Regional boundary controllability of time fractional diffusion processes

FUDONG GE

College of Information Science and Technology, Donghua University, Shanghai 201620, PR China
gefd2011@gmail.com

YANGQUAN CHEN*

Mechatronics, Embedded Systems and Automation Lab, University of California, Merced,
CA 95343, USA
*Corresponding author. Email: ychen53@ucmerced.edu

AND

CHUNHAI KOU

Department of Applied Mathematics, Donghua University, Shanghai 201620, PR China
kouchunhai@dhu.edu.cn

[Received on 27 September 2015; revised on 6 December 2015; accepted on 4 January 2016]

In this paper, we are concerned with the regional boundary controllability of the Riemann–Liouville time fractional diffusion systems of order \(\alpha \in (0, 1] \). The characterizations of strategic actuators are established when the systems studied are regionally boundary controllable. The determination of control to achieve regional boundary controllability with minimum energy is explored. We also show a connection between the regional internal controllability and regional boundary controllability. Several useful results for the optimal control from an implementation point of view are presented in the end.

Keywords: regional boundary controllability; time fractional diffusion processes; strategic actuators; minimum energy control.

1. Introduction

In the past several decades, a lot of work has been carried out to deal with the problem of steering a system to a target state, especially after the introduction of the notions of actuators and sensors (El Jai & Pritchard, 1988; El Jai, 1991). However, in many real-world applications, we are only concerned with those cases where the target states of the problem studied are defined in a given subregion of the whole space domain. Then the regional idea emerges and we refer the reader to Sakawa (1974) and Zerrik et al. (1999, 2000) for more information on the concept of regional analysis for the Gaussian diffusion process. Besides, it should be pointed out that not only does the concept of regional analysis make sense closer to real-world problems, it also generalizes the results of existence contributions.

In addition, after the introduction of continuous time random walks by Montroll & Weiss (1965), the anomalous diffusion equation of fractional-order has attracted increasing interest and has been proved to be a useful tool in modelling many real-world problems (Adams & Gelhar, 1992; Metzler & Klafter, 2000, 2004; Meerschaert & Scals, 2006; Cartea & Negrete, 2007). More precisely, the mean squared displacement of the anomalous diffusion process is described by a power law of fractional exponent, which is smaller (in the case of sub-diffusion) or bigger (in the case of super-diffusion) than that of the Brownian motion. It is confirmed that the time fractional diffusion system, where the
traditional first-order time derivative is replaced by a Riemann–Liouville time fractional derivative of order \(\alpha \in (0, 1] \), can be used to well characterize those sub-diffusion process (Metzler & Klafter, 2000, 2004). For example, the flow through porous media microscopic processes (Uchaikin & Sibatov, 2013), or swarm of robots moving through dense forest (Spears & Spears, 2012) etc. With regard to fractional calculus, as we all know, it has shown great potential in science and engineering applications and some phenomena such as self-similarity, non-stationary, non-Gaussian process and short- or long-memory process are all closely related to fractional calculus (Podlubny, 1999; Agrawal, 2002; Kilbas et al., 2006). It is now widely believed that using fractional calculus in modelling can better capture the complex dynamics of natural and man-made systems, and fractional-order controls can offer better performance not achievable before using integer-order controls (Mandelbrot, 1983; Torvik & Bagley, 1984), which in fact raise important theoretical challenges and open new research opportunities.

Motivated by the argument above, the contribution of this present work is on the regional boundary controllability of the anomalous transport process described by time fractional diffusion systems. More precisely, for an open bounded subset \(\Omega \subseteq \mathbb{R}^n \) with smooth boundary \(\partial \Omega \), we consider:

- a subregion \(\Gamma \) of \(\partial \Omega \) which may be unconnected.
- various kinds of actuators (zone, pointwise, internal or boundary) acting as controls.

The rest of this paper is organized as follows. The mathematical concept of regional boundary controllability and several preliminaries are presented in the next section; then we present an example which is regional boundary controllability but not globally boundary controllable. Section 3 is focused on the characterizations of \(\Gamma \)-strategic actuators and our main result on regional boundary controllability with the minimum energy problem is given in Section 4. In Section 5, a connection between internal and boundary regional controllability is established and, at last, we work out some useful results for the optimal control from an implementation point of view.

2. Regional boundary controllability

2.1 Problem statement

In this paper, we consider the following abstract time fractional diffusion system:

\[
\begin{align*}
0D_t^\alpha z(t) &= Az(t) + Bu(t), \quad t \in [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} z(t) &= z_0,
\end{align*}
\]

(2.1)

where \(A \) generates a strongly continuous semi-group \(\{\Phi(t)\}_{t \geq 0} \) on the Hilbert space \(Z := H^1(\Omega) \), \(z \in L^2(0, b; Z) \) and the initial vector \(z_0 \in Z \). It is supposed that \(B : \mathbb{R}^p \to Z \) is the control operator and \(u \in L^2(0, b; \mathbb{R}^p) \) depends on the number and structure of actuators. Moreover, the Riemann–Liouville fractional derivative \(0D_t^\alpha \) and the Riemann–Liouville fractional integral \(0I_t^\alpha \) are, respectively, given by Podlubny (1999) and Kilbas et al. (2006)

\[
0D_t^\alpha z(t) = \frac{d}{dt} 0I_t^{1-\alpha} z(t), \quad \alpha \in (0, 1] \quad \text{and} \quad 0I_t^\alpha z(t) = \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} z(s) \, ds, \quad \alpha > 0.
\]

(2.2)
Definition 2.1 (Ge et al., 2015b) For any given \(f \in L^2(0, b; Z) \), \(\alpha \in (0, 1] \), a function \(v \in L^2(0, b; Z) \) is said to be a mild solution of the following system:

\[
\begin{cases}
0 D_t^\alpha v(t) = Av(t) + f(t), & t \in [0, b], \\
\lim_{t \to 0^+} 0 D_t^{1-\alpha} v(t) = v_0 \in Z,
\end{cases}
\]

if it satisfies

\[
z(t) = K_\alpha(t)v_0 + \int_0^t (t-s)^{\alpha-1} K_\alpha(t-s)f(s) \, ds, \tag{2.4}
\]

where \(K_\alpha(t) = \alpha \int_0^\infty \theta \phi_\alpha(\theta) \Phi(t \alpha \theta) \, d\theta \), \(\{\Phi(t)\}_{t \geq 0} \) is the strongly continuous semi-group generated by \(A \), \(\phi_\alpha(\theta) = (1/\alpha) \theta^{-1}\alpha^{-1} \psi_\alpha(\theta^{-1}/\alpha) \) and \(\psi_\alpha \) is a probability density function defined by

\[
\psi_\alpha(\theta) = \frac{1}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \theta^{-\alpha-1} \Gamma(n \alpha + 1)}{n! \sin(n \pi \alpha)}, \quad \theta > 0. \tag{2.5}
\]

In addition, we have Mainardi et al. (2000) and Zhou & Jiao (2010)

\[
\int_0^\infty \psi_\alpha(\theta) \, d\theta = 1 \quad \text{and} \quad \int_0^\infty \theta^\nu \phi_\alpha(\theta) \, d\theta = \frac{\Gamma(1 + \nu)}{\Gamma(1 + \alpha \nu)}, \quad \nu \geq 0. \tag{2.6}
\]

By Lemma 2.1, the mild solution \(z(\cdot, u) \) of (2.1) can be given by

\[
z(t, u) = t^{\alpha-1} K_\alpha(t)z_0 + \int_0^t (t-s)^{\alpha-1} K_\alpha(t-s)Bu(s) \, ds. \tag{2.7}
\]

Let \(H : L^2(0, b; \mathbb{R}^p) \to Z \) be

\[
Hu = \int_0^b (b-s)^{\alpha-1} K_\alpha(b-s)Bu(s) \, ds \quad \forall u \in L^2(0, b; \mathbb{R}^p). \tag{2.8}
\]

Suppose that \(\{\Phi^*_s(t)\}_{t \geq 0} \), generated by the adjoint operator of \(A \), is also a strongly continuous semi-group on the space \(Z \). For any \(v \in Z \), it follows from \(\langle Hu, v \rangle = \langle u, H^*v \rangle \) that

\[
H^*v = B^*(b-s)^{\alpha-1} K_\alpha^*(b-s)v, \tag{2.9}
\]

where \(\langle \cdot, \cdot \rangle \) is the duality pairing of space \(Z \), \(B^* \) is the adjoint operator of \(B \) and

\[
K_\alpha^*(t) = \alpha \int_0^\infty \theta \phi_\alpha(\theta) \Phi^*(t \theta) \, d\theta.
\]

Let \(\gamma : H^1(\Omega) \to H^{1/2}(\partial \Omega) \) be the trace operator of order zero, which is linear continuous and surjective, \(\gamma^* \) denotes the adjoint operator. Moreover, if \(\Gamma \subseteq \partial \Omega \), \(p_\Gamma : H^{1/2}(\partial \Omega) \to H^{1/2}(\Gamma) \) defined by

\[
p_\Gamma z := z|_\Gamma \tag{2.10}
\]
and, for any $\tilde{z} \in H^{1/2}(\Gamma)$, the adjoint operator p^{*}_Γ can be given by

$$p^{*}_\Gamma \tilde{z}(x) := \begin{cases} \tilde{z}(x), & x \in \Gamma, \\ 0, & x \in \partial \Omega \setminus \Gamma. \end{cases}$$ (2.11)

2.2 Definition and characterizations

Let $\omega \subseteq \Omega$ be a given region of positive Lebesgue measure. Denote the projection operator on ω by the restriction map

$$p_\omega : H^1(\Omega) \rightarrow H^1(\omega);$$ (2.12)

then we are ready to state the following definitions.

Definition 2.2 The system (2.1) is said to be exactly (respectively, approximately) regionally controllable on ω at time b if, for any $y_b \in H^1(\omega)$, given $\epsilon > 0$, there exists a control $u \in L^2(0, b; \mathbb{R}^p)$ such that

$$p_\omega z(b, u) = y_b \quad \text{(respectively, } \|p_\omega z(b, u) - y_b\|_{H^1(\omega)} \leq \epsilon).$$ (2.13)

Definition 2.3 The system (2.1) is said to be exactly (respectively, approximately) regionally boundary controllable on $\Gamma \subseteq \partial \Omega$ at time b if, for any $z_b \in H^{1/2}(\Gamma)$, given $\epsilon > 0$, there exists a control $u \in L^2(0, b; \mathbb{R}^p)$ such that

$$p_{\Gamma} (\gamma z(b, u)) = z_b \quad \text{(respectively, } \|p_{\Gamma} (\gamma z(b, u)) - z_b\|_{H^{1/2}(\Gamma)} \leq \epsilon).$$ (2.14)

Proposition 2.1 The following properties are equivalent:

1. the system (2.1) is exactly regionally boundary controllable on Γ at time b;
2. $\text{Im}(p_{\Gamma} \gamma H) = H^{1/2}(\Gamma)$;
3. $\text{Ker}(p_{\Gamma}) + \text{Im}(\gamma H) = H^{1/2}(\partial \Omega)$;
4. for any $z \in H^{1/2}(\Gamma)$, there exists a positive constant c such that

$$\|z\|_{H^{1/2}(\Gamma)} \leq c \|H^{* \gamma} p^{*}_\Gamma z\|_{L^2(0, b; \mathbb{R}^p)}.$$ (2.15)

Proof. By Definition 2.3, it is not difficult to see that (1) \iff (2).

(2) \implies (3): For any $z \in H^{1/2}(\Gamma)$, let \tilde{z} be the extension of z to $H^{1/2}(\partial \Omega)$. Since $\text{Im}(p_{\Gamma} \gamma H) = H^{1/2}(\Gamma)$, there exists $u \in L^2(0, b; \mathbb{R}^p)$, $z_1 \in \text{Ker}(p_{\Gamma})$ such that $\tilde{z} = z_1 + \gamma Hu$.

(3) \implies (2): For any $\tilde{z} \in H^{1/2}(\partial \Omega)$, $\tilde{z} = z_1 + z_2$, where $z_1 \in \text{Ker}(p_{\Gamma})$ and $z_2 \in \text{Im}(\gamma H)$. Then there exists a control $u \in L^2(0, b; \mathbb{R}^p)$ such that $\gamma Hu = z_2$. Hence, it follows from the definition of p_{Γ} that $\text{Im}(p_{\Gamma} \gamma H) = H^{1/2}(\Gamma)$.

(1) \iff (4): the equivalence between (1) and (4) can be deduced from the following general result (Pritchard & Wirth, 1978): let E, F, G be reflexive Hilbert spaces and $f \in \mathcal{L}(E, G)$, $g \in \mathcal{L}(F, G)$. Then the following two properties are equivalent:

1. $\text{Im}(f) \subseteq \text{Im}(g)$,
2. $\exists \gamma > 0$ such that $\|f^{*} z^{*}\|_{E^*} \leq \gamma \|g^{*} z^{*}\|_{F^*}, \forall z^{*} \in G$.

By choosing $E = G = H^{1/2}(\Gamma)$, $F = L^2(0, b; \mathbb{R}^p)$, $f = \text{Id}_{H^{1/2}(\Gamma)}$ and $g = p_{\Gamma} \gamma H$, then we complete the proof. \qed
PROPOSITION 2.2 There is an equivalence among the following properties:

1. The system (2.1) is approximately regionally boundary controllable on \(\Gamma \) at time \(b \);
2. \(\text{Im}(p_{\Gamma}^* \gamma H) = H^{1/2}(\Gamma) \);
3. \(\text{Ker}(p_{\Gamma}) + \text{Im}(\gamma H) = H^{1/2}(\partial \Omega) \);
4. the operator \(p_{\Gamma}^* \gamma H^* \gamma^* p_{\Gamma}^* \) is positive definite.

Proof. By Proposition 2.1, (1) \(\Leftrightarrow \) (2) \(\Leftrightarrow \) (3). Finally, we show that (2) \(\Leftrightarrow \) (4). In fact, since

\[
\text{Im}(p_{\Gamma}^* \gamma H) = H^{1/2}(\Gamma) \Leftrightarrow (p_{\Gamma}^* \gamma H u, z)_{H^{1/2}(\Gamma)} = 0 \quad \text{for any } u \in L^2(0, b; \mathbb{R}^p) \text{ implies } z = 0,
\]

where \((\cdot, \cdot)_{H^{1/2}(\Gamma)}\) is the inner product of \(H^{1/2}(\Gamma) \). Let \(u = H^* \gamma^* p_{\omega} z \). Then we see that

\[
\text{Im}(p_{\Gamma}^* \gamma H) = H^{1/2}(\Gamma) \Leftrightarrow (p_{\Gamma}^* \gamma H H^* \gamma^* p_{\Gamma}^* z, z)_{H^{1/2}(\Gamma)} = 0 \text{ implies } z = 0, \quad z \in H^{1/2}(\Gamma),
\]

i.e. the operator \(p_{\Gamma}^* \gamma H H^* \gamma^* p_{\Gamma}^* \) is positive definite and the proof is complete. \(\square \)

REMARK 2.1 (1) A system which is boundary controllable on \(\Gamma \) is boundary controllable on \(\Gamma_1 \subseteq \Gamma \) for every \(\Gamma_1 \subseteq \Gamma \).

(2) The definitions (2.2) can be applied to the case where \(\Gamma = \partial \Omega \) and there exist systems that are not boundary controllable but which are regionally boundary controllable. This is illustrated by the following example.

2.3 An example

Consider the following two-dimensional time fractional diffusion equation defined on \(\Omega = [0, 1] \times [0, 1] \), which is excited by a zone actuator:

\[
\begin{align*}
\alpha D^\alpha_t z(x, y, t) &= \frac{\partial^2}{\partial x^2}z(x, y, t) + \frac{\partial^2}{\partial y^2}z(x, y, t) + p_D u(t) \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} \alpha D^{1-\alpha}_t z(x, y, t) &= 0 \quad \text{in } \Omega, \\
\xi(x, \eta, t) &= 0 \quad \text{on } \partial \Omega \times [0, b],
\end{align*}
\]

where \(\alpha \in (0, 1] \), \(D = [0] \times [d_1, d_2] \subseteq \Omega \), \(A = \partial^2/\partial x^2 + \partial^2/\partial y^2 \) with \(\lambda_{ij} = -(i^2 + j^2)\pi^2, \xi_{ij}(x, y) = 2a_{ij} \cos(i\pi x) \cos(j\pi y), \quad a_{ij} = (1 - \lambda_{ij})^{-1/2}, \quad \Phi(t)z = \sum_{i,j=1}^\infty \exp(\lambda_{ij} t)(z, \xi_{ij})z\xi_{ij} \) and \(K_{\alpha}(t)z(x) = \alpha \int_0^\infty \theta \phi_{\alpha}(\theta)\Phi(\theta)z(x) \, d\theta = \sum_{i,j=1}^\infty E_{\alpha,\alpha}(\lambda_{ij} t^\alpha)(z, \xi_{ij})z\xi_{ij}(x) \). Furthermore, since

\[
(H^* \gamma^* z)(t) = (b - t)^{\alpha - 1} \sum_{i,j=1}^\infty E_{\alpha,\alpha}(\lambda_{ij} (b - t)^{\alpha})(\gamma^* z, \xi_{ij})z(p_D, \xi_{ij})z
\]

and \((p_D, \xi_{ij})z = (2a_{ij}/\pi)[\sin(j\pi d_2) - \sin(j\pi d_1) + j\pi (\cos(j\pi d_2) - \cos(j\pi d_1))], \) there exists \(d_1, d_2 \in [0, 1] \) satisfying \(\text{Ker}(H^*) \neq \{0\} \) \((\text{Im}(p_D H) \neq L^2(\omega)) \), i.e. the system (2.16) is not boundary controllable.
Moreover, let \(d_1 = 0, \ d_2 = \frac{1}{2} \), \(\Gamma = [0] \times [\frac{1}{4}, \frac{3}{4}] \) and \(z_* = \xi_{ij}(0, y), (i, j = 4k, k = 1, 2, 3, \ldots) \). Obviously, \(z_* \) is not reachable on \(\partial \Omega \). However, since
\[
E_{\alpha, \alpha}(t) > 0 \quad (t \geq 0) \quad \text{and} \quad (p_D, \xi_{ij})_Z = \frac{2a_{ij}}{j\pi}[\sin(j\pi/2) + j\pi(\cos(j\pi/2) - 1)], \quad j = 1, 2, \ldots ,
\]
we see that
\[
H^* \gamma^* p_D^* z_*(t) = \sum_{i,j=1}^{\infty} \frac{E_{\alpha, \alpha}(\lambda_{ij}(b-t)^{\alpha})}{(b-t)^{1-\alpha}}(\xi_{ij}, \gamma^* z_*)_{H^{1/2}(\Gamma)}(p_D, \xi_{ij})_Z
\]
\[
= \sum_{i,j=1}^{\infty} \frac{2a_{ij}E_{\alpha, \alpha}(\lambda_{ij}(b-t)^{\alpha})}{j\pi(b-t)^{1-\alpha}}(\xi_{ij}, \gamma^* z_*)_{H^{1/2}(\Gamma)}
\]
\[
\times [\sin(j\pi/2) + j\pi(\cos(j\pi/2) - 1)]
\]
\[+ 0. \quad \text{(2.17)}
\]
Hence \(z_* \) is regionally boundary controllable on \(\Gamma = [0] \times [\frac{1}{4}, \frac{3}{4}] \).

To end this section, we finally recall a necessary lemma to be used afterwards.

Lemma 2.1 (Dacorogna, 2008) Let \(\Omega \subseteq \mathbb{R}^n \) be an open set and \(C_0^\infty(\Omega) \) be the class of infinitely differentiable functions on \(\Omega \) with compact support in \(\Omega \) and \(u \in L^1_{loc}(\Omega) \) be such that
\[
\int_\Omega u(x) \psi(x) \, dx = 0, \quad \forall \psi \in C_0^\infty(\Omega).
\]
Then \(u = 0 \) almost everywhere in \(\Omega \).

3. Regional strategic actuators

The characteristic of actuators to achieve the regionally approximately boundary controllable of the system (2.1) will be explored in this section.

As cited in El Jai & Pritchard (1988), an actuator can be expressed by a couple \((D, g)\) where \(D \subseteq \Omega \) is the support of the actuator and \(g \) is its spatial distribution. To state our main results, it is supposed that the control is made by \(p \) actuators \((D_i, g_i)\) for \(i \leq p \) and let \(B u = \sum_{i=1}^{p} p_{D_i} g_i(x) u_i(t) \), where \(p \in \mathbb{N}, g_i(x) \in \mathbb{Z} \), \(u = (u_1, u_2, \ldots, u_p) \) and \(u_i(t) \in L^2(0, b) \). As cited in Coopmans et al. (2015), all these distributed parameter systems with moving sensors and actuators form the so-called cyber-physical systems, which are rich in real-world applications. For instance, in the pest-spreading process, \(p \) is the number of the spreading machines and \(u_i(\cdot) \) stands for the control input strategic of every spreading machine with respect to time \(t \) (Cao et al., 2015). Then the system (2.1) can be rewritten as
\[
\begin{cases}
0D_t^\mu z(t, x) = Az(t, x) + \sum_{i=1}^{p} p_{D_i} g_i(x) u_i(t), \quad (t, x) \in [0, b] \times \Omega, \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} z(t, x) = z_0(x).
\end{cases}
\]
\[\text{(3.1)}\]
Moreover, we suppose that \(-A\) is a self-adjoint uniformly elliptic operator, by Courant & Hilbert (1966), we get that there exists a sequence \((\lambda_j, \xi_{jk}) : k = 1, 2, \ldots, j = 1, 2, \ldots\) such that

1. For each \(j = 1, 2, \ldots, \lambda_j\) is the eigenvalue of operator \(A\) with multiplicities \(r_j\) and
 \[
 0 > \lambda_1 > \lambda_2 > \cdots > \lambda_j > \cdots, \quad \lim_{j \to \infty} \lambda_j = -\infty.
 \]
2. For each \(j = 1, 2, \ldots, \xi_{jk}(k = 1, 2, \ldots, r_j)\) is the orthonormal eigenfunction corresponding to \(\lambda_j\), i.e.,
 \[
 (\xi_{jk}, \xi_{jk'}) = \begin{cases} 1, & k_m = k_n, \\ 0, & k_m \neq k_n, \end{cases}
 \]
 where \(1 \leq k_m, k_n \leq r_j, k_m, k_n \in \mathbb{N}\) and \((\cdot, \cdot)\) is the inner product of space \(Z\).

Hence, the sequence \(\{\xi_{jk}, k = 1, 2, \ldots, r_j, j = 1, 2, \ldots\}\) is an orthonormal basis in \(Z\), the strongly continuous semi-group \(\{\Phi(t)\}_{t \geq 0}\) on \(Z\) generated by \(A\) is

\[
\Phi(t)z(x) = \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} \exp(\lambda_j t)(z, \xi_{jk})\xi_{jk}(x), \quad x \in \Omega
\]

and for any \(z(x) \in Z\), it can be expressed as

\[
z(x) = \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} (z, \xi_{jk})\xi_{jk}(x).
\]

Definition 3.1 A actuators (suite of actuators) is said to be \(\Gamma\)-strategic if the system under consideration is regionally approximately boundary controllable on \(\Gamma\) at time \(b\).

Before to show our main result in this part, by Eq. (3.2), for any \(z \in L^2(\Omega)\), we have

\[
K_{\alpha}(t)z(x) = \alpha \int_0^\infty \theta \phi_{\alpha}(\theta)\Phi(t^\alpha \theta)z(x) \, d\theta
\]

\[
= \alpha \int_0^\infty \theta \phi_{\alpha}(\theta) \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} \exp(\lambda_j t^\alpha \theta)(z, \xi_{jk})\xi_{jk}(x) \, d\theta
\]

\[
= \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} \sum_{n=0}^{\infty} \alpha(\lambda_j t^\alpha)^n \int_0^\infty \theta^{n+1} \phi_{\alpha} \, d\theta
\]

\[
= \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} \sum_{n=0}^{\infty} \frac{\alpha(n+1)! (\lambda_j t^\alpha)^n}{\Gamma(\alpha n + \alpha + 1) n!} (z, \xi_{jk})\xi_{jk}(x)
\]

\[
= \sum_{j=1}^{\infty} \sum_{k=1}^{r_j} \alpha E_{\alpha, \alpha+1}^2(\lambda_j t^\alpha)(z, \xi_{jk})\xi_{jk}(x),
\]

where \(E_{\alpha, \beta}^\mu(z) := \sum_{n=0}^{\infty} ((\mu)_{n}/\Gamma(\alpha n + \beta))(z^n/n!)\), \(z \in \mathbb{C}\), \(\alpha, \beta, \mu \in \mathbb{C}\), \(\Re \alpha > 0\) is the generalized Mittag–Leffler function in three parameters and, here, \((\mu)_{n}\) is the Pochhammer symbol defined by (see
Erdélyi et al., 1953, Section 2.1.1)

$$(\mu)_n = \mu(\mu + 1) \cdots (\mu + n - 1), \quad n \in \mathbb{N}. \tag{3.3}$$

If $\alpha, \beta \in \mathbb{C}$ such that $\Re \alpha > 0$, $\Re \beta > 1$, then (see Mathai & Haubold, 2008, Section 2.3.4 or Gorenflo et al., 2014, Section 5.1.1)

$$\alpha E_{\alpha,\beta}^2 = E_{\alpha,\beta - 1} - (1 + \alpha - \beta)E_{\alpha,\beta}. \tag{3.4}$$

It then follows that

$$K_\alpha(t)z(x) = \sum_{j=1}^{r_j} \sum_{k=1}^{s_j} E_{\alpha,\alpha}(\lambda_j t^\alpha)(z, \xi_{jk})\xi_{jk}(x) \tag{3.5}$$

and

$$\int_0^t \tau^{\alpha-1}K_\alpha(\tau)Bu(t - \tau) \, d\tau = \sum_{j=1}^{r_j} \sum_{k=1}^{s_j} \sum_{i=1}^p \int_0^t g_{jk}^i u_i(t - \tau) \tau^{\alpha-1}E_{\alpha,\alpha}(\lambda_j \tau^\alpha) \, d\tau \xi_{jk}(x), \tag{3.6}$$

where $g_{jk}^i = (p_{D_i}, g_i, \xi_{jk})$, $j = 1, 2, \ldots$, $k = 1, 2, \ldots, r_j$, $i = 1, 2, \ldots, p$ and $E_{\alpha,\beta}(z) := \sum_{k=0}^\infty z^k / \Gamma(\alpha i + \beta)$, $\Re \alpha > 0$, $\beta, z \in \mathbb{C}$ is known as the generalized Mittag–Leffler function in two parameters.

Theorem 3.1 For any $j = 1, 2, \ldots$, define $p \times r_j$ matrices G_j as

$$G_j = \begin{bmatrix} g_{11}^j & g_{12}^j & \cdots & g_{1r_j}^j \\ g_{21}^j & g_{22}^j & \cdots & g_{2r_j}^j \\ \vdots & \vdots & \ddots & \vdots \\ g_{p1}^j & g_{p2}^j & \cdots & g_{pr_j}^j \end{bmatrix}, \tag{3.7}$$

where $g_{jk}^i = (p_{D_i}, g_i, \xi_{jk})$, $j = 1, 2, \ldots$, $k = 1, 2, \ldots, r_j$, $i = 1, 2, \ldots, p$. Then the suite of actuators $(D_i, g_i)_{1 \leq i \leq p}$ is said to be Γ-strategic if and only if

$$p \geq r = \max\{r_j\} \quad \text{and} \quad \text{rank} \ G_j = r_j \quad \text{for} \ j = 1, 2, \ldots. \tag{3.8}$$

Proof. For any $z_* \in H^{1/2}(\Gamma)$, denote by $\langle \cdot, \cdot \rangle_{H^{1/2}(\Gamma)}$ the inner product of space $H^{1/2}(\Gamma)$; we then see that

$$\langle p_{\Gamma}^{\alpha} Hu, z_* \rangle_{H^{1/2}(\Gamma)} = \sum_{j=1}^\infty \sum_{k=1}^{r_j} \sum_{i=1}^p \int_0^b \tau^{\alpha-1}E_{\alpha,\alpha}(\lambda_j \tau^\alpha)u_i(b - \tau) \, d\tau g_{jk}^i z_{jk} = 0, \quad t \in [0, b], \tag{3.9}$$

where $z_{jk} = (p_{\Gamma}^{\alpha} \xi_{jk}, z_*)_{H^{1/2}(\Gamma)}$, $j = 1, 2, \ldots$, $k = 1, 2, \ldots, r_j$. Further, Lemma 2.1 gives

$$\sum_{j=1}^\infty \sum_{k=1}^{r_j} \int_0^t \tau^{\alpha-1}E_{\alpha,\alpha}(\lambda_j \tau^\alpha)g_{jk}^i z_{jk} = 0_p := (0, 0, \ldots, 0) \in \mathbb{R}^p \quad \text{for} \ t > 0, i = 1, 2, \ldots, p. \tag{3.10}$$

Then we conclude that the suite of actuators $(D_i, g_i)_{1 \leq i \leq p}$ is Γ-strategic if and only if

$$\sum_{j=1}^\infty b^{\alpha-1}E_{\alpha,\alpha}(\lambda_j b^\alpha)G_j z_{jk} = 0_p \Rightarrow z_* = 0, \tag{3.11}$$
where \(z_j = (z_{j1}, z_{j2}, \ldots, z_{jr_j})^T \) is a vector in \(\mathbb{R}^{r_j} \) and \(j = 1, 2, \ldots \).

(a) If we assume that \(p \geq r = \max\{r_j\} \) and rank \(G_j < r_j \) for some \(j = 1, 2, \ldots, \), there exists a non-zero element \(\tilde{z} \in H^{1/2}(\Gamma) \) with \(\tilde{z}_j = (\tilde{z}_{j1}, \tilde{z}_{j2}, \ldots, \tilde{z}_{jr_j})^T \in \mathbb{R}^{r_j} \) such that

\[
G_j \tilde{z}_j = 0_p. \tag{3.12}
\]

It then follows from \(E_{\alpha,\alpha}(\lambda_j t^\alpha) > 0 \) (\(t \geq 0 \)) that we can find a non-zero vector \(\tilde{z} \) satisfying

\[
\sum_{j=1}^{\infty} b^{\alpha-1} E_{\alpha,\alpha}(\lambda_j b^{\alpha}) G_j \tilde{z}_j = 0_p. \tag{3.13}
\]

This means that the actuators \((D_i, f_i)_{1 \leq i \leq p}\) are not \(\Gamma \)-strategic.

(b) However, on the contrary, if the actuators \((D_i, g_i)_{1 \leq i \leq p}\) are not \(\Gamma \)-strategic, i.e., \(\text{Im}(p_\Gamma \gamma H) \neq H^{1/2}(\Gamma) \), then there exists a non-zero element \(z \neq 0 \) satisfying

\[
(p_\Gamma \gamma Hu, z)_{H^{1/2}(\Gamma)} = 0 \quad \text{for all } u \in L^2(0, b; \mathbb{R}^p). \tag{3.14}
\]

Then we can find a non-zero element \(z_j \in \mathbb{R}^{r_j} \) such that

\[
G_j z_j = 0_p. \tag{3.15}
\]

This allows us to complete the conclusion of the theorem. \(\square \)

4. Regional boundary controllability with minimum energy control

In this section, we explore the possibility of finding a minimum energy control when the system (2.1) can be steered from a given initial vector \(z_0 \) to a target function \(z_b \) on the boundary subregion \(\Gamma \). The method used here is an extension of those in El Jai & Pritchard (1988), El Jai (1991), Zerrik et al. (2000, 1999) and Sakawa (1974).

Consider the following minimization problem:

\[
\begin{cases}
\inf_{u} J(u) = \int_0^b \|u(t)\|_\mathbb{R}^p \, dt, \\
u \in U_b = \{u \in L^2(0, b; \mathbb{R}^p) : p_\Gamma \gamma z(b, u) = z_b\},
\end{cases} \tag{4.1}
\]

where, obviously, \(U_b \) is a closed convex set. We then show a direct approach to the solution of the minimum energy problem (4.1).

Theorem 4.1 If the system (2.1) is regionally approximately boundary controllable on \(\Gamma \), then, for any \(z_b \in H^{1/2}(\Gamma) \), the minimum energy problem (4.1) has a unique solution given by

\[
u^*(t) = (p_\Gamma \gamma H)^* R_\Gamma^{-1} (z_b - p_\Gamma \gamma b^{\alpha-1} K_\alpha(b) z_0), \tag{4.2}
\]

where \(R_\Gamma = p_\Gamma \gamma HH^* \gamma^* p_\Gamma^* \) and \(H^* \) is defined in Eq. (2.9).
Proof. To begin with, since the solution of (2.1) excited by the control u^* is given by

$$ z(t, u^*) = t^{a-1} K_a(t) z_0 + \int_0^t (t - s)^{a-1} K_a(t - s) B u^*(s) \, ds, \quad (4.3) $$

we get that

$$ p_{\Gamma} \gamma z(b, u^*) = p_{\Gamma} \gamma \left[b^{a-1} K_a(b) z_0 + \int_0^b (b - s)^{a-1} K_a(b - s) B u^*(s) \, ds \right] $$

$$ = p_{\Gamma} \gamma b^{a-1} K_a(b) z_0 + p_{\Gamma} \gamma H (p_{\Gamma} \gamma H)^* R_{\Gamma}^{-1} (z_b - p_{\Gamma} \gamma b^{a-1} K_a(b) z_0) $$

$$ = z_b. $$

Next, we show that if the system (2.1) is regionally approximately boundary controllable on Γ at time b, then the operator R_{Γ} is coercive. In fact, for any $z_1 \in H^{1/2}(\Gamma)$, there exists a control $u \in L^2(0, b, \mathbb{R}^p)$ such that

$$ z_1 = p_{\Gamma} \gamma [b^{a-1} K_a(b) z_0 + H u] \quad (4.4) $$

and

$$ (R_{\Gamma} z_1, z_1)_{H^{1/2}(\Gamma)} = \| H^* \gamma^* p_{\Gamma}^* z_1 \|_{L^2(0, b, \mathbb{R}^p)}^2 $$

$$ = \| B^* (b - \cdot)^{a-1} K_a^*(b - \cdot) \gamma^* p_{\Gamma}^* z_1 \|_{L^2(0, b, \mathbb{R}^p)}^2 $$

$$ \geq \| z_1 \|_{H^{1/2}(\Gamma)}^2. $$

Moreover, since $R_{\Gamma} \in \mathcal{L}(H^{1/2}(\Gamma), H^{1/2}(\Gamma))$, by Theorem 1.1 in Lions (1971), it follows that R_{Γ} is an isomorphism.

Finally, we prove that u^* solves the minimum energy problem (4.1). For this purpose, since $p_{\Gamma} \gamma z(b, u^*) = z_b$, for any $u \in L^2(0, b, \mathbb{R}^p)$ with $p_{\Gamma} \gamma z(b, u) = z_b$, one has

$$ p_{\Gamma} \gamma [z(b, u^*) - z(b, u)] = 0, \quad (4.5) $$

which follows that

$$ 0 = p_{\Gamma} \gamma \int_0^b (b - s)^{a-1} K_a(b - s) B [u^*(s) - u(s)] \, ds = p_{\Gamma} \gamma H [u^* - u]. $$

Thus, by

$$ J'(u^*)(u^* - u) = 2 \int_0^b \langle u^*(s) - u(s), u^*(s) \rangle \, ds $$

$$ = 2 \int_0^b \langle u^*(s) - u(s), (p_{\Gamma} \gamma H)^* R_{\Gamma}^{-1} (z_b - p_{\Gamma} \gamma K_a(b) z_0) \rangle \, ds $$

$$ = 2 \int_0^b \langle p_{\Gamma} \gamma H [u^*(s) - u(s)], R_{\Gamma}^{-1} (z_b - p_{\Gamma} \gamma K_a(b) z_0) \rangle \, ds $$

$$ = 0, $$

it follows that $J(u) \geq J(u^*)$, i.e., u^* solves the minimum energy problem (4.1) and the proof is complete. \qed
5. The connection between internal and boundary regional controllability

Based on an intension of the regional controllability of integer-order differential equations developed in Zerrik et al. (1999, 2000), we here give a transfer on the internal and boundary regional controllability of fractional-order sub-diffusion equations (2.1) and develop two types of controls, i.e., zone or pointwise.

5.1 Internal and boundary regional controllability

In this part, we present an internal and boundary regional controllability transfer of the problem (2.1). To this end, suppose that \(z(b,u) \in Z \) and we first define an operator

\[
T : H^{1/2}(\partial \Omega) \rightarrow H^1(\Omega) \text{ such that } \gamma T g = g \quad \forall g \in H^{1/2}(\partial \Omega),
\]

(5.1)

which is linear and continuous (Lions, 1988). Let \(z_b \in H^{1/2}(\Gamma) \) with the extension \(p^{*}_\Gamma z_b \in H^{1/2}(\partial \Omega) \) and consider the sets

\[
\Omega_1 = \{ Tp^{*}_\Gamma z_b \in Z \mid z_b \in H^{1/2}(\Gamma) \} \quad \text{and} \quad \Omega_2 = \bigcup_{z_b \in H^{1/2}(\Gamma)} \text{Supp } Tp^{*}_\Gamma z_b.
\]

(5.2)

For any \(r > 0 \) be arbitrary sufficiently small, consider

\[
D_r = \bigcup_{z \in \Gamma} B(z, r) \quad \text{and let} \quad \omega_r = D_r \cap \Omega_2,
\]

(5.3)

where \(B(z, r) \) is a ball of radius \(r \) centred in \(z \).

Theorem 5.1 If the system (2.1) is exactly (respectively, approximately) controllable on \(\omega_r \), then it is also exactly (respectively, approximately) boundary controllable on \(\Gamma \).

Proof. Let \(z_b \in H^{1/2}(\Gamma) \) be the target function. By utilizing the trace theorem (Retherford, 1993), there exists \(Tp^{*}_\Gamma z_b \in Z \) with a bounded support such that \(\gamma(Tp^{*}_\Gamma z_b) = p^{*}_\Gamma z_b \). Then

1. if the system (2.1) is exactly controllable on \(\omega_r \), for any \(y_b \in H^1(\omega_r) \), there exists a control \(u \in L^2(0, b; \mathbb{R}^p) \) such that

\[
p_{\omega_r} z(b, u) = y_b.
\]

(5.4)

Then \(p_{\omega_r} Tp^{*}_\Gamma z_b \in H^1(\omega_r) \) and there exists a control \(u \in L^2(0, b; \mathbb{R}^p) \) such that

\[
p_{\omega_r} z(b, u) = p_{\omega_r} Tp^{*}_\Gamma z_b \quad \text{and} \quad \gamma p_{\omega_r} z(b, u) = p^{*}_\Gamma z_b.
\]

(5.5)

Thus \(p_{\Gamma} \gamma p_{\omega_r} z(b, u) = z_b \), i.e., the system (2.1) is exactly boundary controllable on \(\Gamma \).

2. if the system (2.1) is approximately controllable on \(\omega_r \), for and \(\varepsilon > 0 \) and any \(y_b \in H^1(\omega_r) \), there exists a control \(u \in L^2(0, b; \mathbb{R}^p) \) such that

\[
\|p_{\omega_r} z(b, u) - y_b\|_{H^1(\omega_r)} \leq \varepsilon.
\]

(5.6)

Then for any \(\varepsilon > 0 \), there exists a control \(u \in L^2(0, b; \mathbb{R}^p) \) such that

\[
\|p_{\omega_r} z(b, u) - p_{\omega_r} Tp^{*}_\Gamma z_b\|_{H^1(\omega_r)} \leq \varepsilon.
\]

(5.7)
Moreover, by the continuity of the trace mapping γ on $H^1(\omega_r)$, one has
\[
\|\gamma(p_{\omega_r} z(b, u)) - \gamma(p_{\omega_r} T p_{\Gamma}^* z_b)\|_{H^1(\partial\omega_r)} \leq \varepsilon, \tag{5.8}
\]
therefore $\|p_{\Gamma} \gamma(p_{\omega_r} z(b, u)) - z_b\|_{H^1(\Gamma)} \leq \varepsilon$. Thus (2.1) is approximately boundary controllable on Γ and the proof is complete. \hfill \Box

5.2 Regional boundary target control

This part is concerned with the approach for the control which drives the problem (2.1) from z_0 to z_b on Γ. Let $z_b \in H^{1/2}(\Gamma)$ with the extension $p_{\Gamma}^* z_b \in H^{1/2}(\partial\Omega)$. By Theorem 5.1, the problem may be solved by driving the system (2.1) from z_0 to $y_b \in H^1(\omega_r)$ on ω_r.

The following two sets will be used in our discussion:
\[
G = \{ g \in H^1(\Omega) : g = 0 \text{ in } \Omega \setminus \omega_r \} \quad \text{and} \quad E = \{ e \in H^1(\Omega) : e = 0 \text{ in } \omega_r \}. \tag{5.9}
\]

5.2.1 Case of zone actuator

Let us consider the system (2.1) with a zone actuator (D, f) where $D \subseteq \Omega$ is the support of the actuator and f is its spatial distribution. Then the system can be written in the form
\[
\begin{cases}
0D^\alpha_z(x, t) = Az(x, t) + pDf(x)u(t) \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} I^{1-\alpha}_t z(x, t) = z_0(x) \quad \text{in } \Omega, \\
z(x, t) = 0 \quad \text{on } \partial\Omega \times [0, b].
\end{cases} \tag{5.10}
\]

For any $g \in G$, consider the system
\[
\begin{cases}
Q_0 I^{1-\alpha}_t \varphi(x, t) = A^* Q \varphi(x, t) \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} Q_0 I^{1-\alpha}_t \varphi(x, t) = p_{\omega_r}^* g(x) \quad \text{in } \Omega, \\
\varphi(x, t) = 0 \quad \text{on } \partial\Omega \times [0, b],
\end{cases} \tag{5.11}
\]
where Q is a reflection operator on interval $[0, b]$ such that
\[
Qf(t) := f(b - t). \tag{5.12}
\]

By the argument in Małgorzata (2009), we see that the following properties on operator Q hold:
\[
Q_0 I^{\alpha}_t f(t) = I^{\alpha}_b Qf(t), \quad Q_0 D^\alpha_t f(t) = D^\alpha_b Qf(t) \tag{5.13}
\]
and
\[
0D^\alpha_t Qf(t) = Q_0 I^{\alpha}_b f(t), \quad 0D^\alpha_t Qf(t) = Q_0 D^\alpha_b f(t). \tag{5.14}
\]

Then system (5.11) can be rewritten as
\[
\begin{cases}
0D^\alpha_t Q \varphi(x, t) = A^* Q \varphi(x, t) \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0D^\alpha_t Q [(b - t)^{1-\alpha} \varphi(x, t)] = p_{\omega_r}^* g(x) \quad \text{in } \Omega, \\
\varphi(x, t) = 0 \quad \text{on } \partial\Omega \times [0, b].
\end{cases} \tag{5.15}
\]
and its unique mild solution is $\varphi(x, t) = (b - t)^{a-1}K_a^*(b - t)p_{\omega_r}^*g(x)$. Moreover, we define the semi-norm

$$g \in G \rightarrow \|g\|_G^2 = \int_0^b (f, \varphi(\cdot, t))^2_{L^2(D)} dt$$

(5.16)
on G and obtain the following result.

Lemma 5.1 (5.16) defines a norm on G if the system (5.10) is regionally approximately controllable on ω at time b.

Proof. For any $g \in G$, if the system (5.10) is regionally approximately controllable on ω, we have

$$\text{Ker}(H^*p_{\omega_r}^*) = \text{Ker}[(b - s)^{a-1}(f, K_a^*(b - s)p_{\omega_r}^*g)]_{L^2(D)} = \text{Ker}[(f, \varphi(\cdot, t))]_{L^2(D)} = [0].$$

It then follows from

$$\|g\|_G^2 = \int_0^b (f, \varphi(\cdot, t))^2_{L^2(D)} dt = 0 \iff (f, \varphi(\cdot, t))_{L^2(D)} = 0$$

that $\|\cdot\|_G$ is a norm of space G and the proof is complete. \square

Moreover, let $u(t) = (f, \varphi(\cdot, t))_{L^2(D)}$ and decompose the system (5.10) into an autonomous system and a homogeneous initial condition one:

$$\begin{align*}
0D_t^\alpha \psi_1(x, t) &= A\psi_1(x, t) + pDf(x)(f, \varphi(\cdot, t))_{L^2(D)} \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} \psi_1(x, t) &= 0 \quad \text{in } \Omega, \\
\psi_1(x, t) &= 0 \quad \text{on } \partial \Omega \times [0, b]
\end{align*}$$

(5.17)

and

$$\begin{align*}
0D_t^\alpha \psi_2(x, t) &= A\psi_2(x, t) \quad \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} \psi_2(x, t) &= z_0(x) \quad \text{in } \Omega, \\
\psi_2(x, t) &= 0 \quad \text{on } \partial \Omega \times [0, b].
\end{align*}$$

(5.18)

Let \wedge be the operator $\wedge : G \rightarrow E^\perp$ given by

$$\wedge g = p_{\omega_r}\psi_1(\cdot, b) \quad \forall g \in G.$$

(5.19)

Then for any $z_b \in H^1(\omega_r)$, the regional control problem on ω_r is equivalent to the resolution of the equation

$$\wedge g = z_b - p_{\omega_r}\psi_2(\cdot, b)$$

(5.20)

and we have the following result.
Theorem 5.2 Assume that the system (5.10) is regionally approximately controllable on \(\omega_r \) at time \(b \); then (5.20) admits a unique solution \(g \in G \) and the control

\[
u^*(t) = (f, \varphi(\cdot, t))_{L^2(D)} \tag{5.21}
\]

steers the problem (5.10) to \(z_b \) on \(\omega_r \). Moreover, \(\nu^* \) solves the minimum energy problem

\[
\inf_{u} J(u) = \int_0^b \|u(t)\|_G^2 \, dt.
\tag{5.22}
\]

Proof. From Lemma 5.1, if the system (5.10) is regionally approximately controllable on \(\omega_r \) at time \(b \), then \(\| \cdot \|_G \) is a norm of space \(G \). Let the completion of \(G \) with respect to the norm \(\| \cdot \|_G \) again by \(G \).

Next, we show that (5.20) admits a unique solution in \(G \). For any \(g \in G \), by Eq. (5.19), it follows that

\[
(g, \wedge g) = \langle g, p_{\omega_r} \psi_1 (\cdot, b) \rangle = \langle g, p_{\omega_r} \int_0^b (b - s)^{\alpha-1} K_\alpha (b - s)p_Df (\cdot, \varphi(\cdot, s))_{L^2(D)} \, ds \rangle = \int_0^b \| (f, \varphi(\cdot, t))_{L^2(D)} \|^2 \, dt = \| g \|^2_G.
\]

Hence, it follows from Theorem 1.1 in Lions (1971) that (5.20) admits a unique solution in \(G \).

Let \(u = \nu^* \) in problem (5.10); then \(p_{\omega_r} z(b, \nu^*) = z_b \). Finally, we show that the \(\nu^* \) minimize the constant functional (5.22). For any \(u_1 \in L^2(0, b, \mathbb{R}^p) \) with \(p_{\omega_r} z(b, u_1) = z_b \), we have

\[
P_{\omega_r} [z(b, \nu^*) - z(b, u_1)] = 0. \tag{5.23}
\]

Then

\[
0 = p_{\omega_r} \int_0^b (b - s)^{\alpha-1} K_\alpha (b - s)p_Df(x)[u^*(s) - u_1(s)] \, ds.
\]

Moreover, since

\[
J'(\nu^*)(\nu^* - u_1) = 2 \int_0^b (u^*(s) - u_1(s))u^*(s) \, ds
\]

\[
= 2 \int_0^b (u^*(s) - u_1(s))(f, \varphi(\cdot, t))_{L^2(D)} \, ds
\]

\[
= 2 \int_0^b (p_Df[u^*(s) - u_1(s)], (b - t)^{\alpha-1} K_\alpha (b - t)p_{\omega_r} g) \, ds
\]

\[
= 2 \left(p_{\omega_r} \int_0^b (b - s)^{\alpha-1} K_\alpha (b - s)p_Df(x)[u^*(s) - u_1(s)] \, ds, g \right)
\]

\[
= 0,
\]

one has \(J(u) \geq J(\nu^*) \), i.e., \(\nu^* \) solves the minimum energy problem (5.22) and the proof is complete. \(\square \)
5.2.2 Case of pointwise actuator

Consider the system (2.1) with a pointwise internal actuator, which can be written in the form

\[
\begin{cases}
0D_t^\alpha z(x, t) = Az(x, t) + \delta(x - \sigma)u(t) & \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} z(x, t) = z_0 & \text{in } \Omega, \\
z(x, t) = 0 & \text{on } \partial \Omega \times [0, b],
\end{cases}
\] (5.24)

where \(\sigma\) is the actuator support. For any \(g \in G\), consider (5.11) and define the semi-norm

\[g \to \|g\|_G^2 = \int_0^b \|\varphi(\sigma, s)\|^2 \, ds,\] (5.25)

which defines a norm on \(G\) if (5.24) is regionally approximately controllable.

Similar to the argument in Section 5.2.1, let \(u(t) = \varphi(\sigma, t)\) and we consider the following system:

\[
\begin{cases}
0D_t^\alpha \psi_1(x, t) = A\psi_1(x, t) + \delta(x - \sigma)\varphi(\sigma, t) & \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} \psi_1(x, t) = 0 & \text{in } \Omega, \\
\psi_1(x, t) = 0 & \text{on } \partial \Omega \times [0, b],
\end{cases}
\] (5.26)

and

\[
\begin{cases}
0D_t^\alpha \psi_2(x, t) = A\psi_2(x, t) & \text{in } \Omega \times [0, b], \\
\lim_{t \to 0^+} 0I_t^{1-\alpha} \psi_2(x, t) = z_0(x) & \text{in } \Omega, \\
\psi_2(x, t) = 0 & \text{on } \partial \Omega \times [0, b].
\end{cases}
\] (5.27)

Then the regional control problem on \(\omega_r\) is equivalent to the resolution of the equation

\[\wedge g = z_b - p_{\omega_r} \psi_2(\cdot, b)\] (5.28)

and we see the following result.

Theorem 5.3 Assume that the system (5.24) is regionally approximately controllable on \(\omega_r\) at time \(b\); then (5.28) admits a unique solution \(g \in G\) and the control

\[u^*(t) = \varphi(\sigma, t)\] (5.29)

steers (5.10) to \(z_b\) on \(\omega_r\). Moreover, this control minimizes the cost functional (5.22).

5.2.3 Simulation

The resolution of the regional boundary control problem may be seen via the following simplified steps (see the case of pointwise actuator for an example).

1. Initial data \(\Omega, \Gamma, z_b\) and the actuator;
2. Solve the problem (5.28) \((\to g)\);
3. Solve the problem (5.11) \((\to \varphi(\sigma, t))\);
4. Apply the control \(u^*(t) = \varphi(\sigma, t)\).
Fig. 1. Final reached state and target function on $\Gamma \subseteq \partial \Omega$ at time $t = 5$.

Fig. 2. Control input function, which is calculated by the formula (5.29).
For example, consider the system (2.16) and let $\Omega = [0, 1] \times [0, 1]$, $\Gamma = [0] \times [1/4, 3/4]$, $b = 5$. For the target function z_b on $\Gamma \subseteq \partial \Omega$, we assume that
\[
z_b(0, y) = \begin{cases}
0, & 0 \leq y < 1/4; \\
0.017 + 4(y - 1/4)^2(y - 3/4)^2, & 1/4 \leq y \leq 3/4; \\
0, & 3/4 < y \leq 1
\end{cases}
\]
(5.30)
and the actuator is supposed to be located in $D = [0] \times \{0.5\} \subseteq \Omega$.

Figure 1 shows how the final reached state is very close to the target function on $\Gamma \subseteq \partial \Omega$ at time $t = 5$ when $\alpha = 0.4, 0.6, 0.8, 1.0$. This also implies that time fractional diffusion systems can offer better performance compared with those using integer-order distributed parameter systems. Moreover, when $\alpha = 0.4$, the corresponding control input, which is calculated by the formula (5.29), is presented in Fig. 2.

6. Conclusions

In this paper, the regional boundary controllability of the Riemann–Liouville time fractional diffusion systems of order $\alpha \in (0, 1]$ is discussed, which is motivated by many realistic situations encountered in various applications. The results here provide some insights into the qualitative analysis of the design of fractional-order diffusion equations, which can also be extended to complex fractional-order distributed parameter dynamic systems. Various open questions are still under consideration. The problem of constrained control as well as the case of fractional-order distributed parameter dynamic systems with more complicated regional sensing and actuation configurations are of great interest. For more information on the potential topics related to fractional-order distributed parameter systems, we refer the readers to Ge et al. (2015a) and the references therein.

Funding

This work was supported by Chinese Universities Scientific Fund (No. CUSF-DH-D-2014061) and the Natural Science Foundation of Shanghai (No. 15ZR1400800).

REFERENCES

