UCMERCED MESALAB What is, why you need and who cares fractional calculus?

YangQuan Chen, Ph.D., Director, MESA (Mechatronics, Embedded Systems and Automation) AB ME/EECS/SNRI/UCSolar, School of Engineering, University of California, Merced E: yqchen@ieee.org; or, yangquan.chen@ucmerced.edu T: (209)228-4672; O: SE1-254; Lab: Castle #22 (T: 228-4398)

> Nov. 8, 2013. Friday 3:30PM-4:30PM **SIAM @ UC Merced** Room COB 265 3:30-4:30 PM

Slide-2/1024

Skip Ad in 5 minutes

AFC Talk @ SIAM @ UC Merced

11/8/2013

The MESA Lab

Mechatronics, Embedded Systems, Automation Lab

- <u>http://mechatronics.ucmerced.edu</u>
- Lab Manager: Brandon Stark
 - Lab Manager: Brandon Stark
 - 4 Ph.D. Students
 - 2 MSc Students
 - 20+ Undergrads
 - 2 Visiting Ph.D. Students
 - 2 Visiting Professors
- Unmanned Aerial Systems
- Cyber-Physical Systems
- Renewable Energy Systems
- Mechatronic Systems
- Applied Fractional Calculus

AFC Talk @ SIAM @ UC Merced

11/8/2013

mechatronics.ucmerced.edu UCMERCE MESALAB Dr. YangQuan Chen, yqchen@ieee.org

Control Systems

MECHATRONICS

Mechanical

Systems

Mechanical

CAD

Control

Electronics

Electro

mechanics

Electronic

Systems

Mechatronics, Embedded Systems and Automation Lab

Real solutions for sustainability!

Established August 2012 @ Castle of 1500 sq ft 4 Ph.D/2 MS/ 20+ undergrad members automotive visiting scholars || Sponsored 2 capstone projects and mentored Digital Control 4+1 capstone teams (F'13)

Education and **Outreach Activities:**

- AfterShock
- Academic Excellence Night
- CONSUMER PRODUC Robotics Club tutorials/workshops
- Preview Day in Merced Mall
- "The Drone Age" @ Castle Air Museum
- Robots-n-Ribs | MESABox! ASME tutorials
- 6 capstone teams (24 seniors) ...
- ME142 Mechatronics (take-home labs)*
- ME280 Fractional Order Mechanics

Research Areas of Excellence:

(ISI H-index=29, Google H-index=49; i10-index=217)

- Unmanned Aerial Systems & UAV-based Personal Remote Sensing (PRS)
- Cyber-Physical Systems (CPS) AEROSPACE

Mechatronics

Applied Fractional Calculus Modeling and Control of **Renewable Energy Systems**

Projects Related to San Joaquin Valley:

Energy [Solar energy, CPV, **Building efficiency (HVAC** lighting), smart grids integration, NG pipelines]

Water (Water/soil salinity management, water sampling UAVs) Precision Ag/Environment (Crop dynamics, optimal harvest, pest ...)

Slide-5/1024

MESALAB

Slide-6/1024

UCCE + MESALAB = ?

http://cemerced.ucanr.edu/

UCMERCED

http://mechatronics.ucmerced.edu/

= Ag Drone Valley (fractional)

Slide-7/1024

MESALAB

MESA Lab Philosophy and Ambition

- "We make real systems that work and others want them."
- MESA Lab: Staying on top and working for sustainability.
- Nationally and internationally visible and prominent!

11/8/2013

UCMERCED

Slide-8/1024

MESA Research Areas/Strengths

- Unmanned Aerial Systems and UAV-based Personal Remote Sensing (PRS)
- Cyber-Physical Systems (CPS)
- Modeling and Control of Renewable Energy Systems
- Mechatronics

UCMERCED

• Applied Fractional Calculus (AFC)

Slide-9/1024

My courses at UC Merced

• Spring 2013

UCMERCED

- -ME142 Mechatronics (4cr) (48 seats)
- Fall 2013

-ME280 Fractional Order Mechanics (3cr) (10 seats) (<u>why/what/when?</u>)

<u>Mechatronics</u>

has good prospects for the future because knowledge economy demands to speed up development, improve quality, reduce cost and increase energy efficiency.

Slide-11/1024

Outline of this talk

- Fractional Calculus What?
- Fractional Calculus Why?
- Fractional Calculus Who Cares?
- Take-Home Messages

UCMERCED

Slide-12/1024

UCMERCED

MESALAB

... from integer to non-integer ...

$$\Gamma(x) = \int_{0}^{\infty} e^{-t} t^{x-1} dt, \qquad x > 0,$$

$$\Gamma(n+1) = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n = n!$$

Slide credit: Igor Podlubny

AFC Talk @ SIAM @ UC Merced

11/8/2013

Slide-13/1024

... from integer to non-integer ...

Slide credit: Igor Podlubny

AFC Talk @ SIAM @ UC Merced

UCMERCED

Slide-14/1024

"Fractional Order Thinking" or, "In Between Thinking"

• For example

UCMERCED

- Between integers there are non-integers;
- Between logic 0 and logic 1, there is the "fuzzy logic";
- Between integer order splines, there are "fractional order splines"
- Between integer high order moments, there are noninteger order moments (e.g. FLOS)
- Between "integer dimensions", there are **fractal dimensions**
- Fractional Fourier transform (FrFT) in-between time-n-freq.
- Non-Integer order calculus (fractional order calculus abuse of terminology.) (FOC)

11/8/2013

Slide-15/1024

Slide-16/1024

024

Conclusion of Talk

UCMERCED

Integer-Order Calculus

Fractional-Order Calculus

Slide credit: Richard L. Magin, ICCC12

Slide-17/1024

AFC@MESALAB Earth/moon

- Integer-Order Calculus

• Fractional-Order Calculus

Discrete gears vs. constantly-variable transmission

http://spectrum.ieee.org/energywise/energy/renewables/could-mechanics-best-power-electronics-in-evs

Slide credit: Calvin Coopmans, 2/28/2013 email comment

11/8/2013

Slide-18 of 1024

Riemann–Liouville definition

Slide credit: Igor Podlubny

AFC Talk @ SIAM @ UC Merced

11/8/2013

Slide-19 of 1024

Slide credit: Igor Podlubny

AFC Talk @ SIAM @ UC Merced

UCMERCED

UCMERCED Slide-20 of 1024 G. W. Leibniz (1695–1697)

 $\frac{d^n e^{mx}}{dx^n} =$

In the letters to J. Wallis and J. Bernulli (in 1697) Leibniz mentioned the possible approach to fractional-order differentiation in that sense, that for non-integer values of n the definition could be the following:

$$= m^{n}e^{mx}, \qquad \mathbf{L. Euler (1730)}$$
$$\frac{d^{n}x^{m}}{dx^{n}} = m(m-1)\dots(m-n+1)x^{m-n}$$
$$\Gamma(m+1) = m(m-1)\dots(m-n+1)\Gamma(m-n+1)$$
$$\frac{d^{n}x^{m}}{dx^{n}} = \frac{\Gamma(m+1)}{\Gamma(m-n+1)}x^{m-n}.$$

Euler suggested to use this relationship also for negative or non-integer (rational) values of n. Taking m = 1 and $n = \frac{1}{2}$, Euler obtained:

$$\frac{d^{1/2}x}{dx^{1/2}} = \sqrt{\frac{4x}{\pi}} \qquad \left(=\frac{2}{\sqrt{\pi}}x^{1/2}\right)$$

Slide credit: Igor Podlubny

AFC Talk @ SIAM @ UC Merced

MESALAB

Slide-21 of 1024

UCMERCED

MESALAB

Operator
$${}_{a}\mathbb{D}^{\alpha}_{t}$$

A generalization of differential and integral operators:

$${}_{a}\mathbf{D}_{t}^{\alpha} = \begin{cases} \mathrm{d}^{\alpha}/\mathrm{d}t^{\alpha} & \mathbb{R}(\alpha) > 0, \\ 1 & \mathbb{R}(\alpha) = 0, \\ \int_{a}^{t}(\mathrm{d}\tau)^{-\alpha} & \mathbb{R}(\alpha) < 0. \end{cases}$$
(7)

There are two commonly used definitions for the general fractional order differentiation and integral, i.e., the **Grünwald-Letnikov definition** and the **Riemann-Liouville definition**.

Slide-22 of 1024

Example: Heaviside's unit step

Example: $\sin(t)$

Slide credit: Igor Podlubny

Slide-23 of 1024

Fractional derivatives of ramp function.

AFC Talk @ SIAM @ UC Merced

11/8/2013

Slide-24/1024

Slide credit: Igor Podlubny

UCMERCED Slide-25/1024 Useful consequences

Springer

Advances in Industrial Control

Concepción Alicia Monje YangQuan Chen Blas Manuel Vinagre Dingyü Xue Vicente Feliu

Fractional-order Systems and Controls

Fundamentals and Applications

Signals and Communication Technology

MESALAB

Hu Sheng YangQuan Chen Tianshuang Qiu

Fractional Processes and Fractional-Order Signal Processing

Techniques and Applications

 $\underline{
 }$ Springer

AIC

2001-2010

UCMERCED Slide-26/1024 Useful consequences

SPRINGER BRIEFS IN ELECTRICAL AND COMPUTER ENGINEERING CONTROL, AUTOMATION AND ROBOTICS

Zhuang Jiao · YangQuan Chen · Igor Podlubny

Distributed-Order Dynamic Systems Stability, Simulation, Applications and Perspectives

D Springer

YING LUO | YANGQUAN CHEN

Fractional Order Motion Controls

MESALAB

Slide-27/1024

Outline of this talk

- Fractional Calculus What?
- Fractional Calculus Why?
- Fractional Calculus Who Cares?
- Take-Home Messages

UCMERCED

International Symposium on Fractional PDEs: Theory, Numerics and Applications, June 3–5, 2013, Salve Regina University, 100 Ochre Point Avenue, Newport RI 02840

More Optimal Image Processing by Fractional Order Differentiation and Fractional Order Partial Differential Equations

Dali Chen, Dingyu Xue, <u>YangQuan Chen</u>

yqchen@ieee.org, ychen53@ucmerced.edu ME/EECS/SNRI/UCSolar MESA LAB, School of Engineering, University of California, Merced, USA xuedingyu@ise.neu.edu.cn, chendali@ise.neu.edu.cn Information Science and Engineering Northeastern University Shenyang 110004, P R China

Who cares?

Minimal dose biomedical imagingMore optimal

Strategies for Reducing Radiation Dose in CT (McCollough 2009) Radiol Clin North Am. 2009 January ; 47(1): 27–40. doi:10.1016/j.rcl.2008.10.006

http://www.eurekalert.org/pub_releases/2013-05/aaft-mdc050113.php 11/8/2013 AFC Talk @ SIAM @ UC Merced

FC for what?

Better than the bestNew sciences

■ Need killer apps.

Take home message:

More optimal image processing can be made possible by using fractional order differentiation and fractional order partial differential equations.

Want to be more optimal? Go fractional calculus!

Q & A

More info:

http://mechatronics.ucmerced.edu/research/applied-fractional-calculus

UCMERCED MESALAB Slide-32 of 1024 Optimal filtering in fractional order Fourier domain original signal distorted $^{-4}$ in the ordinary Fourier domain ⁴ $\frac{1}{10}$ in the 0.65th fractional domain $\frac{4}{10}$ 0 <u>mm</u>m estimate by filtering in Fourier domain estimate by filtering in fractional domain 0 -2 0 2 -2 2

11/8/2013

AFC Talk @ SIAM @ UC Merced

Slide credit: HALDUN M. OZAKTAS

Slide-33 of 1024

Optimal filtering in fractional Fourier domain

UCMERCED

Concepcin A. Monje, YangQuan Chen, Blas Vinagre, Dingyu Xue and Vicente Feliu (2010). "Fractional Order Systems and Controls - Fundamentals and Applications." Advanced Industrial Control Series, Springer-Verlag, www.springer.com/engineering/book/978-1-84996-334-3 (2010), 415 p. 223 ill.19 in color. 11/8/2013 AFC Talk @ SIAM @ UC Merced UCMERCED Rule of thumb for Fractional Order Thinking

- Self-similar
- Scale-free/Scaleinvariant
- Power law
- Long range dependence (LRD)
- $1/f^a$ noise

- Porous media
- Particulate
- Granular
- Lossy
- Anomaly
- Disorder
- Soil, tissue, electrodes, bio, nano, network, transport, diffusion, soft matters (biox) ...

MESALAB

Slide-36/1024

MESALAB

Fractional Order Mechanics: WHY?

- Softmatter / hardmatter
- Softbody / Rigidbody

UCMERCED

- Lumped / distributed
- Granular, particulate, porous, disordered ... materials

37/121

UCMERCED

Soft matter?

- Soft matters, also known as *complex fluids*, behave unlike ideal solids and fluids.
- <u>*Mesoscopic*</u> macromolecule rather than microscopic elementary particles play a more important role.

38/121

Typical soft matters

• Granular materials

- Colloids, liquid crystals, emulsions, foams,
- Polymers, textiles, rubber, glass
- Rock layers, sediments, oil, soil, DNA
- Multiphase fluids
- Biopolymers and biological materials highly deformable, <u>porous</u>, thermal fluctuations play major role, highly unstable

UCMERCED

AFC Talk @ SIAM @ UC Merced

39/121

Slide credit: Wen Chen of HHU

Slide-40/1024

Fractional Order Mechanics!

Hooke's law: Newton's fluid: Newton's 2nd law: F = kx' F = kx'F = kx''

Going in-between: interpolation of operators:

...,
$$\frac{d^{-2}f}{dt^{-2}}$$
, $\frac{d^{-1}f}{dt^{-1}}$, f , $\frac{df}{dt}$, $\frac{d^{2}f}{dt^{2}}$,

11/8/2013

UCMERCED

Slide-41/1024

G.W. Scott Blair (1950)

• "We may express our concepts in Newtonian terms if we find this convenient but, if we do so, we must realize that we have made a translation into a language which is foreign to the system which we are studying."

Slide-42/1024

Outline of this talk

- Fractional Calculus What?
- Fractional Calculus Why?
- Fractional Calculus Who Cares?
- Take-Home Messages

Slide-43/1024

MESALAB

Fractional Calculus – Who Cares?

Answer: Everyone should.

UCMERCED

Slide-44/1024

UCMERCED

MESALAB

Fractional Calculus: a response to more advanced characterization of our more complex world at smaller scale

Slide credit: Igor Podlubny

Rapid development and numerous applications

Cumulative number of different WoS Subject areas 150.0 y = 5.5537x - 0.0114112.5 34 39 49 0 0 75.0 37.5 0 1985 1987 1991 1993 1995 1999 2001 2003 2005 2007 2009 2011 1989 1997 Slide credit: Igor Podlubny

11/8/2013

UCMERCED

ACOUSTICS AGRICULTURAL ECONOMICS & POLICY AGRICULTURAL ENGINEERING AGRONOMY ANESTHESIOLOGY ASTRONOMY & ASTROPHYSICS AUTOMATION & CONTROL SYSTEMS BIOCHEMICAL RESEARCH METHODS **BIOCHEMISTRY & MOLECULAR BIOLOGY** BIOLOGY BIOPHYSICS **BIOTECHNOLOGY & APPLIED MICROBIOLOGY** BUSINESS BUSINESS, FINANCE CARDIAC & CARDIOVASCULAR SYSTEMS CELL BIOLOGY CHEMISTRY, ANALYTICAL CHEMISTRY, APPLIED CHEMISTRY, INORGANIC & NUCLEAR CHEMISTRY, MULTIDISCIPLINARY CHEMISTRY. ORGANIC CHEMISTRY, PHYSICAL COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE COMPUTER SCIENCE, CYBERNETICS COMPUTER SCIENCE, HARDWARE & ARCHITECTURE COMPUTER SCIENCE, INFORMATION SYSTEMS COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS COMPUTER SCIENCE, SOFTWARE ENGINEERING COMPUTER SCIENCE, THEORY & METHODS CONSTRUCTION & BUILDING TECHNOLOGY CRIMINOLOGY & PENOLOGY CRYSTALLOGRAPHY DENTISTRY, ORAL SURGERY & MEDICINE ECOLOGY ECONOMICS EDUCATION & EDUCATIONAL RESEARCH EDUCATION, SCIENTIFIC DISCIPLINES ELECTROCHEMISTRY **ENERGY & FUELS** ENGINEERING, AEROSPACE ENGINEERING, BIOMEDICAL ENGINEERING, CHEMICAL ENGINEERING, CIVIL 11/8/2010 NEERING, ELECTRICAL & ELECTRONIC

ENGINEERING, ENVIRONMENTAL

Slide-46/1024

Fractional Calculus in WoK: 136 subject areas (applications)

Slide credit: Igor Podlubny

Slide-47/1024

UCMERCED

The current map of the fractional calculus

UCMERCED Rule of thumb for Fractional Order Thinking

- Self-similar
- Scale-free/Scaleinvariant
- Power law
- Long range dependence (LRD)
- *1/f* ^{*a*} noise

- Porous media
- Particulate
- Granular
- Lossy
- Anomaly
- Disorder
- Soil, tissue, electrodes, bio, nano, network, transport, diffusion, soft matters (biox) ...

MESALAB

Slide-49/1024

Outline of this talk

- Fractional Calculus What?
- Fractional Calculus Why?
- Fractional Calculus Who Cares?
- Take-Home Messages

Slide-50 of 1024

Conclusions

• 7/13/1865 - "Go west, young man. Go West and grow up with the country." – Horace Greeley (1811-1872)

http://upload.wikimedia.org/wikipedia/commons/1/12/American_progress.JPG

• "Go Fractional. It's urgent!" – YangQuan Chen

11/8/2013

UCMERCED

UCMERCED MESALAB Slide-51 of 1024 Stop consuming too much information from others! Spare some time to think ... fractionally & achieve something (dynami U LADO

A snap shot of discussion board of Igor Podlubny and YangQuan Chen in Sept. 2005 11/8/2013 AFC Talk @ SIAM @ UC Merced

Thank you for your attention!

Questions?

http://www.hub.sciverse.com/action/search/results?s t=%22fractional%20order%22

UCMERCED

Want more insights?

• Dr. Chen's MTS (Mind, Technology Society) Seminar (view at https://vimeo.com/61141696)

Talk Title:

UCMERCED

All Connected via Fractional Calculus: Power Law, Scale-Free, Heavy-Tailedness, Long Range Dependence, Long Memory, and Complexity due to Fractional Dynamics

Fractional Calculus for High Schoolers?

• Working on that

UCMERCED

Led by Igor Podlubny

Slide-55/1024

From CO to VO to DO

$$\mathbf{O} \quad a D_t^{\alpha} f(t) = \frac{1}{\Gamma(n-\alpha)} \left(\frac{d}{dt}\right)^n \int_a^t \frac{f(\tau) d\tau}{(t-\tau)^{\alpha-n+1}}, \left(n-1 \le \alpha < n\right)$$

$$\bigvee \mathbf{O} \qquad \qquad {}_{0}^{C} D_{t}^{\alpha(t)} f(t) = \frac{1}{\Gamma(n - \alpha(t))} \int_{0}^{t} \frac{f^{(n)}(\tau) \, d\tau}{(t - \tau)^{\alpha(t) + 1 - n}}, \ (n - 1 \le \alpha(t) < n)$$

DO $_{a}D_{t}^{\varphi(\alpha)}f(t) = \int_{c}^{d}\varphi(\alpha)_{a}D_{t}^{\alpha}f(t)d\alpha \quad \int_{c}^{a}\varphi(\alpha)\,d\alpha = 1$

For characterizing scale-rich dynamics?

AFC Talk @ SIAM @ UC Merced