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Abstract

This paper is concerned with the concepts of regional controllability for the Riemann-Liouville time fractional diffusion systems
of order α ∈ (0, 1). The characterizations of strategic actuators to achieve regional controllability are investigated when the
control inputs emerge in the differential equations as distributed inputs. In the end, an approach to guarantee the regional
controllability of the problems under consideration in the considered subregion with minimum energy control is described and
successfully tested through two applications.
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1 Introduction

Recently sub-diffusion processes have attracted increas-
ing interest since the introduction of continuous time
random walks (CTRWs) in [Montroll & Weiss, 1965]
and a large number of contributions have been given to
them ([Mainardi et al., 2007,Metzler & Klafter, 2000],
[Ge et al., 2016b,Fujishiro & Yamamoto, 2014]). Since
CTRW is a random walk subordinated to a simple
renewal process, by [Hilfer & Anton, 1995], it can be
regarded as a generalized physical diffusion process
(including the sub-diffusion process and the super-
diffusion process) and there exists a closed connec-
tion between the time fractional diffusion system and
the sub-diffusion process. Moreover, it is confirmed in
[Metzler & Klafter, 2000] and [Mandelbrot, 1983] that
the time fractional diffusion systems can be used to well
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characterize those sub-diffusion processes, which offer
better performance not achievable before using conven-
tional diffusion systems and surely raise many potential
research opportunities at the same time.

In the case of diffusion system, it is well known that in
general, not all the states can be reached in the whole
domain of interest. So here, we first introduce some no-
tations on the regional controllability of time fractional
diffusion systems when the system under consideration
is only exactly (or approximately) controllability on a
subset of the whole space, which can be regarded as an
extensions of the research work in ([El Jai et al., 1995],
[Sakawa, 1974]). Besides, focusing on regional control-
lability would allow for a reduction in the number of
physical actuators, offer the potential to reduce compu-
tational requirements in some cases, and also possible to
discuss those systems which are not controllable on the
whole domain, etc.

Furthermore, in [Chen & Feng, 2016,Ge et al., 2016a]
and [El Jai & Pritchard, 1988], the authors have shown
that the measurements and actions in practical systems
can be better described by using the notion of actuators
and sensors (including the location, number and spatial
distribution of actuators and sensors [El Jai, 1991]).
Then the contribution of this present work is on the
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regional controllability of the sub-diffusion processes de-
scribed by Riemann-Liouville time fractional diffusion
systems of order α ∈ (0, 1) by using the notion of actu-
ators and sensors. As cited in [Hilfer, 2000], their appli-
cations are rich in many real life. For example, the flow
through porous media ([Uchaikin & Sibatov, 2012]),
or the swarm of robots moving through dense forest
([Spears & Spears, 2012]). We hope that the results here
could provide some insights into the qualitative analysis
of the design and configuration of fractional controller.

The rest of the paper is organized as follows. The math-
ematical concept of regional controllability problem is
presented in the next section. Section 3 is focused on
the characterizations of strategic actuators in the case
of regional controllability. In Section 4, our main results
on the regional controllability analysis of time time frac-
tional diffusion systems are presented and the determi-
nation of the optimal control which achieves the regional
controllability is obtained. Two applications are worked
out in the last section.

2 Statement of the problem

Let Ω be an open bounded subset of Rn with smooth
boundary ∂Ω and we consider the following abstract
Riemann-Liouville time fractional differential system:





0D
α
t z(t) = Az(t) +Bu(t), t ∈ [0, b], 0 < α < 1,

lim
t→0+

0D
α
t z(t) = z0,

(1)

where A generates a strongly continuous semigroup
{Φ(t)}t≥0 on the Hilbert space Z := L2(Ω), −A is a
uniformly elliptic operator ([Renardy & Rogers, 2006],
[Weinberger, 1962]), z ∈ L2(0, b;Z) and the initial
vector z0 ∈ Z. Here 0D

α
t and 0I

α
t denote the Riemann-

Liouville fractional order derivative and integral, re-
spectively, given by [Kilbas et al., 2006]

0D
α
t z(t) =

d

dt
0I

1−α
t z(t), 0 < α < 1 (2)

and

0I
α
t z(t) =

1

Γ(α)

t∫

0

(t− s)α−1z(s)ds, α > 0. (3)

In addition,B is a control operator depends on the num-
ber and the structure of actuators. The control u ∈ U
where U is a Hilbert space. In particular, if the system
is excited by p actuators, one has u ∈ L2(0, b;Rp) and
B : Rp → Z.

We first recall some necessary lemmas to be used after-
wards.

Lemma 1 For any given f ∈ L2 (0, b;Z) , 0 < α < 1, a
function v ∈ L2 (0, b;Z) is said to be a mild solution of
the following system





0D
α
t v(t) = Av(t) + f(t), t ∈ [0, b],

lim
t→0+

0D
α−1
t v(t) = v0 ∈ Z,

(4)

if it satisfies

v(t) = tα−1Kα(t)v0 +

t∫

0

(t− s)α−1Kα(t− s)f(s)ds, (5)

where

Kα(t) = α

∞∫

0

θφα(θ)Φ(t
αθ)dθ. (6)

Here {Φ(t)}t≥0 is the strongly continuous semigroup gen-

erated by operator A, φα(θ) =
1
αθ

−1− 1
αψα(θ

− 1
α ) and ψα

is a probability density function defined by (θ > 0)

ψα(θ) =
1

π

∞∑

n=1

(−1)n−1θ−αn−1Γ(nα+ 1)

n!
sin(nπα) (7)

such that ([Mainardi et al., 2007])

∞∫

0

ψα(θ)dθ = 1 and

∞∫

0

θνφα(θ)dθ =
Γ(1 + ν)

Γ(1 + αν)
, ν ≥ 0.

Proof. It follows from the Laplace transforms

ṽ(λ) =

∞∫

0

e−λsv(s)ds and f̃(λ) =

∞∫

0

e−λsf(s)ds (8)

that the system (1) is equivalent to ([Lin & Lu, 2013])

λαṽ(λ) − v0 −Aṽ(λ) = f̃(λ). (9)

Then

ṽ(λ) = (λαI −A)−1(v0 + f̃(λ))

=
∫∞
0 e−λαsΦ(s)[v0 + f̃(λ)]ds.

(10)

Consider the stable probability density function (7). By
the arguments in [Mainardi et al., 2007], we see that
ψα(θ)(θ > 0) satisfies the following property

ψ̃α(λ) =

∞∫

0

e−λθψα(θ)dθ = e−λα

, α ∈ (0, 1). (11)
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Let s = τα. We obtain that

ṽ(λ) = α

∞∫

0

e−λατα

Φ(τα)τα−1[v0 + f̃(λ)]dτ

= α

∞∫

0

∞∫

0

e−λτθψα(θ)Φ(τ
α)τα−1[v0 + f̃(λ)]dθdτ

= σ1(v0) + σ2(f),

where σ1(v0) = α
∫∞
0

∫∞
0 e−λτθψα(θ)Φ(τ

α)τα−1dθdτv0
and σ2(f) = α

∫∞
0

∫∞
0 e−λτθψα(θ)Φ(τ

α)τα−1f̃(λ)dθdτ.
Suppose that t = τθ. Then we have

σ1(v0) = α
∫∞
0

∫∞
0 e−λtψα(θ)Φ

(
tα

θα

)
tα−1

θα dθdt v0

=
∫∞
0 e−λtα

∫∞
0 ψα(θ)Φ (tαθ−α) tα−1θ−αdθdt v0

=
∫∞
0 e−λttα−1α

∫∞
0

1
αθ

−1− 1
αψα(θ

− 1
α )θΦ (tαθ)dθdt v0

and

σ2(f)

= α
∫∞
0

∫∞
0

∫∞
0 e−λτθψα(θ)Φ(τ

α)τα−1e−λsf(s)dsdθdτ

= α
∫∞
0

∫∞
0

∫∞
0 e−λ(t+s)ψα(θ)Φ

(
tα

θα

)
tα−1

θα f(s)dsdθdt

=
∫∞
0 e−λtα

∫ t

0

∫∞
0 ψα(θ)Φ

(
(t−s)α

θα

)
(t−s)α−1f(s)

θα dθdsdt

=
∫∞
0
e−λtα

∫ t

0

∫∞
0
θ 1
αθ

−1− 1
αψα(θ

− 1
α )Φ((t−s)αθ)f(s)

(t−s)1−α dθdsdt.

Let φα(θ) =
1
αθ

−1− 1
αψα(θ

− 1
α ) and

Kα(t) = α
∫∞
0 θφα(θ)Φ(t

αθ)dθ. Then we get

v(t) = tα−1Kα(t)v0 +

t∫

0

(t− s)α−1Kα(t− s)f(s)ds

and the proof is complete.

Lemma 2 [Dacorogna, 2007] LetΩ ⊆ Rn be an open set
and C∞

0 (Ω) be the class of infinitely differentiable func-
tions on Ω with compact support in Ω and u ∈ L1

loc(Ω)
be such that

∫

Ω

u(x)ψ(x)dx = 0, ∀ψ ∈ C∞
0 (Ω). (12)

Then u = 0 almost everywhere in Ω.

Lemma 3 [Klimek, 2009] Let the reflection operator Q
on interval [0, b] be as follows:

Qf(t) := f(b− t). (13)

Then the following equations hold:

Q0I
α
t f(t) = tI

α
b Qf(t), Q0D

α
t f(t) = tD

α
b Qf(t) (14)

and

0I
α
t Qf(t) = QtI

α
b f(t), 0D

α
t Qf(t) = QtD

α
b f(t). (15)

Letω ⊆ Ωbe a given region of positive Lebesguemeasure
and zb ∈ L2(ω)(the target function) be a given element.
By Lemma 1, the unique mild solution z(., u) of (1) can
be given by

z(t, u) = tα−1Kα(t)z0 +

t∫

0

(t− s)α−1Kα(t− s)Bu(s)ds.

Taking into account that (1) is a line system, by the
Proposition 3.1 in [Ge et al., 2016a], it suffices to sup-
pose that z0 = 0 in the following discussion. Let H :
L2(0, b;Rp) → Z be

Hu =

b∫

0

Kα(b − s)

(b − s)1−α
Bu(s)ds, ∀u ∈ L2(0, b;Rp). (16)

In order to state the main results, the following two as-
sumptions are supposed to hold all over the article:

(A1) B is a densely defined operator and B∗ exists.

(A2) (BKα(t))
∗ exists and (BKα(t))

∗ = K∗
α(t)B

∗.

In particular, when B ∈ L (Rp, Z) is a bounded lin-
ear operator from Rp to Z, it is easy to see that (A1)
and (A2) hold. Suppose that {Φ∗(t)}t≥0, generated by
the adjoint operator of A, is also a strongly continu-
ous semigroup in the space Z. For any v ∈ L2(Ω), by
〈Hu, v〉 = 〈u,H∗v〉, we have

H∗v = B∗(b− s)α−1K∗
α(b − s)v, (17)

where 〈·, ·〉 is the duality pairing of the space Z,B∗ is the
adjoint operator ofB andK∗

α(t) = α
∫∞
0
θφα(θ)Φ

∗(tαθ)dθ.
Consider now the restriction map

pω : L2(Ω) → L2(ω), (18)

defined by pωz = z|ω, is the projection operator on ω.
Then the adjoint operator of pω can be given by

p∗ωz(x) :=

{
z(x), x ∈ ω,

0, x ∈ Ω\ω.
(19)

and we are ready to state the following definition.

Definition 4 (i) The system (1) is said to be regionally
exactly controllable on ω if for any zb ∈ L2(ω) at time b,
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there exists a control u ∈ L2(0, b;Rp) such that

pωz(b, u) = zb. (20)

(ii) The system (1) is said to be regionally approximately
controllable on ω at time b if for any zb ∈ L2(ω), given
ε > 0, there exists a control u ∈ L2(0, b;Rp) such that

‖pωz(b, u)− zb‖ ≤ ε. (21)

Proposition 5 Let (H) be defined as (16). Then follow-
ing properties are equivalent:

(1) The system (1) is regionally exactly controllable on ω
at time b;
(2) impωH = L2(ω);
(3) kerpω + imH = Z;
(4) For z ∈ L2(ω), there exists a γ > 0 such that

‖z‖L2(ω) ≤ γ‖H∗p∗ωz‖L2(0,b;Rp). (22)

Proof. Obviously, (1) ⇔ (2).

(2) ⇒ (3) : For any z ∈ L2(ω), let ẑ be the extension
of z to L2(Ω). Since impωH = L2(ω), there exists u ∈
L2(0, b;Rp), z1 ∈ kerpω such that ẑ = z1 +Hu.

(3) ⇒ (2) : For any z̃ ∈ Z, from (3), z̃ = z1 + z2,
where z1 ∈ kerpω and z2 ∈ imH . Then there exists a
u ∈ L2(0, b;Rp) such that Hu = z2. Hence, it follows
from the definition of pω that impωH = L2(ω).

(1) ⇔ (4) : Here, we note that the equivalence between
(1) and (4) can be deduced based on the following general
result in [Pritchard & Wirth, 1978]:

Let E,F,G be reflexive Hilbert spaces and f ∈ L(E,G),
g ∈ L(F,G). Then the following two properties are
equivalent

(1) imf ⊆ img;
(2) ∃ γ > 0 such that ‖f∗z∗‖E∗ ≤ γ‖g∗z∗‖F∗ , ∀z∗ ∈ G.
By choosing E = G = L2(ω), F = L2(0, b;Rp), f =
IdL2(ω) and g = pωH , we then obtain the results and
completes the proof.

Proposition 6 There is an equivalence among the fol-
lowing properties:

〈1〉 The system (1) is regionally approximately control-
lable on ω at time b;
〈2〉 impωH = L2(ω);
〈3〉 kerpω + imH = Z;
〈4〉 The operator pωHH

∗p∗ω is positive definite.

Proof. Similar to the argument in Proposition 5, we
obtain that 〈1〉 ⇔ 〈2〉 ⇔ 〈3〉. Finally, we show that
〈2〉 ⇔ 〈4〉. In fact, it is well known that

impωH = L2(ω)

⇔ (pωHu, z) = 0, ∀u ∈ L2(0, b;Rp) implies z = 0.

Let u = H∗p∗ωz. Then we see that

impωH = L2(ω)

⇔ (pωHH
∗p∗ωz, z) = 0 implies z = 0, z ∈ L2(ω),

i.e., the operator pωHH
∗p∗ω is positive definite and the

proof is complete.

Remark 7 (1) The definition 4 can be applied to the
case where ω = Ω. Note that there exists a system, which
is not controllable on the whole domain but regionally
controllable (see Example 5.1 below).

(2) A system which is exactly (respectively approxi-
mately) controllable on ω is exactly (respectively approx-
imately) controllable on ω1 for every ω1 ⊆ ω.

3 Regional strategic actuators

In this section, we will explore the characteristic of ac-
tuators when the system (1) is regionally approximately
controllable.

As pointed out in [El Jai & Pritchard, 1988], an actua-
tor is a couple (D, g) where D ⊆ Ω is the support of the
actuator and g is its spatial distribution. To state our
main results, it is supposed that the system under con-
sideration is excited by p actuators (Di, gi)1≤i≤p and let

Bu =
p∑

i=1

pDi
gi(x)ui(t), where p ∈ N, gi(x) ∈ L2(Ω),

u = (u1, u2, · · · , up) and ui(t) ∈ L2(0, b). Then the sys-
tem (1) can be rewritten as follows:





0D
α
t z(t, x) = Az(t, x) +

p∑
i=1

pDi
gi(x)ui(t)

in Ω× [0, b],

lim
t→0+

z(t, x) = z0(x) in Ω.

(23)

Moreover, suppose that −A is a uniformly elliptic op-
erator. By [Courant & Hilbert, 1966], we get that there
exists a sequence (λj , ξjk) : k = 1, 2, · · · , rj , j = 1, 2, · · ·
such that

(1) For each j = 1, 2, · · ·, λj is the eigenvalue of the
operator −A with multiplicities rj and

0 < λ1 < λ2 < · · · < λj < · · · , lim
j→∞

λj = ∞.
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(2) For each j = 1, 2, · · ·, ξjk (k = 1, 2, · · · , rj) is the
orthonormal eigenfunction corresponding to λj , i.e.,

(ξjkm
, ξjkn

) =

{
1, km = kn,

0, km 6= kn,

where 1 ≤ km, kn ≤ rj , km, kn ∈ N and (·, ·) is the inner
product of space L2(Ω).

Then we see that the strongly continuous semigroup
{Φ(t)}t≥0 on Z generated by A is

Φ(t)z(x) =

∞∑

j=1

rj∑

k=1

exp(−λjt)(z, ξjk)ξjk(x), x ∈ Ω (24)

and the sequence {ξjk, k = 1, 2, · · · , rj , j = 1, 2, · · ·} is an
orthonormal basis in L2(Ω), then for any z(x) ∈ L2(Ω),
it can be expressed as

z(x) =
∞∑

j=1

rj∑

k=1

(z, ξjk)ξjk(x).

Definition 8 An actuators (or a suite of actuators) is
said to be ω−strategic if the system under consideration
is regionally approximately controllable on ω.

Before showing our main result in this part, from Eq.(6)
and Eq.(24), for any z ∈ L2(Ω), we have

Kα(t)z(x)

= α

∞∫

0

θφα(θ)Φ(t
αθ)z(x)dθ

= α

∞∫

0

θφα(θ)

∞∑

j=1

rj∑

k=1

exp(−λjtαθ)(z, ξjk)ξjk(x)dθ

=

∞∑

j=1

rj∑

k=1

∞∑

n=0

α(−λjtα)n
n!

(z, ξjk)ξjk(x)

∞∫

0

θn+1φαdθ

=

∞∑

j=1

rj∑

k=1

∞∑

n=0

α(n+ 1)!(−λjtα)n
Γ(αn+ α+ 1)n!

(z, ξjk)ξjk(x)

=

∞∑

j=1

rj∑

k=1

αE2
α,α+1(−λjtα)(z, ξjk)ξjk(x),

where Eµ
α,β(z) :=

∞∑
n=0

(µ)n
Γ(αn+β)

zn

n! , z ∈ C, α, β, µ ∈ C,

Re α > 0 is the generalized Mittag-Leffler function in
three parameters and here, (µ)n is the Pochhammer
symbol defined by (see [Erdélyi et al., 1953], Section
2.1.1)

(µ)n = µ(µ+ 1) · · · (µ+ n− 1), n ∈ N. (25)

Moreover, If α, β ∈ C such that Re α > 0, Re β > 1,
then (see Section 2.3.4 in [Mathai & Haubold, 2008], or
Section 5.1.1 in [Gorenflo et al., 2014])

αE2
α,β = Eα,β−1 − (1 + α− β)Eα,β . (26)

It follows that

Kα(t)z(x) =

∞∑

j=1

rj∑

k=1

Eα,α(−λjtα)(z, ξjk)ξjk(x) (27)

and

t∫

0

τα−1Kα(τ)Bu(t − τ)dτ

=

∞∑

j=1

rj∑

k=1

p∑

i=1

t∫

0

gijkui(t− τ)α−1Eα,α(−λjτα)dτξjk(x),

where Eα,β(z) :=
∞∑
i=0

zi

Γ(αi+β) , Re α > 0, β, z ∈ C is

known as the generalized Mittag-Leffler function in two
parameters and gijk = (pDi

gi, ξjk), j = 1, 2, · · ·, k =
1, 2, · · · , rj , i = 1, 2, · · · , p. Then we have the following
result.

Theorem 9 For j = 1, 2, · · ·, arbitrary given b > 0,
define p× rj matrices Gj as

Gj =




g1j1 g
1
j2 · · · g1jrj

g2j1 g
2
j2 · · · g2jrj

...
...

...
...

gpj1 g
p
j2 · · · gpjrj




p×rj

, (28)

where gijk = (pDi
gi, ξjk), j = 1, 2, · · ·, k = 1, 2, · · · , rj ,

i = 1, 2, · · · , p. Then the suite of actuators (Di, gi)1≤i≤p

is said to be ω−strategic if and only if

p ≥ r = max{rj} and rank Gj = rj , j = 1, 2, · · · . (29)

Proof. For any given b > 0 and all u ∈ L2(0, b;Rp),
suppose that z∗ ∈ L2(ω) satisfies

(pωHu, z∗)

=
∞∑
j=1

rj∑
k=1

p∑
i=1

∫ b

0
Eα,α(−λjτ

α)
τ1−α ui(b − τ)dτgijkzjk = 0,

(30)

where zjk = (ξjk, z∗)L2(ω), j = 1, 2, · · ·, k = 1, 2, · · · , rj .
Moreover, since u = (u1, u2, · · · , up) in (30) is arbitrary,
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Lemma 2 leads us to

∞∑

j=1

rj∑

k=1

tα−1Eα,α(−λjtα)gijkzjk = 0. (31)

Then we see that the suite of actuators (Di, gi)1≤i≤p is
ω−strategic if and only if for any z∗ ∈ L2(ω), one has

∞∑

j=1

tα−1Eα,α(−λjtα)Gjzj = 0, i = 1, 2, · · · , p, t ∈ [0.b]

⇒ z∗ = 0, where 0 = (0, 0, · · · , 0) ∈ Rp, zj =
(zj1, zj2, · · · , zjrj )T is a vector in Rrj and j = 1, 2, · · ·.

Finally, since tα−1Eα,α(−λjtα) > 0 for all t ≥ 0, j =
1, 2, · · · , we then show our proof by using the Reductio
and absurdum.

a) If the actuators (Di, gi)1≤i≤p are not ω−strategic, i.e.,
the system (1) is not regionally approximately control-
lable on ω. There exists a zj∗k 6= 0 satisfying

Gj∗zj∗ = 0. (32)

Then if p ≥ r = max{rj}, we see that

rank Gj∗ < rj∗ . (33)

b) On the contrary, if p ≥ r = max{rj} and rank Gj <
rj for some j = 1, 2, · · · , there exists a nonzero element

z̃ ∈ L2(ω) with z̃j =
(
z̃j1, z̃j2, · · · , z̃jrj

)T ∈ Rrj such
that

Gj z̃j = 0. (34)

Then there exists a nonzero element z̃ ∈ L2(ω) satisfying

∞∑

j=1

tα−1Eα,α(−λjtα)Gj z̃j = 0, t ≥ 0. (35)

This implies that impωH 6= L2(ω) and the suite of ac-
tuators (Di, gi)1≤i≤p is not ω−strategic. The proof is
complete.

Remark 10 1) The system (1) with α = 1,

A = −
(
∂2

∂x21
+

∂2

∂x22
+ · · ·+ ∂2

∂x2n

)
+ q

and q(x) being Hölder continuous on the compact domain
of Rn is discussed in [Sakawa, 1974], which can be con-
sidered as a particular case of our results.

2) If the multiplicity of the eigenvalues λj of the operator
−A is infinite for some j = 1, 2, · · · and if the system (1)

is regionally approximately controllable, then the number
of the control functions should not be finite.

4 An approach for regional target control

The purpose of this section is to present an approach on
how to achieve the regional approximate controllability
on ω with the minimum control energy to steer the sys-
tem (1) from the initial vector z0 to a target function
zb in the region ω. The method used here is the Hilbert
uniqueness methods (HUMs)[Lions, 1971].

Let Ub be the closed convex set defined by

Ub = {u ∈ L2 (0, b;Rp) : pωz(b, u) = zb}. (36)

Consider the following minimization problem

inf
u
J(u) = inf

u





b∫

0

‖u(t)‖2Rpdt : u ∈ Ub



 . (37)

Next, we show a direct approach to the solution of the
regional controllability problem with minimum control
energy by utilizing the HUMs.

Let G and E be the sets given by

G = {g ∈ L2(Ω) : g = 0 in Ω\ω} (38)

and

E = {e ∈ L2(Ω) : e = 0 in ω}. (39)

Then for (g, e) ∈ G× E, we have

(g, e) =

∫

Ω

gedx =

∫

ω

gedx+

∫

Ω\ω

gedx = 0. (40)

Moreover, for any g ∈ G, consider the system




QtD

α
b ϕ(t) = A∗Qϕ(t), t ∈ [0, b],

lim
t→0+

QtD
α−1
b ϕ(t) = p∗ωg

(41)

and the semi-norm on G

g ∈ G→ ‖g‖2G =

b∫

0

‖B∗ϕ(t)‖2dt, (42)

where the reflective operator Q is defined in (13).

Lemma 11 (42) defines a norm on G if the system (1)
is regionally approximately controllable on ω.
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Proof. For any g ∈ G, by Lemma 3, we see that system
(41) can be rewritten as





0D
α
t Qϕ(t) = A∗Qϕ(t), t ∈ [0, b],

lim
t→0+

0D
α−1
t Qϕ(t) = p∗ωg

(43)

and its unique mild solution is

ϕ(t) = (b − t)α−1K∗
α(b− t)p∗ωg. (44)

Moreover, if the system (1) is regionally approximately
controllable on ω, we have

kerH∗p∗ω = {0}, (45)

i.e.,

B∗(b− s)α−1K∗
α(b− t)p∗ωg = 0 ⇒ g = 0. (46)

Hence, for any g ∈ G, it follows from

‖g‖2G =

b∫

0

‖B∗K∗
α(b− s)p∗ωg‖2ds = 0

⇔
B∗(b − s)α−1K∗

α(b− s)p∗ωg = 0

that ‖·‖G is a norm of spaceG and the proof is complete.

In addition, consider the following system





0D
α
t ψ(t) = Aψ(t) +BB∗ϕ(t), t ∈ [0, b],

lim
t→0+

0D
α−1
t ψ(t) = 0,

(47)

which is controlled by the solution of the system (41).
Let Λ: G→ E⊥ be

Λg = pωψ(b). (48)

Suppose that ψ̃(t) satisfies





0D
α
t ψ̃(t) = Aψ̃(t),

lim
t→0+

ψ̃(t) = z0.
(49)

For all zb ∈ L2(ω), we see that zb = pω

[
ψ(b) + ψ̃(b)

]

and the regional controllability problem is equivalent to
solving the equation

Λg := zb − pωψ̃(b), (50)

Then we can obtain the following theorem.

Theorem 12 If the system (1) is regionally approxi-
mately controllable on ω, then for any zb ∈ L2(ω), (50)
has a unique solution g ∈ G and the control

u∗(t) = B∗ϕ(t) (51)

steers the system (1) to zb at time b in ω. Moreover, u∗

solves the minimum problem (37).

Proof. By Lemma 11, we see that if the system (1) is
regionally approximately controllable on ω, then ‖·‖G is
a norm of space G. Let the completion of G with respect
to the norm ‖ · ‖G again by G. Then we will show that
(50) has a unique solution in G.

For any g ∈ G, it follows from the definition of operator
Λ in (48) that

〈g,Λg〉= 〈g, pωψ(b)〉

=

〈
g, pω

b∫

0

(b− s)α−1Kα(b − s)Bu∗(s)ds

〉

=

b∫

0

〈
g, pω(b− s)α−1Kα(b− s)Bu∗(s)

〉
ds

=

b∫

0

‖B∗ϕ(t)‖2ds = ‖g‖2G.

Hence, Λ : G → E⊥ is one to one. It follows from
Theorem 2.1 in [Lions, 1971] that (50) admits a unique
solution in G.

Further, let u = u∗ in problem (1), one has pωz(b, u
∗) =

zb. Then for any u1 ∈ L2(0, b,Rp) with pωz(b, u1) = zb,
we obtain that pω [z(b, u∗)− z(b, u1)] = 0.Moreover, for
any g ∈ G, we have 〈g, pω [z(b, u∗)− z(b, u1)]〉 = 0 and

0 =
〈
p∗ωg,

∫ b

0
(b− s)α−1Kα(b− s)B(u∗(s)− u1(s))ds

〉

=
∫ b

0

〈
B∗(b − s)α−1K∗

α(b− s)p∗ωg, u
∗(s)− u1(s)

〉
ds

=
∫ b

0
〈B∗ϕ(t), u∗(s)− u1(s)〉ds.

By the Theorem 1.3 in [Lions, 1971], it then follows from

J ′(u∗) · (u∗ − u1) = 2
∫ b

0 〈u∗(s), u∗(s)− u1(s)〉ds
= 2

∫ b

0 〈B∗ϕ(t), u∗(s)− u1(s)〉ds
= 0,

(52)

that u∗ solves the minimum energy problem (37) and
the proof is complete.
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5 Examples

This section aims to present two examples to show the
effectiveness of our obtained results.

Example 5.1.

Let us consider the following one dimensional time frac-
tional order differential equations of order α ∈ (0, 1)
with a zone actuator to show (1) of Remark 7.





0D
α
t z(x, t) =

∂2

∂x2 z(x, t) + p[a1,a2]u(t)in [0, 1]× [0, b],

lim
t→0+

z(x, t) = z0(x) in [0, 1],

z(0, t) = z(1, t) = 0 in[0, b],

(53)

where Bu = p[a1,a2]u and 0 ≤ a1 ≤ a2 ≤ 1. More-

over, we see that −A = − ∂2

∂x2 with λi = i2π2, ξi(x) =
√
2 sin(iπx), Φ(t)z =

∞∑
i=1

exp(−λit)(z, ξi)L2(0,1)ξi. and

Kα(t)z(x) =

∞∑

i=1

Eα,α(−λitα)(z, ξi)L2(0,1)ξi(x).

Since A = − ∂2

∂x2 is a self-adjoint operator, we have

(H∗z)(t) =
[
B∗(b − t)α−1K∗

α(b− t)z
]
(t)

= B∗(b − t)α−1
∞∑
i=1

Eα,α(−λi(b− t)α)(z, ξi)ξi(x)

= (b− t)α−1
∞∑
i=1

Eα,α(−λi(b− t)α)(z, ξi)
∫ a2

a1
ξi(x)dx.

By
∫ a2

a1
ξi(x)dx =

√
2

iπ sin iπ(a1+a2)
2 sin iπ(a2−a1)

2 , we get

that Ker(H∗) 6= {0} (Im(H) 6= L2(ω)) when a2 − a1 ∈
Q. Then the system (53) is not controllable on [0, 1].

Next, we show that there exists a sub-region ω ⊆ Ω such
that the system (53) is possible regional controllability
in ω at time b.

Without loss of generality, let a1 = 0, a2 = 1/2, z∗ =
ξk, (k = 4j, j = 1, 2, 3, · · ·). Based on the argument
above, z∗ is not reachable on Ω = [0, 1]. However, since

Eα,α(t) > 0 (t ≥ 0) and

1/2∫

0

ξi(x)dx =

√
2

iπ
(1− cos(iπ/2)) ,

i = 1, 2, · · · , let ω = [1/4, 3/4], we see that

(H∗p∗ωpωz∗)(t)

=
∞∑
i=1

Eα,α(−λi(b−t)α)
(b−t)1−α (ξi, ξk)L2( 1

4
, 3
4
)

∫ 1/2

0
ξi(x)dx

=
∑
i6=4j

√
2Eα,α(−λi(b−t)α)

iπ(b−t)1−α

∫ 3/4

1/4
ξi(x)ξ4j(x)dx [1− cos(iπ/2)]

6= 0.

Then z∗ is possible regional controllability in ω =
[1/4, 3/4] at time b.

Example 5.2.

Consider the following time fractional differential equa-
tions with a pointwise actuator





0D
α
t z(x, t) =

∂2

∂x2 z(x, t) + u(t)δ(x− σ) in [0, 1]× [0, b],

lim
t→0+

z(x, 0) = z0 in [0, 1],

z(0, t) = z(1, t) = 0 in[0, b],

(54)

which is excited by a pointwise control located at σ ∈
[0, 1]. Here A = ∂2

∂x2 generates a strongly continuous
semigroup. In addition, for any g ∈ G, by Lemma 11, we
see that

g → ‖g‖2G =

b∫

0

‖ϕ(s)‖2ds

defines a norm onG, where ϕ is the unique mild solution
of the following problem




QtD

α
b ϕ(t) = A∗Qϕ(t), t ∈ [0, b],

lim
t→0+

QtD
α−1
b ϕ(t) = p∗ωg.

(55)

Now if we consider the following system





0D
α
t ψ(t) = Aψ(t) + δ(x− σ)ϕ(σ, t), t ∈ [0, b],

lim
t→0+

0D
α−1
t ψ(t) = 0.

(56)

Let ω ⊆ [0, 1] be a subinterval and let Λ:G→ H⊥ be

Λg = pωψ(b). (57)

Then the regional controllability of the example (54) is
equivalent to solving the equation

Λg := zb − pωψ̃(b), ∀zb ∈ L2(ω) (58)
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where ψ̃(t) is the solution of the following system





0D
α
t ψ̃(t) = Aψ̃(t), t ∈ [0, b],

lim
t→0+

ψ̃(t) = z0.
(59)

Thus, by Theorem 12, we can conclude that if the ex-
ample (54) is regionally approximately controllable on
some subregion of [0, 1], for any zb ∈ L2(ω), (58) admits
a unique solution g ∈ G. Moreover, the control

u∗(t) = ϕ(σ, t)

=

∞∑

i=1

(b− t)α−1Eα,α(−λi(b− t)α)(p∗ωg, ξi)ξi(σ)

steers (54) to zb at time b and u∗ solves the minimum
control energy problem (37).

6 CONCLUSIONS

The purpose of this paper is to investigate the regional
controllability of the Riemann-Liouville time fractional
diffusion equations of order α ∈ (0, 1). The character-
izations of strategic actuators when the control inputs
appear in the differential equations as distributed in-
puts and an approach on the regional controllabilitywith
minimum energy of the problems (1) are solved. Since
E1(t) = et, t ≥ 0, together with (27), we get that our
results can be regarded as the extension of the results in
[El Jai et al., 1995] and [Sakawa, 1974].

Moreover, the results presented here can also be ex-
tended to complex fractional order distributed parame-
ter dynamic systems. For instance, the problem of con-
strained regional control of fractional order diffusion sys-
tems with more complicated regional sensing and actu-
ation configurations are of great interest. For more in-
formation on the potential topics related to fractional
distributed parameter systems, we refer the readers to
[Ge et al., 2015] and the references therein.
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