as follows

Gtu =
∫ t

0
(t − s)α−1Kα(t − s)Bu(s)ds. (9)

For any v ∈ Z∗, it follows from the duality relationship
〈Gtu,v〉Z×Z∗ = 〈u,G∗

t v〉L2×L2 that

(G∗
t v)(t) = B∗(T − t)α−1K∗

α(T − t)v, (10)

where B∗ and K∗
α are respectively, the adjoint operators of

B and Kα . Taking into account that (4) is a linear system,
by the Proposition 3.1 in [31], it suffices to suppose that
z0 = 0 in the following discussion. Now we are ready to
state the following definitions.

Definition 2.3 [30]
(a) Given ε > 0 and P ∈ Z, the system (4) is said to be
weakly P-spreadable with the tolerance ε , if there exists
a family of subdomains (ω̃t), (ω̃t)⊆P(Ω) (where P(Ω)
hold for the set of parts Ω) such that
(1) ω0 ⊆ ω̃0;
(2) ω̃t ⊆ ω̃s for all t ≤ s, t,s ∈ I;
(3) Im(Gt) = L2(ω̃t) for any t ∈ I;
(4) ω̃T = Ω.

(b) In particular, if P = 0, then the system (1) is weakly
null-spreadable.

Remark 2.2 (1) If the system (4) is weakly spreadable,
the family (ω̃t) is not unique and each of such choices
will correspond to a different ε. In particular, if a system
is spreadable, we say that it is weakly spreadable with the
tolerance ε = 0.

(2) The above definition may be relaxed by removing
condition (4).

Definition 2.4 Any family of subregions verifying the
conditions (1)− (3) of Definition 2.3 is called a spread.

Denote S the set of spreads

S =

{
σ = (σt)t∈I ⊆ P(Ω) : ω0 ⊆ σ0, and

σt ⊆ σs for any t ≤ s, t,s ∈ I

}
(11)

and let the set of spreads which satisfies the condition (4)
of Definition 2.3 be as follows

S∗ = {σ ∈ S : σT = Ω} . (12)

In particular, if Ω ⊆ R1, see Fig. 1 for an example of
spread σ ∈ S or σ ∈ S∗ .

T

s

t

0

t

s

(a) A spread in S

T

s

t

0

t

s

(b) A spread in S∗

Figure 1: Spreads in S and in S∗

3 Adaptive spreading control prob-
lems

This section aims to investigate the adaptive spreading
control problems by using the results of regional control
theory developed in [20, 21].

3.1 Problem formulation
In this part, we first give a time-discretized formulation

of the spreading control problem (8).
Let us consider a sequence (ti)0≤i≤m of the time interval

I such that 0 = t0 < t1 < · · · < tm = T and denote ω
ui
ti the

associated subdomains defined by

ω
ui
ti = {x ∈ Ω : z(x, ti,ui) = 0}. (13)

Suppose that the subregions ω
ui
ti are non-decreasing and

given, i.e.,

ω
ui
ti ⊆ ω

ui+1
ti+1

, (14)

then the discrete version of (8) may be stated as follows:

find u = (u1, · · · ,um) where ui ∈ L2(0,T ;Rp) such that:
(1) z(x, t,u) is the solution of the system (4),
(2) the family

{
ω

ui
ti

}
0≤i≤m is non-decreasing.

}
(15)

So the adaptive null-spreading control problem may be
seen as a sequence of regional control problems, i.e., given
(ti)0≤i≤m and (ωi)0≤i≤m, the problem becomes:

find u = (u1, · · · ,um) where ui ∈ L2(0,T ;Rp) such that:
(1) z(x, t,u) is the solution of the system (4),
(2) z(x, ti,ui) = z(x, ti,ui,z0, t0) = 0 on ωi.

}
(16)

Next, we try to solve problem (16) by considering the
regional analysis theory.

3.2 Preliminaries of regional controllability
For any subregion ω ⊆ Ω and 0 ≤ ti ≤ T , i =

0,1,2, · · · ,m, consider the following restriction mappings
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χω and its adjoint operator χ∗
ω

χω :
{

L2(Ω)→ L2(ω),
ξ → ξ |ω ,

χ
∗
ω z(x) :=

{
z(x), x ∈ ω,
0, x ∈ Ω\ω,

we then see the following definition.

Definition 3.1 The system (4) is said to be ω−regionally
controllable on the time interval [t0, ti] if for any z0 =
z(t0) ∈ D(A) and yd ∈ L2(ω), there exists a control u ∈
L2(t0, ti;Rp) such that

χω z(x, ti,u) = yd , (17)

where z(x, ti,u) = z(x, ti,u,z0, t0) is the solution of (4) at
the final time ti from the initial condition z0 at time t = t0
excited by the control input u.

By [20, 27], we recall that the solution of the system (4)
at time ti from the initial condition z0 at time t = t0 excited
by the control input u is given by

z(x, ti,u) = tα−1
i Kα(ti)z0 +Gtiu, ti ∈ I. (18)

Then the relation (17) may be expressed as follows

χω Gtiu = yd −χω tα−1
i Kα(ti)z0. (19)

From the Proposition 3.1 in [31], the system (4) is
ω−regionally controllable on the time interval [t0, ti] if
and only if

Im(χω Gti) = L2(ω), (20)

where Im(∗) is the range of the operator ∗. Moreover,
it should be pointed out that regional controllability as
defined above is very strong. We usually consider the
concepts of weak regional controllability, which is defined
by Im(χω Gti) = L2(ω).

3.3 Solution of the adaptive spreading con-
trol problem

Given a sequence of increasing subregions
(ωi)1≤i≤m, ωi ⊆ Ω, i = 0,1, · · · ,m and consider the
following minimum energy control problem

inf
u

J(u)

J(u) :=
∫ ti

t0 ‖u(t)‖2
Rpdt, u ∈UT and

UT = {u ∈ L2 (0,T ;Rp) : χω z( · , ti,u) = yd}.
(21)

where, obviously, UT is a closed convex set. Then we see
the following theorem.

Theorem 3.1 If the system (4) is ω−regionally control-
lable on the time interval [t0, ti], then for any yd ∈ L2(ω),
the minimum energy problem (21) has a unique solution
u∗ given by

u∗(t) = (χω Gti)
∗ R−1

ti,ω
(
yd −χω tα−1

i Kα(ti)z0
)
, (22)

where Rti,ω = χω GtiG
∗
ti χ

∗
ω .

Proof. To begin with, we claim that if the system (4) is
ω−regionally controllable on the time interval [t0, ti], then

‖ f‖ :=
∫ ti

t0
‖B∗(ti − s)α−1K∗

α(ti − s)χ∗
ω f‖2ds (23)

is a norm of space L2(ω). In fact, if the system (4)
is ω−regionally controllable on [t0, ti], we get that
Ker

(
G∗

ti χ
∗
ω

)
= {0}, i.e., B∗(ti − s)α−1K∗

α(ti − s)χ∗
ω f = 0

can implies f = 0. Hence, for any f ∈ L2(ω), it then
follows from

‖ f‖= 0 ⇔ B∗(ti − s)α−1K∗
α(ti − s)χ∗

ω f = 0 (24)

that ‖·‖ is a norm of space L2(ω).
Moreover, we show that the operator Rti,ω is coercive.

For any y1 ∈ L2(ω), there exists a control u ∈ L2(t0, ti;Rp)
such that

y1 = χω

[
tα−1
i Kα(ti)z0 +Gtiu

]
. (25)

It then follows that

〈Rti,ω y1,y1〉L2(ω) =
∥∥G∗

ti χ
∗
ω y1

∥∥2
L2(0,ti,Rp)

=
∥∥B∗(ti − ·)α−1K∗

α(ti − ·)χ∗
ω y1

∥∥2
L2(0,ti,Rp)

≥ ‖y1‖2 .

(26)

Moreover, since Rti,ω ∈ L
(
L2(ω),L2(ω)

)
, by the Theo-

rem 1.1 in [32], we get that Rti,ω is coercive.
Next, since the solution of (4) excited by the control u∗

is given by

z(x, t,u∗) = tα−1Kα(t)z0 +Gtu, (27)

we have

χω z(x, ti,u∗) = χω

[
tα−1
i Kα(ti)z0 +Gtiu

∗]
= χω tα−1

i Kα(ti)z0 +χω Gtiu
∗

= yd .
(28)

Finally, we prove that u∗ solves the minimum energy
problem (21). For this purpose, since χω z( · , ti,u∗) = yd ,
for any u ∈ L2(0, ti;Rp) with χω z( · , ti,u) = yd , one has

χω [z( · , ti,u∗)− z( · , ti,u)] = 0, (29)

which follows that

0 = χω

∫ ti

t0
(ti − s)α−1Kα(ti − s)B [u∗(s)−u(s)]ds

= χω Gti [u
∗−u] .

Thus,

J′(u∗)(u∗−u)
= 2

∫ ti
t0 〈u

∗(s)−u(s),u∗(s)〉ds

= 2
∫ ti

t0

〈
u∗(s)−u(s),(χω Gti)

∗ R−1
ti,ω×(

yd −χω tα−1
i Kα(ti)z0

) 〉
ds

= 2
∫ ti

t0

〈
χω Gti [u

∗(s)−u(s)] ,R−1
ti,ω×(

yd −χω tα−1
i Kα(ti)z0

) 〉
ds

= 0,

2256



it follows that J(u) ≥ J(u∗). Then by the Theorem 1.3 in
[32], we see that u∗ solves the minimum energy problem
(21) and the proof is complete.

Theorem 3.2 The adaptive null-spreading control prob-
lem (16) has at least one solution provided that the system
(4) is weakly controllable on I = [0,T ].

Proof. Suppose that 0 = t0 < t1 < · · ·< tm = T is a given
sequence of times and consider the zones

ω
u
ti = {x ∈ Ω : z(x, ti,u) = 0} , (30)

u ∈ L2(0,T ;Rp) and i = 1,2, · · · ,m. Now if the system
(4) is ω0−regionally controllable, then by Theorem 3.1,
the control

u∗1 =−
(
χω0Gt1

)∗ R−1
t1,ω0

χω0tα−1
1 Kα(t1)z0 (31)

steers the system from z0 to zero on ω0, i.e.,
χω0z( · , t1,u∗1,z0, t0) = 0.

Let z1(x) = z(x, t1,u∗1,z0, t0) and consider the set

ω1 = {x ∈ Ω : z1(x) = 0}, (32)

by (14), we get that ω0 ⊆ ω1.
Next, we shall explore u∗2, which steers (4) from z1 at

t = t1 to zero at t = t2 on ω1, By [20], we see that

Kα(t)z(x) =
∞

∑
j=1

Eα,α(λ jtα)(z,ξ j)ξ j(x), (33)

where {λ j} j≥1 and {ξ j} j≥1 are respectively, the eigenval-
ues and eigenvectors of operator A, and

Eα,β (z) :=
∞

∑
i=0

zi

Γ(αi+β )
, Re α > 0, β ,z ∈ C (34)

is known as the generalized Mittag-Leffler function in two
parameters. It then follows from the properties of Mittag-
Leffler function that K−1

α (t) exists [9, 10]. Assume that
u ≡ 0 in system (4), we have

z(x, t,u) = tα−1Kα(t)z0, t ∈ I. (35)

Then z1 = tα−1
1 Kα(t1)z∗0 and z∗0 = t1−α

1 K−1
α (t1)z1. By The-

orem 3.1, the control

u(t) =−
[
(χω1 Gt2)

∗ R−1
t2,ω1

χω1tα−1
2 Kα(t2)z∗0

]
(t) (36)

may steer the system from z∗0 at t = t0 to zero at t = t2 on
ω1. Then we get that the controller

u∗2 =−
t1−α

1

t1−α

2
(χω1Gt2)

∗ R−1
t2,ω1

χω1

Kα(t2)
Kα(t1)

z1 (37)

can excite the system to zero at t = t2 on ω1.

Following the same procedure, let zi−1(x) =
z(x, ti−1,u∗i−1,zi−2, ti−2), we see that the controller

u∗i =−(ti−1/ti)
1−α

(
χωi−1Gti

)∗
R−1

ti,ωi−1
χωi−1Kα(ti)K−1

α (ti−1)zi−1.
(38)

could steer the system to zero at t = ti on ωi−1. Now
consider the control u∗ = (u∗1,u

∗
2, · · · ,u∗m), it is easily to

see that u∗ solves the adaptive spreading control problems.
The proof is complete.

4 Conclusion
This paper deals with the spreadability of the Riemann-

Liouville time fractional diffusion systems of order α ∈
(0,1). An approach to guarantee the existence of solution
to the adaptive spreading control based on the regional
control results is proposed. At the same time, we introduce
a new equivalence of the solution for the system (4) to
support the proof of Theorem 3.2. The applications of
those theoretical results are rich in our life. The results
here provide some insights into the control theory of the
design of fractional order diffusion equations, which can
also be extended to complex fractional order distribut-
ed parameter dynamic systems. Various open questions
are still under consideration. The problem of how many
actuators/sensors are sufficient as well as how to best
configure them to control/observe the spread process are
of great interest.
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