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Abstract

This paper is concerned with the concepts of regional controllability for the Riemann-Liouville time fractional diffusion systems
of order o € (0,1). The characterizations of strategic actuators to achieve regional controllability are investigated when the
control inputs emerge in the differential equations as distributed inputs. In the end, an approach to guarantee the regional
controllability of the problems under consideration in the considered subregion with minimum energy control is described and

successfully tested through two applications.
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1 Introduction

Recently sub-diffusion processes have attracted increas-
ing interest since the introduction of continuous time
random walks (CTRWs) in [Montroll & Weiss, 1965]
and a large number of contributions have been given to
them ([Mainardi et al., 2007,Metzler & Klafter, 2000],
[Ge et al., 2016b,Fujishiro & Yamamoto, 2014]). Since
CTRW is a random walk subordinated to a simple
renewal process, by [Hilfer & Anton, 1995], it can be
regarded as a generalized physical diffusion process
(including the sub-diffusion process and the super-
diffusion process) and there exists a closed connec-
tion between the time fractional diffusion system and
the sub-diffusion process. Moreover, it is confirmed in
[Metzler & Klafter, 2000] and [Mandelbrot, 1983] that
the time fractional diffusion systems can be used to well
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characterize those sub-diffusion processes, which offer
better performance not achievable before using conven-
tional diffusion systems and surely raise many potential
research opportunities at the same time.

In the case of diffusion system, it is well known that in
general, not all the states can be reached in the whole
domain of interest. So here, we first introduce some no-
tations on the regional controllability of time fractional
diffusion systems when the system under consideration
is only exactly (or approximately) controllability on a
subset of the whole space, which can be regarded as an
extensions of the research work in ([El Jai et al., 1995],
[Sakawa, 1974]). Besides, focusing on regional control-
lability would allow for a reduction in the number of
physical actuators, offer the potential to reduce compu-
tational requirements in some cases, and also possible to
discuss those systems which are not controllable on the
whole domain, etc.

Furthermore, in [Chen & Feng, 2016,Ge et al., 2016a]
and [El Jai & Pritchard, 1988], the authors have shown
that the measurements and actions in practical systems
can be better described by using the notion of actuators
and sensors (including the location, number and spatial
distribution of actuators and sensors [El Jai, 1991]).
Then the contribution of this present work is on the
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regional controllability of the sub-diffusion processes de-
scribed by Riemann-Liouville time fractional diffusion
systems of order v € (0, 1) by using the notion of actu-
ators and sensors. As cited in [Hilfer, 2000}, their appli-
cations are rich in many real life. For example, the flow
through porous media ([Uchaikin & Sibatov, 2012]),
or the swarm of robots moving through dense forest
([Spears & Spears, 2012]). We hope that the results here
could provide some insights into the qualitative analysis
of the design and configuration of fractional controller.

The rest of the paper is organized as follows. The math-
ematical concept of regional controllability problem is
presented in the next section. Section 3 is focused on
the characterizations of strategic actuators in the case
of regional controllability. In Section 4, our main results
on the regional controllability analysis of time time frac-
tional diffusion systems are presented and the determi-
nation of the optimal control which achieves the regional
controllability is obtained. Two applications are worked
out in the last section.

2 Statement of the problem

Let Q2 be an open bounded subset of R™ with smooth
boundary 92 and we consider the following abstract
Riemann-Liouville time fractional differential system:

oD z(t) = Az(t) + Bu(t), te€

li Dfz(t) =
Ji, 0DF2(0) = 2o

[0,0], 0 <a <1,

where A generates a strongly continuous semigroup
{®(t)}+>0 on the Hilbert space Z := L*(Q), —A is a
uniformly elliptic operator ([Renardy & Rogers, 2006,
[Weinberger, 1962]), z € L?*(0,b;Z) and the initial
vector zg € Z. Here ¢ D{* and oIf* denote the Riemann-
Liouville fractional order derivative and integral, re-
spectively, given by [Kilbas et al., 2006]

d
0D 2(t) = aOIQ*O‘Z(@, 0<a<l (2)
and
t
I72(t) = ! / z(s)d >0 (3)
0ly 2 - F(a S, « .
0

In addition, B is a control operator depends on the num-
ber and the structure of actuators. The control u € U
where U is a Hilbert space. In particular, if the system
is excited by p actuators, one has u € L?(0,b; RP) and
B:RP — Z.

We first recall some necessary lemmas to be used after-
wards.

Lemma 1 For any given f € L*>(0,b;2),0<a <1, a
function v € L?(0,b; Z) is said to be a mild solution of
the following system

oDfv(t) = Av(t) + f(t), t € [0,b],

lim oD () =vp € Z,
t—>0+0 ¢ () 0

(4)

if it satisfies

o(t) = £ Ky (o + / (t = )" Kault — 5)f(s)ds, (5)
0

where
/ 0o (0)D(t6)d (6)

Here {®(t) }1>0 is the strongly continuous semigroup gen-
erated by operator A, ¢ (0) = éﬁ_l_éwa (0=%) and 1
is a probability density function defined by (6 > 0)

1 Z ) 1970‘”71;(”& +1) sin(nma) (7)

0 n!
such that ([Mainardi et al., 2007])
v T+v)
/wa d@—land/6‘¢a (1—|—au)

Proof. It follows from the Laplace transforms

o\ = [ e Mu(s)ds and f(\) = [ e f(s)ds  (8)
/ /

that the system (1) is equivalent to ([Lin & Lu, 2013])
AB(N) — vy — AD(N) = f(N). (9)
Then

(AN = (NI — AL
= e s
Consider the stable probability density function (7). By

the arguments in [Mainardi et al., 2007], we see that
Yo (0)(0 > 0) satisfies the following property

(v + f(N)

)vo + f()\)]ds 1o

(oo}

Ya(N) = /e*Af’%(e)dG = ae(0,1). (11)

0



Let s = 7. We obtain that

«__
eAT@

7 oo + f(N)]dr

o}
(0%
00 0O

vl
o / / X0y (O)B () vy + F(N)]dOdr
0

Ul(vo)+0'2( ),

where 01 (vo) = o [;° [T e o (0)®(7) T dOdTvo

and o2(f) = a [° [77 e Ao (0)(T)7 1 f(N)dfdr.
Suppose that t = 76. Then we have

tcxl

o1(ve) = a [y [57 e Mipa (0)® (;—z) dodt vy
= [ e Ma [T va (0)® (t40~) t> 19~ *dhdt vy
= e Mo [72 Lo w g, (07 %) (120)dodt vy

and

oa(f)

:afooo fooo fo e A0y (0)P(T)T 7)‘Sf( )dsdfdr
=aly o fo e My, (0)P ( a) e ()dsd@dt
:fo 7At0‘f0 fo Vo (0)® (( )(t S) 1) godsdt

1o wa(o*a)i‘b“(t 2

_ t
= fooo e Ma fo fo

Let ¢a(0) = L0712 1po (6~ =) and
Ko(t) = a [, 06a(0)P(t*0)d6. Then we get

t

v(t) = t* Ko (t)v + / (t —s)* 'K, (t — s)f(s)ds

0

and the proof is complete.

Lemma 2 [Dacorogna, 2007] Let Q2 C R"™ be an open set
and C§° () be the class of infinitely differentiable func—
tions on Q with compact support in Q and u € L}, ()
be such that

/u(a:)d)(:z:)d:z: =0, Vyel5). (12)

Q

Then u = 0 almost everywhere in €.

Lemma 3 [Klimek, 2009] Let the reflection operator Q
on interval [0,b] be as follows:

Qf(t) == f(b—1). (13)
Then the following equations hold:
QoI f(t) = Iy'Qf (1), QoDPf(t) =:DyQf(t) (14)

)I) g0 dsdt.

and

oI QF(t) = QuIy f(t), oDFQf(t) = QD f(t).  (15)

Let w C Q2 be a given region of positive Lebesgue measure
and 2, € L*(w)(the target function) be a given element.
By Lemma 1, the unique mild solution z(., u) of (1) can
be given by

t

2(t,u) =t Ko (t) 20 + /(t —8)* LK, (t — s)Bu(s)ds.
0

Taking into account that (1) is a line system, by the

Proposition 3.1 in [Ge et al., 2016a], it suffices to sup-

pose that zop = 0 in the following discussion. Let H :
L?(0,b;RP) — Z be

b
/ b—s
0

In order to state the main results, the following two as-
sumptions are supposed to hold all over the article:

Bu(s)ds, Yu € L*(0,b;RP).  (16)

(A1) B is a densely defined operator and B* exists.
(42) (B Ko(t)" =

In particular, when B € L(RP,Z) is a bounded lin-
ear operator from RP to Z, it is easy to see that (A7)
and (Az) hold. Suppose that {®*(¢)};>0, generated by
the adjoint operator of A, is also a strongly continu-
ous semigroup in the space Z. For any v € L?(2), by

K, (t))* exists and (B K:(t)B*.

(Hu,v) = (u, H*v), we have

H*v = B*(b—5)*"'K*(b— s)v, (17)
where (-, ) is the duality pairing of the space Z, B* is the
adjoint operator of B and K*(t) = « fo 0o (0)D*(t0)d0.
Consider now the restr1ct1on map

Pw + L*(Q) = L2 (w), (18)

defined by p,z = z|,, is the projection operator on w.
Then the adjoint operator of p,, can be given by

poz(x) = (19)

z(x), z € w,
0, ze€Q\w.

and we are ready to state the following definition.

Definition 4 (i) The system (1) is said to be regionally
exactly controllable on w if for any z, € L*(w) at time b,



there exists a control u € L*(0,b; RP) such that
Pwz(b,u) = zp. (20)

(73) The system (1) is said to be regionally approximately
controllable on w at time b if for any z, € L?(w), given
e > 0, there exists a control u € L*(0, b; RP) such that

[Pwz(b,u) — 2z <e. (21)

Proposition 5 Let (H) be defined as (16). Then follow-
ing properties are equivalent:

kerp, +1mH = Z,;
12l 22wy < YIH* Lzl L20,0:R0)- (22)

Proof. Obviously, (1) < (2).

(2) = (3) : For any z € L*(w), let 2 be the extension
of z to L(2). Since imp,H = L*(w), there exists u €
L?(0,b;RP), z1 € kerp,, such that 2 = 2; + Hu.

(3) = (2) : For any z € Z, from (3), 2 = z1 + 22,
where z1 € kerp, and zo € imH. Then there exists a
u € L?(0,b; RP) such that Hu = 2. Hence, it follows
from the definition of p,, that imp, H = L?(w).

(1) & (4) : Here, we note that the equivalence between
(1) and (4) can be deduced based on the following general
result in [Pritchard & Wirth, 1978]:

Let E, F, G be reflexive Hilbert spaces and f € L(F,G),
g € L(F,G). Then the following two properties are
equivalent

(1) imf C img;

(2 )37>0suchthat|\f*z*|E* <Aqllg*z*||p~, Vz* € G.
By choosing £ = G = L?(w), F = L (ObR)f:
Idz2(,) and g = p,H, we then obtain the results and
completes the proof.

Proposition 6 There is an equivalence among the fol-
lowing properties:

(1) The system (1) is regionally approzimately control-
lable on w at time b;

(2) impTT = L*(w)

(3) kerp, +imH = Z;
(4) The operator p,HH*

DX is positive definite.

Proof. Similar to the argument in Proposition 5, we
obtain that (1) < (2) < (3). Finally, we show that
(2) < (4). In fact, it is well known that

impo,H = L*(w)
& (poHu, z) = 0,Yu € L*(0,b; RP) implies z = 0.
Let w = H*p} z. Then we see that

imp,H = L*(w)
& (poHH*pl2,2) = 0 implies z = 0, z € L*(w),

i.e., the operator p,HH*
proof is complete.

pr, is positive definite and the

Remark 7 (1) The definition 4 can be applied to the
case where w = Q). Note that there exists a system, which
is not controllable on the whole domain but regionally
controllable (see Example 5.1 below).

(2) A system which is exactly (respectively approxi-
mately) controllable on w is exactly (respectively approx-
imately) controllable on wy for every wy C w.

3 Regional strategic actuators

In this section, we will explore the characteristic of ac-
tuators when the system (1) is regionally approximately
controllable.

As pointed out in [El Jai & Pritchard, 1988], an actua-
tor is a couple (D, g) where D C Q is the support of the
actuator and g is its spatial distribution. To state our
main results, it is supposed that the system under con-
sideration is excited by p actuators (D;, g;)1<i<p and let

P
Bu = prigi(:zr)ui(t), where p € N, g;(x) € L?(Q),

i=1
u = (u1,uz, -, up) and u;(t) € L*(0,b). Then the sys-

tem (1) can be rewritten as follows:

= Az(t,x) + Xp: PD, gi(w)u;(t)

i=1

oDyz(t, )

in Q x [0,0], (23)

1 t,x) = in Q.
t—l>%1+z( x) = zp(x) in

Moreover, suppose that —A is a uniformly elliptic op-
erator. By [Courant & Hilbert, 1966], we get that there
exists a sequence (\;,&x) 1k =1,2,---,r;,j=1,2,---
such that

(1) For each j = 1,2,---, A, is the eigenvalue of the
operator —A with multiplicities r; and

lim A\; = oo.
J—o0

D<A <A <o <A< oee



(2) For each j = 1,2,---, &, (k = 1,2,---,7;) is the
orthonormal eigenfunction corresponding to A;, i.e.,

15 km - kna

it i) = {o, Ko # ko,

where 1 < ky,, kn, <75, ki, kn € N and (-, -) is the inner
product of space L?(12).

Then we see that the strongly continuous semigroup
{®(t)}1>0 on Z generated by A is

= Z Z exp(—A;t)(z

j=1k=1

Eik)6in(x), = € (24)

and the sequence {, k =1,2,---,r;,7=1,2,---}isan
orthonormal basis in L?(2), then for any z(z) € L*(Q),
it can be expressed as

=3 )

j=1 k=1

Definition 8 An actuators (or a suite of actuators) is
said to be w—strategic if the system under consideration
is regionally approzimately controllable on w.

Before showing our main result in this part, from Eq.(6)
and Eq.(24), for any z € L?(£2), we have

:a/o% (1) () do
Zexp —A;t® 0)(z, fgk)fgk( )do

/9%
j=1 k=1

e 2) 3 S LR RN T

j=1 k=1 n=0 0

:ZZZ pnoj;iajL i o) (2, k)& ()

j=1 k=1 n=0

oco Ty
= E aEa a+1

t) (2, & )€k (),

where Egﬂ(z) Z . g:l)j_ﬂ) f:, z€C,ap,ueC,

Rea > 0 is the generahzed Mittag-Leffler function in
three parameters and here, (p), is the Pochhammer
symbol defined by (see [Erdélyi et al., 1953], Section
2.1.1)

(W =p(p+1)---(p+n—=1), n€N. (25)

Moreover, If «, 8 € C such that Rea > 0, Re > 1,
then (see Section 2.3.4 in [Mathai & Haubold, 2008], or
Section 5.1.1 in [Gorenflo et al., 2014])

aE2 3 =Fap_1—(1+a—B)Eag. (26)

It follows that

T

:i Eaa

j=1k=1

(=At*) (2, k)& () (27)

and

t

/Ta_lKa(T)Bu(t —T1)dT

0

oco Tj p t

=) Z/gﬂcuz t— 1) By o (=N T)dTEj (2),
j=1k=11=1 0

where E, 5(z) = Z:Ol‘(#iﬂf)’ Rea > 0, 8,z € Cis

known as the generalized Mittag-Leffler function in two
parameters and ¢%; = (pp,gi&jk)s § = 1,2, k =
1,2,---,75,©=1,2,---,p. Then we have the following
result.

Theorem 9 For j = 1,2,--
define p X r; matrices G; as

-, arbitrary given b > 0,

9 92 G,
2 2 2
9 G e 95,
Gi= | (28)
p P p
91 952 7" Giry d ey,
where ggk - (pD gl7§]]€) 1 2 k = 1727"'7Tj7
i=1,2,---,p. Then the suite of actuators (D, gi)1<i<p

18 said to be w—strategic if and only if

p>r=max{r;} andrank G; =r;, j=1,2,---. (29)

Proof. For any given b > 0 and all u € L?(0,b; RP),
suppose that z, € L?(w) satisfies

(pwHu, z:)
oo Tj p b g ) (30)
= Z fO 7Eaﬁa7_(1,>\aj )Uz(b — T)dTg;ijk = 0,
j=1k=1i=1
where zjk = (&k, 24 ) 12wy, 4 = 1,2, k=1,2,-+,7;

Moreover, since u = (u1, us, - - -, up) in (30) is arbitrary,



Lemma 2 leads us to

oo Tj

3OS T B a(=At*) gz = 0. (31)

j=1k=1

Then we see that the suite of actuators (D;, gi)1<i<p I8
w—strategic if and only if for any 2, € L?(w), one has

>t Eaa(—M\t*)Giz =0, i =1,2,---,p,t € [0.b]
j=1

= 2z, = 0, where 0 = (0,0,---,0) € RP, z; =
(zj1,2j2, "+, 2jr,) " is a vector in R/ and j = 1,2,

Finally, since t*7'E, o(—A;jt*) > 0 for all ¢t > 0, j =
1,2, -+, we then show our proof by using the Reductio
and absurdum.

a) If the actuators (D;, g;)1<i<p are not w—strategic, i.e.,
the system (1) is not regionally approximately control-
lable on w. There exists a z;«; # 0 satisfying

Gj*zj* =0. (32)

Then if p > r = max{r;}, we see that

rank Gj« < rj«. (33)
b) On the contrary, if p > r = max{r;} and rank G; <
r; for some j = 1,2, - -, there exists a nonzero element
zZ € LQ(W) with 5]‘ = (2j1,2j27---7§jrj)T € R’ such
that

G;z; =0. (34)

Then there exists a nonzero element z € L?(w) satisfying

D 1 By o (= MtY)GiZ =0, t > 0. (35)

Jj=1

This implies that imp,H # L?(w) and the suite of ac-
tuators (D;, ¢i)1<i<p is not w—strategic. The proof is
complete.

Remark 10 1) The system (1) with a =1,

9?2 0? 9?2
A=~ (gt ot am) b

and q(x) being Holder continuous on the compact domain
of R™ is discussed in [Sakawa, 1974], which can be con-
sidered as a particular case of our results.

2) If the multiplicity of the eigenvalues \; of the operator
—A is infinite for some j = 1,2, - and if the system (1)

is regionally approximately controllable, then the number
of the control functions should not be finite.

4 An approach for regional target control

The purpose of this section is to present an approach on
how to achieve the regional approximate controllability
on w with the minimum control energy to steer the sys-
tem (1) from the initial vector zy to a target function
zp in the region w. The method used here is the Hilbert
uniqueness methods (HUMs)[Lions, 1971].

Let Uy be the closed convex set defined by
Up={uec L?(0,b;RP) : pyz(b,u) = 2} (36)

Consider the following minimization problem
b
inf J(u) = inf / lu()|kodt :u € Uy p . (37)
0

Next, we show a direct approach to the solution of the
regional controllability problem with minimum control
energy by utilizing the HUMs.

Let G and E be the sets given by

G={gecL?Q):g=0inQ\w} (38)
and
E={ecL?Q):e=0inw}. (39)

Then for (g,e) € G x E, we have

(g,e) = /ged:c:/ged:c—i- / gedx = 0. (40)

Q w Q\w

Moreover, for any g € G, consider the system

QiDye(t) = A*Qe(t), te€[0,0],

Jim QuD} e (t) = pLg (41)
and the semi-norm on G
b
g€ G gl = [ 1B 6] at 42)
0

where the reflective operator @ is defined in (13).

Lemma 11 (42) defines a norm on G if the system (1)
is regionally approximately controllable on w.



Proof. For any g € G, by Lemma 3, we see that system
(41) can be rewritten as

0D Qip(t) = A*Qp(t), t € [0,b], (43)
im0 D1 Qp(t) = plg

and its unique mild solution is

p(t) = (b= )T KL (b— t)plg. (44)

Moreover, if the system (1) is regionally approximately
controllable on w, we have

ker H*p! = {0}, (45)
ie.,
B*(b—s)* 'K:(b—t)plg=0=g=0. (46)

Hence, for any g € G, it follows from

lgl2 = / 1B K (b — s)ptg|ds = 0

=
B*(b—s)* 'K} (b—s)plg =0

that ||-||¢ is a norm of space G and the proof is complete.

In addition, consider the following system

0DFp(t) = Ay(t) + BB p(t), t € [0,b],

. _ (47)
lim oD '(t) =0
Jim o D79 (t) = 0,

which is controlled by the solution of the system (41).
Let A. G — E+ be
Ag = put(b). (48)

Suppose that J(t) satisfies

oD (t) = A(t),
Tim 3(0) = 2. (49)

For all 2, € L*(w), we see that z, = p, [1/J(b) + J(b)}

and the regional controllability problem is equivalent to
solving the equation

— P (b), (50)

Ay =2

Then we can obtain the following theorem.

Theorem 12 If the system (1) is regionally approxi-
mately controllable on w, then for any z, € L*(w), (50)
has a unique solution g € G and the control

u'(t) = B p(t) (51)

steers the system (1) to zp at time b in w. Moreover, u*
solves the minimum problem (37).

Proof. By Lemma 11, we see that if the system (1) is
regionally approximately controllable on w, then || - || is
a norm of space G. Let the completion of G with respect
to the norm || - ||¢ again by G. Then we will show that
(50) has a unique solution in G.

For any g € G, it follows from the definition of operator
A in (48) that

(9, Ag) = (g, Pt (b))
b
_<gapw/ )4 K A b—s)Bu*(s)ds>
0
b
/ 9. p(b— 8)* Ko (b— s)Bu*(s))ds
0
- / 15" o(0)Pds = gl
0
Hence, A : G — E* is one to one. It follows from

Theorem 2.1 in [Lions, 1971] that (50) admits a unique
solution in G.

Further, let u = u* in problem (1), one has p,z(b,u*) =
2p. Then for any u; € L?(0,b, RP) with p,z(b, u1) = 2,
we obtain that p,, [z(b, u*) — z(b, u1)] = 0. Moreover, for
any g € G, we have (g, p,, [z(b,u*) — z(b,u1)]) = 0 and

0= <pwg fo —5)* LK, (b— s)B(u*(s) — ul(s))ds>
= fo <B* — ) KX (b — s)pkg,u*(s) — u1(5)>ds
= fob (B*o(t), u*(s) — ui(s))ds.

By the Theorem 1.3 in [Lions, 1971], it then follows from

J(u*) - (ut —up) = 2f0b (u*(s),u*(s) —ui(s))ds
=2 Jy (B"p(t),u"(5) — ui(s))ds (52)

that u* solves the minimum energy problem (37) and
the proof is complete.



5 Examples

This section aims to present two examples to show the
effectiveness of our obtained results.

Example 5.1.

Let us consider the following one dimensional time frac-
tional order differential equations of order o € (0,1)
with a zone actuator to show (1) of Remark 7.

0Dz (@, ) = s 2(2,t) + Play anu(t)in [0,1] x [0,8],
lim z(x,t) = zo(z) in [0, 1], (53)
t—0+

z(0,t) = z(1,t) = 0 in[0, b],

where Bu = plg, a,ju and 0 < a1 < ag < 1. More-
- » &ilw) =

over, we see that —A = — 5z with A\; = = 272
i )(vai)L2(o)1)§i. and

V2sin(inx), ®(t)z = ;exp(—

&)z 0,0)&i ().

- i B o~ Nit®) (2
=1

Since A = 8 = is a self-adjoint operator, we have
(H*2)(t) = [B*(b— > K5(b— 1)2] (¢)
= B*(b - t)a_l ; Ea,a(_)‘i(b - t)a)(za 51)51(.%')

— (b—t)o! iEw( M(b =) (,6) [ &i(w)

By fa2 51 _ \/581 iﬂ(a12+a2) sin irr(a227a1)

that Ker(H*) # {0} (Im( ) # L?*(w)) when as — a; €
Q. Then the system (53) is not controllable on [0, 1].

, we get

Next, we show that there exists a sub-region w C 2 such
that the system (53) is possible regional controllability
in w at time b.

Without loss of generality, let a3 = 0, as = 1/2, 2z, =
&k, (k= 44,5 = 1,2,3,---). Based on the argument
above, z, is not reachable on Q = [0, 1]. However, since

1/2

Eo.o(t) >0 (t>0)and /{Z(:z:)dx = @

1T
0

(1 —cos(in/2)),

i=1,2,---,let w = [1/4,3/4], we see that
(H *pizpwz*)(t)

Ea,o(=Xi(b 1 2
_;_:1 %(&751@)L2 (1,2) 2 ¢(a)da

x)dx [1 — cos(im/2)]

V2Eq o (=Xi(b—t 3/4
- % im(b— t)1 a C )f/ 54-7
0.

Then 2z, is possible regional controllability in w =
[1/4,3/4] at time b.

Example 5.2.

Consider the following time fractional differential equa-
tions with a pointwise actuator

0D 2(x,t) = 252z, t) + u(t)d(z — o) in [0,1] x [0,8],
tli%i z(x,0) = zo in [0, 1], (54)
2(0,t) = z(1,£) = 0 in[0, b),

which is excited by a pointwise control located at o €

[0,1]. Here A = 68—:2 generates a strongly continuous
semigroup. In addition, for any ¢ € G, by Lemma 11, we
see that

b
g lgl% = / lo(s)|2ds
0

defines a norm on G, where ¢ is the unique mild solution
of the following problem

QeDye(t) = A*Qp(t), t€[0,0], (55)
. a—1 %
Jm QD™ o(t) = plg.
Now if we consider the following system
oDy (t) = AP(t) + 6(x — o)p(o,t), ¢ € [0,0], (56)

lim (D 4(t) =0
Jm oD (t)
Let w C [0,1] be a subinterval and let A.G' — H~ be

Ag = puip(b). (57)
Then the regional controllability of the example (54) is
equivalent to solving the equation

(58)

Ay =2 —pw{/)v(b), Vzp € LQ(w)



where zZ(t) is the solution of the following system

oD21p(t) = AY(t), te[0,b],
lim zZ(t) = 2.

t—0t

(59)

Thus, by Theorem 12, we can conclude that if the ex-
ample (54) is regionally approximately controllable on
some subregion of [0, 1], for any 2, € L*(w), (58) admits
a unique solution g € G. Moreover, the control

u*(t) = (0, 1)

oo

Z(b — 1) Baa(=Xi(b = 1)) (pL9g, &)éi(0)

i=1

steers (54) to zp at time b and u* solves the minimum
control energy problem (37).

6 CONCLUSIONS

The purpose of this paper is to investigate the regional
controllability of the Riemann-Liouville time fractional
diffusion equations of order & € (0,1). The character-
izations of strategic actuators when the control inputs
appear in the differential equations as distributed in-
puts and an approach on the regional controllability with
minimum energy of the problems (1) are solved. Since
Ei(t) = et, t > 0, together with (27), we get that our
results can be regarded as the extension of the results in
[El Jai et al., 1995] and [Sakawa, 1974].

Moreover, the results presented here can also be ex-
tended to complex fractional order distributed parame-
ter dynamic systems. For instance, the problem of con-
strained regional control of fractional order diffusion sys-
tems with more complicated regional sensing and actu-
ation configurations are of great interest. For more in-
formation on the potential topics related to fractional
distributed parameter systems, we refer the readers to
[Ge et al., 2015] and the references therein.
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