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ABSTRACT

In the last decade, technologies of unmanned aerial vehicles (UAVs) and small imaging sensors have achieved a
significant improvement in terms of equipment cost, operation cost and image quality. These low-cost platforms
provide flexible access to high resolution visible and multispectral images. As a result, many studies have been
conducted regarding the applications in precision agriculture, such as water stress detection, nutrient status
detection, yield prediction, etc. Different from traditional satellite low-resolution images, high-resolution UAV-
based images allow much more freedom in image post-processing. For example, the very first procedure in
post-processing is pixel classification, or image segmentation for extracting region of interest(ROI). With the
very high resolution, it becomes possible to classify pixels from a UAV-based image, yet it is still a challenge to
conduct pixel classification using traditional remote sensing features such as vegetation indices (VIs), especially
considering various changes during the growing season such as light intensity, crop size, crop color etc. Thanks
to the development of deep learning technologies, it provides a general framework to solve this problem. In this
study, we proposed to use deep learning methods to conduct image segmentation. We created our data set of
pomegranate trees by flying an off-shelf commercial camera at 30 meters above the ground around noon, during
the whole growing season from the beginning of April to the middle of October 2017. We then trained and tested
two convolutional network based methods U-Net and Mask R-CNN using this data set. Finally, we compared
their performances with our dataset aerial images of pomegranate trees. [Tiebiao- add a sentence to summarize
the findings and their implications to precision agriculture]

Keywords: Canopy Segmentation, U-net CNN, Mask R-CNN, Instance-aware Segmentation, Pomegranate
Trees

1. INTRODUCTION

With the development of sensors and cameras, images with higher resolution can be obtained easily and flexibly at
a very low cost for precision agriculture applications. Published studies includes fruit detection such as mangoes,
almonds, apples,’ melons,? sweet peper,® weed detection* and tree and nursery management.® In our study of
almond tree water stress quantification, ' high resolution images make it possible to detect an individual tree
from aerial images and even measure size of tree canopies in the tree level.

As a typical crop feature, canopy size can help estimate water use,'? pesticide usage'® and yield.'* The most
popular method to estimate canopy size is based 3D point-cloud data obtained from Lidar.'? %16 However,
because of high cost and complex post-processing, its usage is still limited. Recently with the advent of unmanned
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Figure 1. Dataset samples (size:534*600), where the left is an aerial image and the right is its ground truth label

aerial vehicles and minimized high resolution cameras, it is also possible to estimate canopy size using 2D
images.> %1721 Tn these studies, canopy classification and detection were based on man-made features, such
threshold determination,'* shape and compactness parameters® '8 2! and watershed methods.!® Although these
feature are very specific designed, they are not robust to changes of objects, background or camera setting.

Deep learning based segmentation has been proposed in tree segmentation®? using instance-sensitive segmen-
tation.2?> With the development of new methods in deep learning technology, we evaluated two most recent
different deep learning based methods for segmentation of tree canopies, U-net?* and Mask R-CNN.2° These two
segmentation models are used to segment tree canopy pixels from pixels of soil, grass and their neighbor trees.
Some potential application scenarios of these tasks are detecting and counting trees, quantifying canopy size in
the block level, and further in the single-tree level.

2. MATERIAL AND METHODS
2.1 Aerial Image Collection and Labeling

The test field is in the USDA-ARS, San Joaquin Valley Agricultural Sciences Center(36.594N, 119.512W), Parlier,
California. The size of this experiment field is 1.3 ha. The pomegranates trees were planted in 2010 with the
space of 5 m between rows and 2.75 m within rows.2%

Aerial images of these trees were collected during the growing season of 2017 using both ELPH110HS (Canon,
Japan) and Survey2 (MAPIR, USA). Two different cameras were flown to test the robustness of the algorithm
to imaging sensors. The original aerial images were cropped with the size of 534*600, to make sure the number
of trees in each patch is around 10. These small patches were then manually labeled to obtain ground-truth
mask. We chose the patches that are covering trees with representative colors and shapes so we can minimize
the labeling effort and maximize the dataset variability. Only those trees with full part of canopies were masked
in the purpose of simplifying the learning task. As see in the right mask of Figure 1, the trees of four sides are
not labeled.

2.2 U-Net Based Segmentation

U-Net?? is first introduced in biomedical image segmentation in 2015, which is built upon fully convolutional
network.?” The main idea of fully convolutional network is to supplement a usual contracting network by
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successive layers, where pooling operators are replaced by upsampling operators. By increasing of the resolution
of the output, a successive layer can learn to assemble a more precise output. U-Net architecture extends the
feature channels to the upsampling layers, which allow the network to propagate context information to higher
resolution layers. The network is more or less a u-shaped architecture, as a result of the symmetric between the
expansive path and the contracting path.

2.3 Mask R-CNN Based Segmentation

Mask R-CNN?® is built upon Faster R-CNN.?® Faster R-CNN has two outputs for each candidate object, a class
label and a bounding-box offset. The author of Mask R-CNN added a third branch to Faster R-CNN architecture,
which output the object mask. The additional mask output requires extraction of much finer spatial layout of an
object, which is distinct from the class and box outputs. There are basically two architectures in Mask R-CNN
framework. One is the convolutional backbone architecture used for feature extraction over an entire image. The
other one is the head network for bounding box recognition and mask prediction which is applied separately to
each ROL.

3. RESULTS AND DISCUSSIONS
3.1 Evaluation Metrics

All the metrics we used in the experiments are listed as follows:

e True Positive(TP): A prediction result is a correct detection, which means the IOU between prediction
region and the ground truth region is greater than or equal to the threshold(depending on the metric, we
use 0.5, 0.6, 0.7, 0.8 in the experiment).

e False Positive(FP): A prediction result is a wrong detection, which means the IOU between prediction
region and the ground truth region is less than the threshold.

e False Negative(FN): A ground truth region is not detected.
e True Negative(TN): A prediction result is a correct mis-detection.

e Precision: The ability of a model to identify only the correct objects. It is given by:

TP
Precision = W (1)

e Recall: The ability of a model to detect all the correct objects. It is also referred to true positive rate or

sensitivity and given by:
Precisi TP ©)
recision = —————
TP+ FN

e Average Precision(AP): It is averaged Precision over all the categories, which is only one object in our case.

e Average Recall(AR): The maximum Recall given a fixed number of detections per image over all the
categories, which is one category in this case.

e Mean Average Precision(mAP): It is averaged AP over IOUs for each image, when IOU equals to 0.5, 0.6,
0.7, 0.8.

e Mean Average RecallmAR): It is averaged AR over IOUs for each image, when IOU equals to 0.5, 0.6,
0.7, 0.8.

In Table 1, Table 2 and Table 3, all the values are averaged over all images in the corresponding dataset.
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Figure 4. U-Net Segmentation results. Groundtruth is marked as green and prediction is in red.

3.2 Result Analysis of U-Net

The initial size of images is 534*600. In the U-Net experiment, we crop the images to 512*512 as the input of
the network. The loss function used during training is binary cross-entropy and we use accuracy and hamming
distance as validation metrics. The training loss curve is shown in Figure 2.

The AP and AR result of U-Net is listed in Table 1. We got 68.7 on AP, 5, which means the average precision
when ROI is set as 0.5.

As shown in Figure 4, U-Net performs good when the trees are sparse in the images. However, there are still
some problems of the prediction results. First, the model can detect few unlabeled instances. But the number
is low. Second, the ROI between ground truth and prediction is not big enough. And the contour of the crown
is not accurate enough. Last but not the least, some trees are not totally segmented. There are more than one
tree connecting with each other sometimes.

Table 1. U-Net result(AP and AR)

Data Sets mAP APO.5 AP(),G APO.7 AP(),g mAR ARO,5 ARO.G ARO,7 ARQ.g
Train 42.9 74.9 70.1 57.6 25.5 66.0 80.5 75.9 65.6 41.8
Test 36.2 68.7 63.1 50.0 17.9 61.2 76.5 70.4 61.8 36.0
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Figure 5. Mask-RCNN segmentation result(IOU=0.5). Groundtruth is marked as green and prediction is in red.

3.3 Result Analysis of Mask R-CNN

In Mask R-CNN experiment, each label in the initial ground truth image is isolated in the same size single image.
We use pre-trained weights?® for MS COCO to initiate the Mask R-CNN model. The training loss curve is shown
in Figure 3.

In Table 2, the mAP and mAR result of Mask R-CNN in this experiment is 57.5 and 98.5. And it shows that
Mask R-CNN model performs well at AP and AR when IOU varies from 0.5 to 0.7. From testing samples shown
in Figure 5, we can notice: (i) the IOU of ground truth and prediction label is big; (ii) the model can predict
lots of unlabeled trees; (iii) there are rarely multiple connected trees.

Table 2. Mask R-CNN Result (AP and AR)

Data Sets mAP AP0.5 APO.G APO_7 APO.g mAR ARO.E, ARO‘6 ARO.7 ARo‘g
Train 58.6 96.5 95.0 84.2 41.2 98.7 98.7 98.7 98.7 98.7
Test 57.5 96.2 94.4 82.1 38.4 98.5 98.5 98.5 98.5 98.5

3.4 Comparing Those Two Results

The comparing of the testing result between U-Net and Mask R-CNN is shown in Table 3. In our pomegranate
tree canopy segmentation experiments, it is clear that Mask R-CNN performed better in mAP and mAR, as
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well as AP and AR when ROI is from 0.5 to 0.8. As discussed in Section 3.2 and 3.3, Mask R-CNN performs
better in three aspects: (i) the IOU of ground truth and prediction label is bigger; (ii) the model can predict
more unlabeled trees; (iii) there are rarely multiple connected trees. The downside of Mask R-CNN is its longer
training time, which can be remediated by using pre-training weights.

Table 3. U-net VS. Mask R-CNN(AP and AR)

Methods mAP APO.5 APO_6 APO_7 APolg mAR ARO.5 ARO_6 ARO.7 AR()_S
U-net 36.2 68.7 63.1 50.0 17.9 61.2 76.5 70.4 61.8 36.0
Mask R-CNN | 57.5 96.2 94.4 82.1 38.4 98.5 98.5 98.5 98.5 98.5

4. CONCLUSIONS

In order to segment pomegranate tree canopy for next step researches, we did experiments on two different CNN
networks, which are U-Net and Mask R-CNN. The Mask R-CNN architecture achieves much better performance
on our application. After using pre-trained weights to initiate the model, it has a very reasonable training time
as well.
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