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SmartCaveDrone: 3D Cave Mapping Using UAVs as Robotic Co-Archaeologists

Guoxiang Zhang1, Student Member, IEEE, Bo Shang2, Student Member, IEEE
YangQuan Chen3, Senior Member, IEEE and Holley Moyes4

Abstract— This paper proposes the concept of drones capable of
functioning as “Co-Archaeologists” that can map large caves and enter
dangerous or hard-to-reach spaces. Using RGB-D data collected by
drones, we will be able to produce accurate 3D models and semantic
maps with proper lighting co-supervised by human archaeologists.
This is going to be a major advance in archaeological practice, which
can accelerate the speed of archaeological exploits by extending the
archaeologists’ sight and perception range. This will enable us to
conduct 3D analyses so that we may answer new questions and create
new insights into the archaeological record. The archaeologists will be
able to visualize data collected by drones and instruct the drones’
next step in real-time. These data will also be important in site
management, data sharing and visualization. Human/drone interaction
becomes important, not only for operating the equipment, but also for
guiding drones to areas of interest to be mapped. Maps or real-time
“fly-throughs” only make sense when they are organized by human
interactions with the space. This human interaction is vital when
visualizing and understanding a space and should be reflected in the
imagery. We envision that this technology will be game changing in cave
mapping and pertinent to anyone rendering interior spaces. It creates
longer term impacts in archaeology and digital heritage and potentially
creates a transformative way for further enhancing the performance
of 3D mapping.

I. Introduction

It has long been recognized that cave sites often contain the best-
preserved material in the archaeological record. Cave archaeology
has developed its own methodologies for mapping and recording
sites, yet few sites are mapped to true 3D models, because it is
a slow and tedious process for archaeologists to record and book-
keep caves. They need to incrementally setup baseline along the
cave and then measure distance from the baseline to the wall or
objects of interest and mark wall or objects in a 2D map by hand.
They may also use total stations to reduce the error introduced when
moving baseline. This slow process has major negative impact on
cultural relic preservation. One of our authors Prof. Holley Moyes is
a leading specialist in cave archaeology and ancient religions. Over
her career, she has worked to develop new mapping methodologies,
but finds that caves in Belize are being looted more rapidly than
they can be investigated. Typically, archaeological teams will visit
a site and begin to record it in one year, but when they come
back to finish data collection it has been looted, artifacts stolen,
architecture destroyed and the archaeological record disturbed.
Therefore, archaeologists need a faster, more e�cient method of
surveying and recording the sites. Drone 3D mapping o�ers a vast
improvement over the current mapping and recording techniques
such as hand-drawn maps, or even terrestrial LiDAR. This is a
major advance in archaeological practice, enabling us to conduct
3D analyses and to visualize and share data with other researchers
and the public. This will also be important for site management,
such as tracking change of caves over time, because of the detail
and accuracy of the data.

Our goal is to explore and record data using a drone platform
to produce 3D and 2D semantic maps of caves, which contain
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three levels of information. In the coarse level, it shows the
skeleton of a cave, including how large it is and where it goes;
In the middle level, it can visualize the spatial distribution of
objects of di�erent categories, which can provide information for
understanding the way ancient human use a cave for; In the detail
level, accurate and colorized 3D models are used as a way to
document artifacts and meaningful objects in the caves digitally,
which can provide more information than photographs but still easy
to share. Especially when augmented and virtual reality technology
are becoming mature, which can make visualization of 3D model
much easier.

Drones are beginning used in archaeology, but most of them
are used in outdoor environments for the purposes of survey or
documentation using visual camera, thermal/infrared/near-Infrared
sensors or LiDAR to produce 3D models or images. When move
to drone related cave mapping, there is still no well-working drone
system that can be interactively work with archaeologists to explore,
reconstruct and map caves, although there are many attempts from
researchers in robotics, computer vision and computer graphics to
attack 3D reconstruction problem. There are several challenges to
solve before we can deliver a mature system, which we call it a
SmartCaveDrone system. We will discuss these challenges later in
details.

Our contribution is proposing the concept of drones that act as
robotic co-archaeologists that can map ancient caves. We further
identify challenges and opportunities of building this system. We
have finished some basic provement of the e�ectiveness of the
proposed method.

II. System Overview

As shown in Fig. 2, this system includes a quadcopter-based
drone platform that has 3D sensors and sense-and-avoid subsystem
on-board, a data processing and control center (DPCC) and most
importantly, archaeologists as a supervisor to control this system at
a high level.

Controlled by human operator and ground control computer,
this collaborative drone system can fly into and explore unmapped
caves. This system can take a qualitative map from archaeologists
as initialization. Then it builds a map and localize the UAV using
a state-of-the-art simultaneous localization and mapping (SLAM)
system. A real-time 3D reconstruction result will be given to human
operators during scanning process. Based on current scanning result,

Fig. 1. A photo of a cave [1]



operators can naturally issue high level commands , such as which
area should be covered more to get detailed information, where
there are missed cave branches, and when to finish the scanning
process, to improve scanning result. For the low-level commands,
it relies on the on-board sensors and the DPCC. It has an active
path planning subsystem that can issue control commands based on
current map and location estimate, and navigate SmartCaveDrone
through cave environment. In case of mapping or localization
failure, the UAV has a sense-and-avoid subsystem on-board as
a fail-safe. The sense-and-avoid subsystem continuously detects
surrounding obstacles and makes maneuvers to avoid obstacles. The
sense-and-avoid module can override any commands from the path
planner and give feedback to the online 3D reconstruction system.

The DPCC is an o�-board data processing and control center.
We place the main computation power to an o�-board computer,
because then we can leverage massive parallel processing power
of general purpose graphic processing unit (GPGPU). It enables
running computational-heavy tasks to get real-time 3D modeling
and e�cient active path planning, which makes real-time human-
drone interaction possible.

After data acquisition, an o�ine 3D refinement subsystem is
employed to further improve the quality of 3D models. It jointly
consider all the sensor reading for globally consistent 3D models. It
can also take correction commands from archaeologists to remove
mismatches or false loop closure from automatic process. Then a
3D mapping subsystem will take camera poses, RGB-D data and
refined 3D models as input to segment objects in 3D and label
their categories, whose final results are object level 3D maps or 2D
projection maps. During this segmentation and mapping process,
archaeologists can easily give coarse segmentation proposals when
this system fails at detecting interesting objects. Computer algo-
rithms will use these proposals to generate final results which can
make fully use of geometric and photometric information.

We consider to use RGB-D sensors for 3D scanning, because
some quadcoptors (e.g., Intel Aero platform [2]) are beginning
to have RGB-D sensors on-board. These sensors (e.g., Microsoft
Kinect and Intel Realsense) can provide reasonable good depth
reading accuracy within a short range, even though they are much
cheaper and lighter than laser scanners. Compared with laser scan-
ners, RGB-D cameras can also provide RGB images, which makes
it possible to colorize 3D models and leverage recent progress
on image segmentation. In contrast, LiDARs are expensive. The
commonly used LiDARs on small drones are from Hokuyo (a
Japanese company) [3]. However, they can only scan in a 2D plane,
which makes them only suitable for structured environment. Also,
they usually costs thousands of dollars and are very easily get
damaged during a crash landing. For these reasons, we will limit
our discussion on RGB-D cameras related research.

III. Challenges and Opportunities

In order to make this system work, there are several challenges
to overcome, which will create new research opportunities.

First, it is completely dark inside caves. A RGB camera is not
going to capture anything in this environment. A normal head light
or drone light can light the environment for drone operators to
see the environments, however, the drone cameras are not able to
get enough visual features for image processing. In this situation,
the commonly used visual-based drone control is not going to
work. The captured images do not have enough visual features
for o�ine mapping. Therefore, it is necessary to have a dedicated
lighting subsystem in order to have enough light to capture high
quality images with colors. Since this is a UAV-based system with
energy and weight limitations, it is important to use this energy
in an optimal manner. So we propose to have optimal cooperative
lightening, which is to light at the optimal location and angle which
can provide the best lighting result at minimum amount of time with
lowest power consumption.

Second, how to accurately reconstruct caves in 3D. This problem
can be divided to several subproblems. For online 3D reconstruc-
tion, it is important to have a better loop closure detection method
that can utilize more spatial and temporal information. Also, it is an
interesting problem to decrease and bound global positioning drift
of a SLAM system in cave environment, especially when we neither
want to manually set up markers inside caves nor manually label
data. In addition, how to add human decision to 3D reconstruction
process. Human operators can understand the environment better
while computer can do better in repeated easy tasks. A good way
of combining strength from both will benefit this 3D reconstruction
process. Meanwhile, this drone system should have some level of
autonomy, which means it should be able to decide where to scan
and how to act to reach its goal point with limited commands.

Third, how to semantically segment and label objects on the
constructed 3D model of a cave. It is a crucial step. Since without
semantic labels, a 3D model is just a huge surface or a cluster
of points. Only with semantic segmentation and labels, archaeol-
ogists can perform spatial analysis of distribution of objects then
understand better how ancient human use a cave.

Also, it is a challenge on maintaining wireless communication
between DPCC and drones, because caves can have irregular shape
and they can be a few kilometers deep. But we do not try to solve
communication problem in this paper, instead, we address it by
making the drone be able to fly autonomously when needed, so
active SLAM is studied in the paper as well. During autonomous
flight, only flight critical components, such as cooperative lighting,
sense-and-avoid and SLAM, are enabled. Time consuming process-
ing will be done on a DPCC o�-line.

We will review current art on these problems and discuss re-
maining challenges and new opportunities in details in following
sections.

A. Cooperative Lighting

The lighting for 3D mapping is a challenging and complex task
because 3D modeling needs the light distribution to be consistent,
however, the lights have to move if we put lights on drones
[4]. Quantitative analysis for the relationship between the lighting
intensity distribution and the 3D mapping performance is important
to optimize the power consumption of the drone, which has limited
power storage on-board.

Lighting control is a hot topic for energy saving. In [5], a
minimum energy point tracking algorithm is developed to achieve
the minimum energy usage despite of environmental variations.
Cooperative lighting control is an extension of the traditional
fixed lighting control to a 3D-dimensional mobile lighting control.
Cooperative lightening with drones means to use dedicated drones
to help the drone with 3D scanners by lighting the area that is
currently being mapped. Therefore, this scheme contains using
two or more drones working together. Current technology includes
the lead and following formation of drone swarms [6]. The lead
and following formation contains positioning control by wireless
communication or by using visual servoing. The challenges of this
working scheme should be accurate relative positioning control
without GPS and optimization for 3D mapping performance and
power consumption.

Therefore, the cooperative lighting optimization problem should
be a hot topic in the near future as the drone swarm technology is
getting mature.

B. Online 3D Reconstruction

There are many research work [7], [4], [8], [9] in the literature
to address the online 3D reconstruction problem, but it is still
challenging to reliably reconstruct 3D models of indoor scenes in
real time, especially when the indoor environment is a dark cave.
First, RGB-D cameras have limited field of view and working range,
which can bring in two problems: 1) more 3D model pieces need
to be put together; 2) each view only cover a small portion of the
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Fig. 2. System overview

scene with limited information, making tracking prone to failure.
Especially when some areas of indoor environment do not have
much shape and color variation. Second, cave environment usually
contains sophisticated geometric structures and objects, and must be
scan from complex camera trajectories for better coverage, which
means one place can be observed multiple times from di�erent view
angle. In theory, this should give more opportunities to minimize
reconstruction error by closing loops, but, in practice, it will cause
problem due to there is no algorithm that can guarantee to fully
detect and close all place revisits as loops . This can be problematic
for generating good 3D models, since only a small mismatch that
happens to a few frames of data can jeopardize reconstruction
quality.

One important work in RGB-D base 3D reconstruction literature
is KinectFusion [7], which first combines projective iterative closest
point (ICP) and volumetric scene representation to build a real
time dense 3D reconstruction system on a GPU. It first reveal
the potential of real time dense 3D reconstruction system. Then
Kintinuous [4] extends it so that it works on a scale larger than a
single room. Later, Whelan et al. propose ElasticFusion [9], which
based on deformation graphs and can jointly minimize geometric
and photometric error.

Fig. 3. Online 3D reconstruction result

These systems can provide reasonable good results, but they will
fail at some situations, such as image blur during fast motion,
especially fast rotation, and flat areas without color variations. In
these cases, instead of trying to propose a solution can solve these
problems within RGB-D data domain, we believe leveraging data
from IMU sensors is a better choice. IMU should be able to provide
a huge performance gain to current visual-SLAM approaches, but
most of well known dense visual-SLAM systems and open source
implementations do not support IMU sensor by default. Naively,
IMU sensor can provide a good initialization, since ICP is sensitive
to initialization and IMU is accurate in a short time period. Its
potential has been revealed by [10] and [11]. Nießner et al. [11] use
angular acceleration to bootstrap ICP of KinectFusion and show that

the system is more robust to rapid motion. Usenko et al. [12] use
a tightly coupled approach to get stereo camera base visual-inertial
odometry. They show that the two sensors can complement each
other: stereo vision allows the system to compensate for longterm
IMU bias drift, while short-term IMU constraints help to improve
vision frame-to-frame tracking, which makes the system more
reliable even in area that does not have much visual information.

We argue that the biggest problem in a SLAM system is lacking
the ability of accurately detecting all place revisiting, which is
important for both tracking failure recovery and loop closure
detection. Even with IMU, error will eventually propagate and
increment to an unacceptable amount. Currently, whether a place
revisit happens or not is detected by low-level computer vision
algorithms, such as bag of word (BoW) based feature matching
[13], which can not fully utilize all the information. There is a
great need to improve current place recognition performance for
SLAM systems.

C. O�ine 3D Reconstruction

Other than di�erent approaches to improve real time perfor-
mance, another branch of 3D reconstruction is o�ine process-
ing, which aims to achieve the best 3D reconstruction result by
considering all the information in a jointly[14], [15], [16], rather
than incremental manner. Structure from motion (SfM) [17], [18]
and multi-view stereo (MVS) [19], [20], [21] have been actively
explored and they can be used to recover 3D models from sets of
images. After the emerging of RGB-D cameras, Xiao et al. [14] run
3D SfM on both depth and RGB images. They extract and match
image features across images and then get their 3D coordinates from
depth images, after that, SfM is conducted using 3D coordinates of
keypoints. Choi et al. [15] produce state-of-the-art result among
o�ine methods. They use RGB-D visual odometry from Kintinous
[4] to merge several frames into a scene fragment, based on an
assumption that RGB-D odometry is reliable in a short term. All
fragment pairs are registered to each other, while line processes is
used to filter false positives loops, which utilizes [22] as a back
end.

Fig. 4. O�ine refined 3D model



Even through current best approaches can provide good results
in their experiments, but they all work well under certain conditions
and can fail at some cases. For example, in SUN3D, the appearance
based place recognition can not recover all the global loops which
can greatly reduce the reliability of the whole system, since one
global loop detection failure can lead to many local loop detection
failure, thus it can cause great 3D reconstruction quality degra-
dation. O�ine processing method [15] takes several hours to get
a result on a room scale space. And time it consumes will grow
quadratically when the size of the space becomes larger, because it
will produce more fragments which means more pairs will need to
be registered to each other. In order to get a workable solution for
a much larger scale, e�orts should still be made.

D. 3D Mapping

Desk

Stones

Skull

Fig. 5. Example 3D mapping result (upper) and corresponding 2D
projection map (lower)

We define 3D mapping the processing of segmenting and labeling
objects in generated high fidelity 3D models, as shown in Fig. 5.
This step is crucial, because it can convert 3D models to high
level abstracted 3D semantic maps, which enable more ways for
archaeologists to analyze, such as spatial distribution of artifacts,
2D projection of semantic map which can be imported to a GIS
software. This highly reduce the burden on archaeologists, because
they spend most of their time on marking objects on their map
during cave mapping.

This problem can be solved in 3D space directly [23], [24], [25],
either on point cloud [23], [25] or 3D mesh [24]. Valentin et al. [24]
create a 3D mesh and compute geometric features on it directly.
Visual features are computed on the images and combined with
geometric features to obtain a coarse per mesh face label result.
Conditional random field (CRFs) are defined over the 3D mesh to
get a geometric consistent segmentation. Tateno et al. [26] segment
each input depth map by employing normal edge analysis, then they
run 3D descriptor directly on each 3D segment derived from the
incremental segmentation stage, and match it with 3D descriptor
features computed on the full 3D object models. Finally they use a
confidence to update multiple observations. When confidence drops
to zero, this means that the segment has changed.

Another way is to address this problem in 2D image space and
combine results from di�erent frames together. This approach can
leverage the recent progress in image segmentation, scene parsing,
object detection and recognition [27], [28]. There also exist many
object detection and segmentation methods for RGB-D, among

which most treat depth as a fourth channel [29], [30], and use either
hand-generated features and classifiers [31], or a convolutional
neural network (CNN) [30]. Hermans et al. [32] get 2D semantic
segmentation result by a soft classification for each pixel which
corresponds to a 3D point in the point cloud, then the result of
multiple observations are merged in 3D using a Bayesian update,
which takes the current belief for a 3D point and updates it with
the new predictions. The spatial consistency is achieved by applying
dense pairwise CRFs over the 3D point cloud. Vineet et al. [33]
extracts 2D features and evaluates unary potentials based on random
forest classifier predictions to get semantic segmentation. It transfers
these into a 3D volume, then volumetric CRFs are used to enforce
temporal consistency.

Currently, all these methods are focus on either general indoor
or outdoor scene segmentation. In order to use them in a cave
environment and detect artifacts, modifications should be made. For
methods work in 3D space, they usually have a database of model
descriptors [26] or train classifiers on 3D models [25], so for these
methods, a database of 3D artifacts models should be built. For 2D
image based methods, [34] has shown that transfer learning and
fine-tuning can adapt models trained on general computer vision
tasks to a specific task. What we need is an image database with
human annotation.

There are remaining challenges. First, all the prior methods can
be considered as data driven approach, which means it only works
well when objects during testing look similar to the ones in training,
but artifacts may have many variations. A big problem is how
to define a model that can learn knowledge from archaeologists.
Second, for cases which is too hard for computer to solve, it is
necessary to have an e�ective yet easy to use approach to help
bootstrap or improve results with human-in-the-loop. Third, most
approaches, especially the ones with CRFs, can not run in real
time, but a real time system can benefit SLAM with object level
constraints.

E. Autonomous Cave Exploration

Autonomous cave exploration is an import ability for a Smart-
CaveDrone, because most caves have hash or even dangerous
environment. With SLAM approach on-board, SmartCaveDrone can
incrementally build a map and localize itself at the same time, but
SLAM only passively process input data and does not give any
control on how to move sensors to scan a complete map. Active-
SLAM is the technique that can make decisions and control on
where to scan next without a predefined path. Also, sense-and-
avoid should be added to a SmartCaveDrone. It acts as a fail-safe,
whenever there is a sensor failure, false localization or a wrong
decision.

Active-SLAM is solved in three major steps [35], [36]: 1) propose
possible next way points based on current map and trajectory
estimate; 2) evaluate all vantage points proposals based on a defined
utility function which contains uncertainty metric and cost for
reaching this point, and select the one that can reduce uncertainty
most as the next goal point; 3) execute actions to reach next goal
point generated by a path planning solver.

While most of prior research developed the fundamental theory
and run simulations and tests on 2D ground robots, recent research
tries to adapt this framework to a UAV platform. Heng et al. [37]
propose an e�cient RGB-D vision based approach to perform 3D
exploration and coverage in unknown environments. They assume
the pose of MAV is known, so there is no trajectory uncertainty,
and map uncertainty is reflected by number of explored and
unknown grids in their octmap representation. Thus they define
the information gain to be the number of expected observable
unexplored voxels that are enclosed in the corresponding view
frustum. Exploration is achieved through maximizing information
gain in a 3D occupancy map and consider execution cost. Most
of their e�orts are focused on pre-computating expect sensor
reading due to limited on-board resources. Next-best-view planning



algorithms [38] iteratively determine the best viewing configuration
determined by the amount of unmapped space that can be explored.
a RRT or RRT* based planner is used to generate potential vantage
points. Then, the destination of first edge of the best branch is
determined the next-best-view configuration then executed. It does
no assume pose is known, but resort to visual-inertial odometry
to provide accurate pose estimate, so they do not consider pose
uncertainty and make no e�ort of improving localization accuracy.

When goes to 3D, it becomes more challenging, since there is
much more grids in 3D than in 2D, and there are more possible
actions since a UAV can move in 3D free space with 6 degree
of freedom while in 2D there are only 3 degree of freedom. Also,
when evaluate candidate actions, it is more computational expensive
to run 3D ray-casting on-board, so a DPCC with massive data
processing power is very necessary. Also, a UAV has limited power
resources, so an highly e�cient exploration policy is a desired
property as well. It is better to be capable of leveraging prior
knowledge of operators, such as the topology shape of the cave,
area of interest, and area that is not necessary to map.

1) sense-and-avoid: The sense-and-avoid technology is neces-
sary for the 3D mapping mission because the long-term mapping
and position estimation have errors that can lead to collisions.
It can be classified by cooperative sense-and-avoid methods and
non-cooperative sense-and-avoid methods. The cooperative ones
requires known position. This scheme will not work in the 3D
mapping mission since there is no GPS location and the obstacle
will not send any signal by themselves. Therefore, only non-
cooperative sense-and-avoid methods will be discussed.

Current technology of non-cooperative sense-and-avoid can be
classified by the sensors they use. Popular sensors for sense-and-
avoid are ultrasound sensors, laser range finders, web cameras,
RGB-D sensors and combo sensors. The ultrasound sensor is a
traditional one. The typical detect angle is often about 30 degrees.
The detection range is not the same in the 30 degrees, so the
ultrasound sensor often has large blind areas. The ultrasound sensor
returns the nearest distance in the detection range, which means the
detection is very rough. In real applications, ultrasound sensor often
lead to collisions. Therefore, the ultrasound sensor method is a very
basic one and not practical for real applications. The laser range
finder can detect a 2D surface, so the applications are limited to
structured environments. Olivares-Mendez et al. successfully use
computer vision to detect an obstacle in the way of the flight path
[39], however, the obstacle is something with special features like a
cone. Therefore, it does not work in caves where obstacles are not
marked with special features. RGB-D sensors have been used to
detect obstacles [40], [41]. An RGB-D camera often has the same
detection angle as the paired RGB camera, so they can only provide
detection for the front part of a drone. Therefore, multi-RGB-D
cameras or 360 degree RGB-D camera can be a more e�ective
scheme for sense-and-avoid purpose.

Currently, the non-cooperative sense-and-avoid is still not mature.
The sense-and-avoid failure is one of the neck-bottle problems
preventing the drones from acquiring more applications. Therefore,
quantitative evaluations for sensor e�ectiveness in di�erent lighting
environments are going to be hot research topics.

F. Other Opportunities

The current technologies still have a very big gap to enable
drones to be co-archaeologists. The hardware infrastructure still
greatly limits drones’ applications. Great opportunities are with
longer battery life, longer detection range, less power consumption
and less weight for sensors, faster on-board computers and better
data processing algorithms. The positioning in caves is a big
challenge since there is no GPS signal in caves. An idea to solve
this problem is use beacons to help localization. The beacons can
be more helpful by collecting data and storing information for
later drones. Later drones can communicate with beacons on the
ground to know this place is already exploited. Algorithms should

be developed to find out the best positions to put beacons. The
beacons are also good relay devices to help communications in
caves.

Another interesting topic is the cooperation between the archaeol-
ogists and drones. We want to take advantages of the archaeologists’
field knowledge to help drones accelerate the path planning process.
Our scheme is to let the drones scan the cave to collect information
of the surroundings first. Then archaeologists give a qualitative path
planning base on their experience. Last, the drone finishes the flight
path based on the qualitative path planning and avoiding obstacles
at the same time. This scheme is shown in Fig. 6.

Fig. 6. The scheme to use archaeologists’ knowledge to help path planning

IV. Conclusions

We propose the idea of SmartCaveDrone system, which can
closely work with archaeologists. It sure will change the way
archaeologists work. They will be able to explore caves faster
and safer and gather richer information. After exploring related
research fields, we conclude this SmartCaveDrone system has
broader impacts. It can create new opportunities in the field of UAV,
computer vision, robotics and human-robot interaction, because this
system will see, understand, remember and think caves in 3D as we
do and naturally interact with operators. It will give UAV higher
level of autonomy, which can promote new possibility of leveraging
UAVs in new area.

V. Future Work

After all these aforementioned modules available, we will further
explore human-in-the-loop and story-telling. Since we want our
SmartCaveDrone to act as co-archaeologists, it will work tightly
with archaeologists to help its exploring and mapping process. At
least for now, human still have better understanding of surrounding
environment, and better decision making ability. Archaeologists
may have work in ancient cave environment for years, they can
quickly identify which is the area that contains interesting arti-
facts. Then our SmartCaveDrone should understand not only voice
commands but also body language, such as gesture of pointing
to somewhere. During post processing, operators will play an
important role of improving final result of 3D reconstruction and
mapping. This means this system should understand intention of
operators and have a heavy human computer interaction, which we
will explore later. In addition, we want to explore story-telling as
well. Give all the information, taking advantage of virtual reality,
we want to interactively tell a story of how ancient people use a
cave, which should take knowledge of archaeologists into account
and recent progress in machine learning and natural language
processing.
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