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a b s t r a c t 

Today, there is a great tendency toward using fractional calculus to solve engineering problems. The con- 

trol is one of the fields in which fractional calculus has attracted a lot of attention. On the one hand, 

fractional order dynamic models simulate characteristics of real dynamic systems better than integer 

order models. On the other hand, Fractional Order (FO) controllers outperform Integer Order (IO) con- 

trollers in many cases. FO-controllers have been studied in both time an frequency domain. The latter 

one is the fundamental tool for industry to design FO-controllers. The scope of this paper is to review 

research which has been carried out on FO-controllers in the frequency domain. In this review paper, the 

concept of fractional calculus and their applications in the control problems are introduced. In addition, 

basic definitions of the fractional order differentiation and integration are presented. Then, four common 

types of FO-controllers are briefly presented and after that their representative tuning methods are intro- 

duced. Furthermore, some useful continuous and discrete approximation methods of FO-controllers and 

their digital and analogue implementation methods are elaborated. Then, some Matlab toolboxes which 

facilitate utilizing FO calculus in the control field are presented. Finally, advantages and disadvantages 

of using FO calculus in the control area are discussed. To wrap up, this paper helps beginners to get 

started rapidly and learn how to select, tune, approximate, discretize, and implement FO-controllers in 

the frequency domain. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Fractional Order (FO) calculus has attracted attention from aca-

demic and industrial associations because its applications have

been increased in many aspects of science and engineering ( Liu,

Xing, Cao, Fu, & Song, 2018; Monje, Vinagre, Feliu, & Chen, 2008;

Padula, Visioli, & Pagnoni, 2012; Rajagopal, Karthikeyan, & Du-

raisamy, 2017 ). The control field is no exception and utilizing of

FO-calculus has been raised in the modelling and controlling of

dynamic systems. Basically, in control applications, there are four

combinations for closed-loop systems: Integer Order (IO) plants

with IO controllers, IO plants with FO controllers, FO plants with

FO controllers and FO plants with IO controllers ( Chen, 2006; Chen,

Petras, & Xue, 2009 ). 

Using FO-calculus in the modelling of system dynamics is in-

creased since many phenomena such as the voltage-current rela-

tion of a semi-infinite lossy transmission line, the diffusion of heat

through a semi-infinite solid, viscoelasticity, damping and chaos,

fractals etc. inherently show fractional order behaviour ( Chen et al.,

20 09; Machado et al., 20 01; Zhao, Xue, & Chen, 2005; Zhao, Li,

Zhou, Zhou, & Chen, 2017 ). Particularly, when the dynamic of a

system has a distributed parameter nature, the best solution for

modelling is using FO-calculus ( Chen, 2006; Chen et al., 2009 ).

Moreover, it has been reported that FO-calculus models the be-

haviour of biomimetic systems the best ( Chen, 2006 ). Furthermore,

in the electrical engineering field, there are some electrical devices

which show intermediate properties between resistances and ca-

pacitances. These devices are known as “fractance” and are mod-

elled by means of FO-calculus ( Luo, Chen, & Pi, 2011 ). Hence, FO-

models can help engineers to simulate the dynamic behaviour of

many systems more precisely than IO-ones. 

FO-calculus has high potential to improve performances of con-

trollers since designers have more flexibility in selecting power of

FO-controllers in comparison with IO-controllers ( HosseinNia, Te-

jado, Torres, Vinagre, & Feliu, 2014a; HosseinNia, Tejado, & Vinagre,

2014b; HosseinNia, Tejado, Vinagre, & Chen, 2015b; RakhtAla, Ya-

soubi, & HosseinNia, 2017; Tejado, Hosseinnia, & Vinagre, 2014a ).

Moreover, since FO-calculus can provide a proper trade-off be-

tween the first and second order integrator or differentiator part

of controllers, linear FO-controllers particularly the FO-PID types

become very popular among control engineers. In this manner, re-

searchers have tried to develop FO-linear controllers in both time

( Chen & Chen, 2016; Das, Pan, & Das, 2015; HosseinNia, 2015;

Khubalkar, Chopade, Junghare, Aware, & Das, 2016; Padula & Visi-

oli, 2011; Padula et al., 2012; Wang, Li, & Chen, 2016; Zarghami,

Hosseinnia, & Babazadeh, 2017 ) and frequency domain ( Krijnen,

van Ostayen, & HosseinNia, 2017; Luo et al., 2011; Monje et al.,

2008; Oustaloup, Mathieu, & Lanusse, 1995; Oustaloup, Moreau,

& Nouillant, 1996; Pommier, Sabatier, Lanusse, & Oustaloup, 2002;

Zhao et al., 2005 ). In the time domain, most of research is based

on optimization methods and in the frequency domain, the most

widely-used methods are H ∞ 

norm, loop-shaping, isodamping, etc.

Despite all the comments, IO-controllers are predominately

used in the control field ( O’Dwyer, 2009 ). Apart from the
water-bed effect from which all linear controllers are suffered S  
 Sabatier, Lanusse, Melchior, & Oustaloup, 2015 ), there are other

ignificant barriers which confine development of FO-controllers.

irst, direct analytical methods for solving fractional order differ-

ntial and integral equations are very complicated ( Chen et al.,

009 ). Secondly, the implementation of FO-controllers is more dif-

cult than IO ones owing to certain reasons which are elaborated

n the next sections. Finally, the existing tuning methods are so-

histicated and proper for specialists and most of them are ap-

licable for process control problems (first order plant with low

andwidth requirement). 

During these years, several investigations have been done about

eviewing FO-controllers ( Chen, 2006; Chen et al., 2009; Shah &

gashe, 2016; Tepljakov et al., 2018 ). Chen et al. (2009) introduced

nd compared four common types of FO-controllers ( Chen et al.,

009 ). Also, investigation ( Chen et al., 2009 ) presents several re-

lization methods for FO-controllers. Moreover, they talked about

otential advantages of FO-controllers and their application in

hen (2006) . In Shah and Agashe (2016) , aspects of linear and

on-linear Fractional Order Proportional Integral and Derivatives

FO-PID) controllers such as tuning, history, and toolboxes are dis-

ussed in both time and frequency domains. These review paper

ive general insight about the FO-controllers; however, some of

hem are very specific which do not cover all aspects about these

ontrollers, or some of them are very abroad that cannot give

nough information about each concept. Thus, this article focuses

n the linear FO-controllers in the frequency domain. This paper

ives enough information efficiently and comprehensively about

inear FO-controllers in the frequency domain by which beginners

an understand FO-calculus, select a proper type for their applica-

ion, tune and implement these controllers. 

This review paper is organized so that, the basic definitions

f the fractional order derivative and integral are presented in

he first section. Then, common types of FO-controllers which

re introduced in the literature are commented in Section 3 and

heir representative tuning methods are delineated in Section 4 .

ection 5 is devoted to the realization of FO-controllers in which

pproximation methods in the S, Z and δ domain, and analogue

nd digital implementation methods are presented. Then, some

seful toolboxes are introduced which facilitate design, approxi-

ation and realization of FO-controllers in the frequency domain

n Section 6 . Finally, the advantages and disadvantages of FO-

ontrollers are discussed in Section 7 and some conclusions and

emarks are given in Section 8 . 

. Definitions of fractional order derivative and integral 

Although fractional order calculus which means the general-

zation of the integration and differentiation operator to a frac-

ional order operator is a 300-years-old topic ( Vinagre, Petráš, Pod-

ubny, & Chen, 2002 ), it has only gained attention in the last

wo decades to facilitate modelling and control problems. There

re various definitions like Riemann, Letnikov, Liouville, Caputo for

ractional order derivative and integral ( Chen et al., 2009; Dalir

 Bashour, 2010; Gutiérrez, Rosário, & Tenreiro Machado, 2010;

abatier, Agrawal, & Machado, 2007; Sabatier et al., 2015 ). Based on
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N  

h  
he Cauchy’s formula, Riemann defined the general fractional order

ntegral as below for a general complex order ν ( Dalir & Bashour,

010; Li & Deng, 2007; Ross, 1977; Sabatier et al., 2015 ): 

 

ν
t o 

f (t) � 

1 

�(ν) 

∫ t 

t o 

f (τ ) 

(t − τ ) 1 −ν
dτ

{ 

t > t o 
t o ∈ R 

ν ∈ C 
(1) 

n which �( ν) is Gamma function: 

(ν) = 

∫ ∞ 

0 

e −x x ν−1 dx (2)

hen ν is a real fractional order, (1) can be re-written as

 Dalir & Bashour, 2010; Li & Deng, 2007; Ross, 1977; Sabatier et al.,

015 ): 

 

ν
t o 

f (t) � 

∫ t 

t o 

f (τ )(t − τ ) ν−1 

�(ν) 
dτ = 

∫ t 

t o 

g ν (t − τ ) f (τ ) dτ = g ∗ f 

(3) 

here: 

 ν (t − τ ) = 

(t − τ ) ν−1 

�(ν) 
(4) 

ow, the Laplace transform of the fractional order integral can be

nterpolated from the convolution (3) ( Sabatier et al., 2015 ): 

 { I νt o f (t) } = L 

{
(t) ν−1 u (t) 

�(ν) 

}
L { f (t) } = 

1 

s ν
F (s ) (5)

iouville simply calculated fractional order derivative. In his

ethod, the exponential presentation function f (t) = 

∑ ∞ 

n =0 c n e 
a n t 

s used for this purpose. In this respect, the fractional order deriva-

ive is obtained as ( Dalir & Bashour, 2010; Li & Deng, 2007 ): 

 

ν f (t) = 

∞ ∑ 

n =0 

c n a 
ν
n e 

a n t (6)

he Riemann–Liouville’s definition of the general fractional order

erivative is as below ( Chen et al., 2009; Dalir & Bashour, 2010; Li

 Deng, 2007; Ross, 1977; Sabatier et al., 2015 ): 

 

ν
t o 

f (t) � 

1 

�(n − ν) 

d n 

dt n 

(∫ t 

t o 

f (τ ) 

(t − τ ) 1+ ν−n 
dτ

)
, 

n = [ integer real part of ν] + 1 (7) 

he second popular definition of fractional order derivative is given

y Caputo ( Dalir & Bashour, 2010; Li & Deng, 2007; Ross, 1977 ): 

 

ν
t o 

f (t) = 

1 

�(ν − n ) 

∫ t 

t o 

f (n ) (τ ) dτ

(t − τ ) ν+1 −n 
(n − 1 ≤ ν < n ) (8)

his definition is improved as ( Caputo & Fabrizio, 2015 ): 

 

ν
t o 

= 

M(ν) 

1 − ν

∫ t 

t o 

˙ f (τ ) e −
ν(1 −τ ) 

1 −ν dτ (9) 

here M ( ν) is a normalized function so that M(0) = M(1) = 1 . An-

ther general definition of the fractional order derivative is given

y Grünwald–Letnikov ( Chen et al., 2009; Dalir & Bashour, 2010;

i & Deng, 2007; Ross, 1977; Sabatier et al., 2015; Shah & Agashe,

016 ): 

 

ν f (t) = lim 

h → 0 

∞ ∑ 

k =1 

(−1) k 
(
ν
k 

)
f (t − kh ) 

h 

ν
, 

(
ν

k 

)

= 

�(ν + 1) 

k !�(ν − k + 1) 
(10) 

ventually, the Laplace transform of a real fractional order deriva-

ive can be achieved by using the Riemann–Liouville’s and Caputo’s
efinition (7) and (8) ( Chen et al., 2009; Sabatier et al., 2015 ): 

 { D 

ν
0 f (t) } = sF (s ) −

n −1 ∑ 

k =0 

s k D 

ν−k −1 
0 f (t) 

∣∣
t=0 

(n − 1 < ν ≤ n ) 

(11) 

 { D 

ν
t 0 

f (t) } = sF (s ) −
n −1 ∑ 

k =0 

s ν−k −1 D 

k 
t 0 

f (t) 
∣∣

t=0 
(n − 1 < ν ≤ n ) 

(12) 

y considering definitions of the fractional order derivative and

ntegral which are described above, the continuous integro-

ifferential operator for a general complex value of ν is introduced

s Chen et al. (2009) : 

 

ν
t o 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

d ν

dt ν
R e (ν) > 0 

1 R e (ν) = 0 ∫ t 
t o 
(dτ ) −ν R e (ν) < 0 

(13) 

he two main properties of the continuous integro-differential op-

rator are listed as ( Chen et al., 2009; Sabatier et al., 2015 ): 

1. This is a linear operator: 

D 

ν
t o 
(a f (t) + bg(t)) = aD 

ν
t o 

f (t) + bD 

ν
t o 

g(t) 

2. It follows the additive index law: 

D 

ν
t o 

D 

α
t o 

f (t) = D 

α
t o 

D 

ν
t o 

f (t) = D 

α+ ν
t o 

f (t) 

Note, in the next sections, the frequency analyses of the FO-

ontrollers will be presented. Initial condition is not considered in

he following equations since the frequency analysis is performed

n the steady state. 

. Common types of linear fractional order controllers 

In this section, four common types of linear FO-controllers

hich are represented in the literature are described shortly. In

hat follows, Tilted Integral Derivative (TID) controllers, CRONE

ontrollers, FO lead/lag compensators and Fractional Order Propor-

ional and Derivative (FO-PID) controllers shall be introduced. 

Note, from practical viewpoint, controllers must have a proper

ransfer function to be realizable. Controllers which are not proper

n the following sections should be made proper by adding an ex-

ra low pass filter. 

.1. TID controller 

By substituting the proportional component in the PID con-

roller with the fractional order integrator ( s −
1 
n , n ∈ N), the TID

ontroller was introduced ( Lurie, 1994 ). The configuration of TID

ontrollers is shown in Fig. 1 . Fig. 2 compares the frequency re-

ponse of TID and PID controllers such that both controllers pro-

ide the same phase margin and gain values at high frequencies.

s was shown, the TID controller has better performance in reject-

ng disturbances than the PID controller since it has higher gain

efore the cross-over frequency (i.e ω i −T ID ≤ ω ≤ ω d ). A method

or tuning of TID controller parameters will be elaborated in

ection 4.1 . 

.2. CRONE controllers 

CRONE (French abbreviation for Commande Robuste d’Ordre

on Entier, which means non-integer robust control) controllers

ave been established by Oustaloup since the 1980s in tracking
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Fig. 1. Block diagram of TID controller. 
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fractal robustness ( Sabatier et al., 2015 ). Three CRONE genera-

tions were proposed in the frequency domain in which the open-

loop transfer function has fractional order integrators and differ-

entiators. These three generations are used for controlling robustly

against plant uncertainties. The first generation of CRONE has the

simplest configuration among CRONE generations and can be con-

sidered as a simple FO-PID controller. As it is shown in Fig. 3 , the

open-loop transfer function of the second generation is shaped fol-

lowing the Bode’s ideal cut-off frequency characteristic. 

The third generation of CRONE widens the application of the

second generation of CRONE so that it is applicable to plants which

have general uncertainties than just gain-like perturbations. The

configurations and tuning methods of CRONE generations will be

delineated in Section 4.2 . 
Fig. 2. Bode diagram o
.3. Lead/lag compensators 

The generalization of classical lead/lag compensators to FO

ead/lag compensators has been studied in some investigations

 Chen, 2006; Chen et al., 2009; Sabatier et al., 2015 ). Fractional or-

er lead/lag compensators are obtained by: 

(s ) = k p 

(
1 + 

s 
ω L 

1 + 

s 
ω h 

)μ

, ω L < ω h , 

{
Lead μ ∈ (0 , + ∞ ) 
Lag μ ∈ (−∞ , 0) 

(14)

ometimes, fractional order lead/lag compensators are also defined

s ( Monje, Vinagre, Calderon, Feliu, & Chen, 2005; Monje et al.,

008 ): 

(s ) = k p x 
μ

(
1 + 	s 

1 + 	xs 

)μ

, 0 < x < 1 , 

{
Lead μ > 0 

Lag μ < 0 

(15)

nother configuration of these compensators is as ( Tavazoei &

avakoli-Kakhki, 2014 ): 

(s ) = k p 

(
1 + x 	s μ

1 + 	s μ

)
, 0 < μ < 2 , 

{
Lead x > 1 

Lag 0 < x < 1 

(16)

here 	 is a tuning knob which determines corner frequencies of

hese compensators. It must be recalled that it is not possible to

onsider μ≥ 2 because the transfer function of the controller is not

ounded-input bounded-output (BIBO) stable ( Aoun, Malti, Levron,

 Oustaloup, 2007 ). The bode plot of a lead compensator is shown

n Fig. 4 . 

In the lead compensators, the more distance between ω L and

 h , the more robustness and stability (phase margin) for the con-

roller. Also, the phase margin can be increased by increasing μ
nd the maximum achievable phase by FO lead compensators is

90 ◦. However, increasing μ or the distance between the corner
f TID controller. 
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Fig. 3. Open-loop transfer function in the second generation of CRONE while n F = n I . 

Fig. 4. Bode diagram of FO-lead compensator. 
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Fig. 5. Various types of PID controllers. 
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frequencies ( ω L and ω h ) leads to have high magnitudes in high fre-

quencies. Consequently, the controller has the less noise rejection

characteristic which may cause practical complications. So, simi-

lar to integer lead/lag compensators, the stability and robustness

have conflict with the precision in this type of FO-controllers. In

Section 4.3 , tuning methods of these controllers will be discussed. 

3.4. Fractional order PI λD 

μ controllers 

Podlubny (1994) was the first to use the FO-PID name for a kind

of FO controllers in 1994. FO-PID controllers are the general form

of the conventional integer order PID controllers. The parallel or

ideal form of this controller is: 

(s ) = k p + 

k i 

s λ
+ k d s 

μ λ, μ ∈ R (17)

Fig. 5 shows the various types of controller (17) versus λ and μ.

It can be stated that all families of (PID) controller can be derived

from (17) as follows: 

1. P controllers can be obtained when λ = μ = 0 . 

C(s ) = k p (18)

2. IO-PI controllers can be obtained when μ = 0 , λ = n ∈ N

C(s ) = k p 

(
1 + 

k i 
s n 

)
(19)

3. FO-PI controllers can be obtained when μ = 0 , λ 	∈ N

C(s ) = k p 

(
1 + 

k i 

s λ

)
(20)

4. IO-PD controllers can be obtained when λ = 0 , μ = m ∈ N

C(s ) = k p (1 + k d s 
m ) (21)

5. FO-PD controllers can be obtained when λ = 0 , μ 	∈ N

C(s ) = k p (1 + k d s 
μ) (22)

6. IO-PID controllers can be obtained when (λ = n, μ = m ) ∈ N

C(s ) = k + 

k i + k s m (23)
p 
s n d f  
There are some drawbacks of parallel FO-PID controllers. First,

f λ∈ (0, 1) in the integration part of this controller, the settling

ime is very high. So, sometimes 
1 

s λ
is replaced with 

1 

s 
s 1 −λ to de-

rease the settling time value ( Monje, Calderon, Vinagre, Chen, &

eliu, 2004; Monje et al., 2008; Sabatier et al., 2015 ). Also, it is

ecessary to tame the derivative part of the parallel FO-PID con-

roller for avoiding saturation phenomenon and having the better

oise rejection feature. Hence, (17) becomes: 

(s ) = k p + 

k i 

s λ
+ 

k d s 
μ

1 + τ f s 
γ

γ ≥ μ (24)

f μ 	 = γ a memory with a high capacity is required for imple-

enting the discrete time or continuous-time approximation of

his controller. So, it is better to consider ( γ − μ = n, n ≥ 0 )

 Sabatier et al., 2015 ). By increasing n , the phase margin decreases

nd the system has the better noise rejection feature and vice

ersa. In most cases, n is equal to zero. The most widely-used par-

llel FO-PID controller is: 

(s ) = k p + 

k i 

s λ
+ 

k d s 
μ

1 + τ f s 
μ

(25)

oreover, for the ease of practical implementation, FO-PID con-

rollers can be represented in the series form (which is very similar

o the first generation of CRONE): 

(s ) = k p 

(
1 + 

k i 

s λ

)⎛ 

⎝ 

1 + 

s 

ω l 

1 + 

s 

ω h 

⎞ 

⎠ 

μ (26)

ode plot of FO-PID controllers is shown in Fig. 6 . As was shown,

he maximum phase which is achievable by these controllers is

bout 90 μ degree. 

In ( Luo & Chen, 2009; Malek, Luo, & Chen, 2013 ), the FO-[PD]

nd and FO-[PI] controller is defined as (27) and (28) , respectively.

(s ) = k p (1 + k d s ) 
μ (27)

(s ) = k p 

(
1 + 

k i 
s 

)
λ (28)

he comparison between FO-PD (22) and FO-[PD] controller is per-

ormed in Fig. 7 . It was observed that the FO-[PD] controller has
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Fig. 6. Bode plot of FO-PID controllers. 

Fig. 7. Bode plot of FO-PD and FO-[PD] controllers. 
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Fig. 8. Bode plot of D 1 −λI λ controller for various values of λ. 
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less overshoot for a step response than FO-PD controller for FO-

systems ( Luo & Chen, 2009 ) while the FO-PI and FO-[PI] do not

have significant differences in the performance for the fractional

order process systems( Malek et al., 2013 ). 

Another type of FO-controllers which is presented in the litera-

ture is D 

1 −λI λ ( Feliu-Batlle, Perez, & Rodriguez, 2007; Folea, Mure-

san, De Keyser, & Ionescu, 2016; Monje et al., 2004 ): 

(s ) = 

k i + k d s 

s λ
(29)

The bode plots of controller (29) for several values of λ are

drawn in Fig. 8 . It is obvious that when λ = 0 , this is an IO-PD

controller and when λ = 1 this is an IO-PI controller. So, the D 

1 −λI λ

controller is a trade-off between IO-PD and IO-PI controllers. When

λ increases, the gain at low frequencies increases while the phase

at cross-over frequency decreases. Having higher gains at low fre-

quencies (increasing integral action of the controller) leads to im-

proving the tracking performance of this controller. Consequently,

stability decreases and precision improves for this controller by in-

creasing λ and vice versa. Therefore, it can be said that this con-

troller is a trade-off between stability and precision. 

4. Tuning methods of FO-controllers 

In this section, representative tuning methods for FO-controllers

which are developed in the frequency domain are discussed. Sim-

ilar to Section 3 , tuning methods are fallen down into four cate-

gories including tuning methods for TID controllers, tuning meth-

ods for CRONE generations, tuning methods for FO lead/lag com-

pensators, and tuning methods for PI λD 

μ controllers. Let’s describe

some general equations and constraints which are used in a lot

of literature in order to tune FO-controllers ( Merrikh-Bayat, Mire-

brahimi, & Khalili, 2015; Monje et al., 2005; Oustaloup & Melchior,

1993; Padula & Visioli, 2011; 2012; Sabatier et al., 2015; Valério &

da Costa, 2006; Zhao et al., 2005 ). These constraints are: 
1. The phase margin definition: 

Arg [ G ( jω c ) C( jω c )] = −π + ϕ m 

(30)

where G ( j ω) and C ( j ω) are the plant and control transfer

functions respectively. 

2. The cross-over frequency definition: 

| G ( jω c ) C( jω c ) | = 1 (31)

3. The flatness of the phase curve of the open-loop transfer

function near the cross-over frequency which leads to the

robustness of the system against gain variations in a specific

range (iso-damping): 

d ( Arg [ G ( j ω) C( j ω)]) 

dω 

∣∣∣
ω= ω c 

= 0 (32)

4. The gain margin definition: 

Arg (G (ω cp ) C(ω cp )) = −π ⇒ 

| G (ω cp ) C(ω cp ) | = 

1 

M g 

(33)

5. The complementary sensitivity constraints ( Sabatier et al.,

2015 ): 

inf | T ( jω) = 

CG 

1 + CG 

| ≥ T l (ω) (34)

M r = sup | T ( jω) | ≤ T u (ω) (35)

As it was shown in Fig. 9 , T l and T u are two frequency

constraint functions so that low frequency characteristics of

bound T l and T u are used to avoid slow response of the sys-

tem to a step variation of reference signals or disturbances.

Middle frequency behaviours of T l and T u confine the highest

value of the settling time (enhance the speed of the system)

and high values of the resonant peak. Sometimes, high fre-

quency properties of T u increases the noise rejection feature

of the system. 
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Fig. 9. Frequency domain constraints on complementary sensitivity function. 
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6. The modulus margin constraint (the sensitivity function con-

straint): 

M s = sup | S( jω) = 

1 

1 + CG 

| ≤ S u (ω) (36)

where the S ( j ω) is the sensitivity transfer function and S u is

a desired bound. This constraint can be used for improving

the disturbance rejection characteristic of the system. The

lower values of the modules margin, the more robustness of

the system against disturbances. 

7. The control sensitivity constraint: 

sup | CS( jω) | ≤ CS u (ω) (37)

where CS u is a desired bound.This constraint limits the con-

trol effort in respect of noises and disturbances, so this in-

creases the energy efficiency of the controller. 

8. The process sensitivity constraint: 

sup | GS( jω) | ≤ GS u (ω) (38)

where GS u is a desired bound. This constraint improves dis-

turbance rejection of the plant, so it leads to enhancing the

precision of the system. 

.1. Tuning methods for TID controller 

As discussed in Section 3.1 , TID controller has the simplest con-

guration among FO-controllers. It is noteworthy to recall that

uto-tuning methods for PID controllers are applicable for TID con-

rollers since they are very similar to PID controllers. Apart from

his fact, there is one explicit tuning method in the frequency do-

ain for this type of FO-controllers ( Lurie, 1994 ). As it was shown

n Fig. 1 , three parameters k I , k T and k D must be tuned for these

ontrollers. In this respect, these three simple steps must be fol-

owed: 

1. Assume k I = k D = 0 and set k T in order to satisfy constraint

(31) 

2. k I = 

k T 
4 ( 

ω c 
2 π ) 1 −

1 
n 

3. At the end, considering the phase margin 5 ◦ above the de-
sired phase margin, k D is obtained using (30) &  
.2. Tuning methods for CRONE generations 

As was described in Section 3.2 , three generations of CRONE

ontrollers exist and each generation has its tuning method and

an be used in a special condition. The first generation of CRONE

s used to robustly control a plant with an uncertain gain but con-

tant phase around the cross-over frequency. In other words, if the

ross-over frequency ( ω c ) of a controlled system changes due to

ain variation of the plant in a frequency range [ ω A , ω B ], its phase

tays unchanged within this frequency range. The configuration of

he first generation of CRONE controller is ( Oustaloup & Melchior,

993; Sabatier et al., 2015 ): 

 R 1 (s ) = k 

(
1 + 

ω I 

s 

)
n I 

⎛ 

⎝ 

1 + 

s 

ω L 

1 + 

s 

ω h 

⎞ 

⎠ 

n 

⎛ 

⎜ ⎝ 

1 

1 + 

s 

ω f 

⎞ 

⎟ ⎠ 

n F , 

n I , n f ∈ N, n ∈ R, ω I < ω L < ω A < ω B < ω h < ω f (39) 

t is suggested that ω L and ω h must be set so that they ensure

 constant phase for the open loop response within the range of

 ω A , ω B ]. Parameters n and k are obtained by using constraints

30) and (31) ( Sabatier et al., 2015 ): 

 = 

−π + ϕ m 

− arg (G ( jω c )) + n F arctan 

(
ω c 

ω f 

)
+ n I 

(
π

2 
− arctan 

(
ω c 

ω I 

))
arctan 

(
ω c 

ω L 

)
− arctan 

(
ω c 

ω h 

)
(40) 

 = 

(
1 + 

ω 

2 
c 

ω 

2 
F 

)
0 . 5 n F 

| G ( jω c ) | 
(
ω h 

ω L 

)
0 . 5 n 

(
1 + 

ω 

2 
I 

ω 

2 
c 

)
0 . 5 n I 

(41) 

hen, in a frequency range [ ω A , ω B ], there is perturbation in the

ain behaviour of a plant, and its phase is function of the fre-

uency and is not constant, the second generation of CRONE must

e used to make the system robust against uncertainties. The con-

guration of the second generation of CRONE controller is ( Cervera

 Baños, 2006; Oustaloup & Melchior, 1993; Sabatier et al., 2015 ;
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Sabatier, Oustaloup, Iturricha, & Lanusse, 2002 ): 

 R 2 (s ) = kG 

−1 (s ) 
(

1 + 

ω I 

s 

)
n I 

⎛ 

⎝ 

1 + 

s 

ω h 

1 + 

s 

ω L 

⎞ 

⎠ 

ν

⎛ 

⎜ ⎝ 

1 

1 + 

s 

ω f 

⎞ 

⎟ ⎠ 

n F , 

n I , n f ∈ N, ν ∈ R, ω I < ω L < ω A < ω B < ω h < ω f 

(42)

Similar to the first generation of CRONE, ν and k are obtained us-

ing (30) and (31) : 

ν = 

−π + ϕ m 

+ n F arctan 

(
ω c 

ω f 

)
+ n I 

(
π

2 

− arctan 

(
ω c 

ω I 

))
arctan 

(
ω c 

ω h 

)
− arctan 

(
ω c 

ω L 

) (43)

k = 

(
1 + 

ω 

2 
c 

ω 

2 
f 

)
0 . 5 n F 

(
ω L 

ω h 

)
0 . 5 ν

(
1 + 

ω 

2 
I 

ω 

2 
c 

)
0 . 5 n I 

(44)

Parameters n I and n F must be set so that n I ≥ n pl and n F ≥ n ph 

if the order of plant at low frequencies ( ω < ω I ) and high fre-

quencies ( ω > ω f ) is n pl and n ph , respectively (for more details see

Sabatier et al., 2015 ). 

Although the second generation of CRONE controller extends

the frequency range for choosing the cross-over frequency, in some

cases such as existing delay on the system, this configuration is not

able to ensure robustness of a system. Hence, the third generation

of CRONE is utilized when uncertainties of a plant are more gen-

eral than just gain-like perturbations. In the basic idea of the third

generation of CRONE, the open-loop transfer function (45) has a

complex integration order ( ν = a + ib) which leads to have a gen-

eral template in the Nichols chart ( Oustaloup & Melchior, 1993;

Sabatier et al., 2015 ). 

β = k 

(
cosh 

(
b 
π

2 

))(
ω c 

s 

)
a 
(

Re /i 

((
ω c 

s 

)
ib 
))

−sign (b) (45)

Tuning of the third generation of CRONE controller is the most

complicated among all CRONE generations (for more information

see Sabatier et al., 2015 ). A designer can set the number of tuning

parameters by considering more general templates based on how

a plant is sophisticated. 

βT = 

N ∏ 

j=1 

β j ⇒ C R 3 (s ) = G 

−1 βT (46)

When the number of tuning parameters are determined, a designer

must select a proper cost function and solve an optimization prob-

lem under some constraints which definitely include constraints

(30) and (31) . CRONE recommends four optimization problems for

tuning the third generation of CRONE controller ( Lanusse, Lopes,

Sabatier, & Feytout, 2013; Sabatier et al., 2015 ). 

1. Considering J = sup | T ( jω) | − M r as the cost function in

which M r is the desired resonant peak. Minimization must

be done under constraint (34) to (38) . 

2. Considering J = 

20 
2 π log( 

∫ ω max 
ω min 

max | e ( j ω) | 2 d ω) as the cost

function in which e (t) = y re f (t) − y (t) . Minimization must

be done under the constraints (37) . 

3. Considering J = max sup | G ( jω) S( jω) 

jω 

| dB . Minimization must

be done under the constraints (35) to (37) . 

4. Considering J = max sup | S( jω) 

jω 

| dB . Minimization must be

done under the constraints (35) to (37) . 

CRONE generations have been successfully applied to some

practical systems ( Oustaloup et al., 2008 ). The second generation
as implemented mechanically to a suspension system of a vehicle

 Oustaloup et al., 1996 ). The third generation was applied to a res-

nant plant (flexible transmission) ( Oustaloup et al., 1995 ), a four

ass-spring system with low damping ( Sabatier, Poullain, Latteux,

homas, & Oustaloup, 2004 ), and a nonlinear hydraulic actuator

 Pommier et al., 2002 ). To sum up, it appears that the CRONE gen-

rations are very useful for designing a robust controller against

lan uncertainties. 

.3. Tuning methods for fractional order lead/lag compensators 

In this part, tuning methods which are applicable for tuning FO-

ead lag compensators are presented. Monje et al. (2005) obtained

 method for auto-tuning of these compensators (controller (15) ).

he magnitude of | G ( j ω c )| and arg( G ( j ω c )) are found by using the

elay test. For this purpose, the constraints (30) , (31) , and the def-

nition of the static error constant: 

 ss = lim 

s → 0 
s n C(s ) G (s ) , (47)

here n is type of the plant are used for tuning of an FO-lead/lag

ompensator. There are four unknown parameters ( x, μ, 	, k p )

ith three equations, so an optimization problem has to be solved.

he objective function has chosen to minimize the μ since the less

alue of μ, the less value of x which results in more robust com-

ensator. Following the trial and error approach is taken to solve

his optimization problem: 

1. Consider a minimum value for μ (for instance, μ = 0 . 05 ) 

2. Calculate the x , 	, and k p 
3. If x is positive, the compensator is tuned. Otherwise, the μ

is increased with a fixed value and repeat steps (2)-(3) 

In a similar way, Tavazoei and Tavakoli-Kakhki (2014) obtained

 general method for tuning controller (16) . In this way, the con-

traints (30) , (31) and the definition of the static error constant

47) , and the maximum value of the controller output (to avoid

aturation) are considered for tuning of its four parameters. 

.4. Tuning methods for PI λD 

μ

As discussed before, the most popular type of FO-controller is

he FO-PID controller. In this section, tuning methods for these

ontrollers in the frequency domain are reviewed. 

Several researchers proposed tuning methods using optimiza-

ion techniques. Zhao et al. (2005) tuned FO-PID controller (con-

roller (17) ) for on type of FO-plants ( G (s ) = 

1 

a 1 s α + a 2 s β + a 3 
). For

 given phase and gain margin, (30), (31) , and (33) are accounted

or tuning. This leads to four equations with seven unknown pa-

ameters ( ω c , ω cp , k p , k i , k d , μ, λ) : 

(i) f (ω c , ω cp , μ, λ, ϕ m 

, M g ) = 0 

(ii) k p = g(ω c , ω cp , μ, λ, ϕ m 

, M g ) 

(iii) k i = y (ω c , ω cp , μ, λ, ϕ m 

, M g ) 

(iv) k d = z(ω c , ω cp , μ, λ, ϕ m 

, M g ) 

This problem is solved through an optimization method in

hich four parameters ( ω c , ω cp , μ, λ) form a desired cost func-

ion J = L (ω c , ω cp , μ, λ) based on the required performance (ro-

ustness, stability, etc). The optimization problem is solved under

onstraint (i). After finding these four parameters through a suit-

ble optimization algorithm, parameters ( k p , k i , k d ) are obtained

sing equations (ii)-(iv). This method is flexible and users are able

o add their requirements as an objective function in the optimiza-

ion part. They also concluded that FO-PID controller has better

erformance than IO-one for FO-plants. 

In addition, Zhong and Li (2015) proposed a tuning method

or FO-PID controllers for a specific type of FO-plants ( G (s ) =
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t  

a

1 

a 1 s 
α1 + a 2 s 

α2 + a 3 s 
α3 + a 4 

, a i > 0). In this method, constraints (30),

31) , and (32) are used for tuning, so there are seven unknown

arameters ( ω c , ϕm 

, k p , k d , k i , μ, λ) and three equations. Then,

he feasible region for unknown parameters based on the stability

nalyses is found. Next, one of the suggested cost functions includ-

ng (IAE = J = 

∫ ∞ 

0 | e (t ) | dt ), (34) , and (36) is used for optimization

nder constraints (30), (31) , and (32) . A fixed-step search method

s utilized for solving. If the obtained controller satisfies the de-

ired performances, the tuning is finished; otherwise, two narrow

ntervals for μ and λ are taken so that previous obtained optimal

and μ are placed in the middle of intervals. After that, the step-

ize is reset to a smaller value the procedure is repeated, and the

ontroller is finally tuned. The tuned controller is robust against

ain variations and shows isodamping behaviour. 

Valério and da Costa (2006) obtained a tuning method similar

he Ziegler–Nichols method for FO-PID controllers (controller (17) ).

t is assumed that each plant frequency response can be approxi-

ated by an S-shaped response ( G (s ) = 

e −Ls 

1 + T s 
). Then, to solve the

roblem, (30) is supposed as the minimization cost function and

31), (32), (35) , and (36) are counted for constraints. For many dif-

erent L and T , the Nelder–Mead’s simple optimization method is

pplied to solve this optimization problem for a specific require-

ent and then the least-square method is used to find a relation

etween L, T and tuning parameters for the given specifications.

or any requirement, this procedure can be done to find a rela-

ion between dynamic parameters of the system and tuning knobs.

hey reported that the FO-PID which is tuned by this method is

ore robust than IO-PID (controller (23) ) which is tuned by the

iegler–Nichols method. 

Similarly, Saidi, Amairi, Najar, and Aoun (2015) proposed a tun-

ng method for FO-PID controllers for any general plants. In the

roposed approach, (30), (31), (32), (35) , and (36) are considered

or tuning. Also, they assumed flatness of the phase in a desired

and [ ω l , ω h ] and then considered N frequencies belong to this

and. They changed constraints (30) and (32) to (48) (phase mar-

in constraint) and (49) (iso-damping), respectively. 

N 
 

i =1 

( arg [ C( jω i ) G (ω i )] + π − ϕ m 

) 
2 = 0 , ∀ ω i ∈ [ ω l , ω h ] (48)

N 
 

i =1 

(
d arg [ C( jω) G ( jω)] 

dω 

∣∣∣
ω= ω i 

)2 

= 0 , ∀ ω i ∈ [ ω l , ω h ] (49)

hen, they supposed (31) as the minimization cost function under

onstraints (30), (32), (35) , and (36) to tune the controller. Both

ethods have robustness against gain variations. 

Chen, Bhaskaran, and Xue (2008) generalized Modulus mar-

in constrained Integral Gain Optimization (MIGO) based controller

uning method for FO-PI controllers (20) and called it F-MIGO

ethod. In this respect, they faced with an optimization problem

hich is: 

• R = 

M s + M r − 1 

2 M s (M 

2 
r − 1) 

. M r and M s are respectively the resonant peak

(35) and the modules margin (36) 

• f (k p , k i , ω, λ) = | 1 + C( j ω) G ( j ω) | 2 
• Constraints: f ( k p , k i , ω, λ) ≥ R 2 

• Objective function: max { k i } 

This optimization problem is solved for a fixed value of λ
hrough this mathematical method: 

f (k p , k i , ω, λ) = R 

2 , 
∂ f 

∂ω 

= 0 , 
∂ f 

∂k p 
= 0 , 

d 2 f 

dω 

2 
> 0 (50)

hen, this procedure is performed for a range of λ and best λ is

elected to minimize ( ISE = 

∫ ∞ 

e 2 (t ) dt ) for a step response. This
0 
ethod is applied to a first order system plus time delay ( G (s ) =
ke −Ls 

1 + T s 
) and relations between controller parameters and process

arameters ( L and T ) are obtained. This method is compared with

O-PI controllers (controller (19) ) tuned by the Ziegler–Nichols,

odified Ziegler–Nichols and AMIGO ( Hägglund & Åström, 2002 )

or six different plants. It is concluded that if the relative dead

ime ( 
L 

L + T 
) is very small, the FO-PI controllers are better than

O-PI controllers, for systems with a balanced lag and delay values

 L ≈ T ), there is no difference between IO-PI and FO-PI controllers

nd for a systems with high relative dead time, FO-PI controller re-

ponses are faster with higher values of the overshoot than IO-PI

ontroller responses. 

Vu and Lee (2013) developed this tuning method and intro-

uced a new tuning guideline. In this approach, the open-loop

ransfer function is considered as ( 
s 

ω c 
) γ , and then, λ is selected

ased on the previous method. Next, k p , γ , and ω c are tuned based

n one of the suggested optimization criteria under constraint (34) .

n the end, k i is found through CG ( jω) = ( 
jω 

ω c 
) γ . 

Padula and Visioli (2012) found tuning methods for integral

 G (s ) = 

k 

s 
e −Ls ), stable ( G (s ) = 

k 

T s + 1 
e −Ls ), and unstable ( G ( s ) =

k 

T s − 1 
e −Ls ) process plants ( Padula & Visioli, 2011 ). Three types

f controllers including the tamed series FO-PID (similar to the

ontroller (26) ), the tamed series IO-PID controller (controller

26) with λ = μ = 1 and ω h = 10 ω l ) and the ideal or parallel

amed FO-PID (controller (25) with a low-pass filter) are tuned

or this purpose. For tuning integral and stable plant, IAE and

36) are respectively selected as the cost function and constraint

or an optimization problem. For tuning the unstable plant, the

ost function remains the same but the constraint is substituted

ith checking stability. In this respect, the stability condition of

he closed-loop transfer function is checked at the first step for

ach trial. If the trial makes the system unstable, the objective

unction will get a high value, so it is discarded automatically. This

uning method is performed for a step disturbance and reference

ignal response separately and relations between controller param-

ters, L and T are found for each controller in each scenario (dis-

urbance rejection or reference tracking). They recognized that FO

alculus has significant effects on differentiator part of FO-PID and

oes not provide any advantages for integral part since the inte-

ral order became one in all optimization solution. In addition, FO-

ID controllers outperforms IO-PID controllers in three considered

ystems. 

Monje et al. (2004) proposed a method for tuning FO-PI con-

rollers (controller (20) ) robustly against plant uncertainties and

hanging the time delay for the second order plus time delay

rocess systems ( G (s ) = 

ke −Ls 

(T 1 s + 1)(T 2 s + 1) 
). In the robust design

gainst the time delay variation ( L ), (31) is assumed as the cost

unction and (30) and (32) are considered as constraints. In the ro-

ust design against the variation of time constants ( T 1 or T 2 ), the

ost function remains the same as time delay variation and con-

traints are replaced with (30) and (33) . The nonlinear optimiza-

ion method (FMINCON in MATLAB) is used for solving these op-

imization problems. As it was discussed before, 
1 

s λ
was replaced

ith 

1 

s 
s 1 −λ in their controller to improve the settling time. In a

imilar way, they tuned FO-PID controller (controller (17) ) for the

rst order systems plus time delay ( G (s ) = 

ke −Ls 

1 + T s 
). In this respect,

hey use the same cost function under constraints (30), (32), (35) ,

nd (36) ( Monje et al., 2008 ). 



62 A .A . Dastjerdi, B.M. Vinagre and Y. Chen et al. / Annual Reviews in Control 47 (2019) 51–70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o  

a  

m  

a  

o  

i  

c  

l  

(

 

t  

m  

m  

r  

f  

 

i  

t  

v  

N  

D  

t  

a  

r  

t  

e

 

P  

t  

(  

u  

a  

n  

u  

b  

a  

t  

b  

p  

C  

a  

c  

D

5

 

r  

c  

s  

a  

t  

o  

m  

o  

l  

d  

m

5

 

o  
Moreover, similar to their method for FO-lead/lag compensator

( Monje et al., 2005 ), they proposed an auto-tuning method for se-

ries FO-PID controller (controller (26) ). The magnitudes of | G ( j ω c )|

and Arg( G ( j ω c )) are found by using the relay test and FO-PID is re-

shaped as an FO-PI controller (controller (20) ) multiplied to an FO-

lead compensator (controller (15) ). First, the FO-PI part is designed

so that it makes the slope of the phase of the open loop-transfer

function to zero while k i = 

1 

ω c 
(in order to minimize the value of

λ). Next, the FO-lead compensator is tuned for the plant multiplied

FO-PI part using method described in Monje et al. (2005) (elabo-

rated in Section 4.3 ). 

In addition, De Keyser, Muresan, and Ionescu (2016) developed

an auto-tuning for FO-PD (22) and FO-PI (20) controllers. In this

method, 
d ( Arg [ G ( j ω)]) 

dω 

∣∣∣
ω= ω c 

, Arg[ G ( j ω c )], and | G ( j ω c )| are found

through a novel experiment for an unknown plant, and then, the

controller is tuned using constraints (30), (31) , and (32) . Also,

these auto-tuning methods are robust against gain variations of the

plant. 

Some people try to tune FO controllers utilizing loop-shaping

tools. Krijnen et al. (2017) combined the loop-shaping with opti-

mization methods for tuning a series FO-PID controllers (51) for

a precision positioning system (a mass-spring damper system) to

maximize crossover frequency (bandwidth frequency). Controller

(51) is a FO-PID controller which is multiplied by a FO-low pass

filter as: 

(s ) = k p 

(
1 + 

ω i 

s 

)⎛ 

⎜ ⎝ 

1 + 

s 

ω z 

1 + 

s 

ω p 

⎞ 

⎟ ⎠ 

μLP (n,r) (s ) 

LP (n,r) (s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

n = 1 

1 

1 + 

s 

ω l p 

n = 2 

⎛ 

⎜ ⎜ ⎝ 

1 

1 + 

(
s 

ω l p 

)
r 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎝ 

1 

1 + 

s 

ω l p 

⎞ 

⎟ ⎠ 

n = 3 

⎛ 

⎜ ⎜ ⎝ 

1 

1 + 

(
s 

ω l p 

)
r + 

(
s 

ω l p 

)
2 r 

⎞ 

⎟ ⎟ ⎠ 

⎛ 

⎜ ⎝ 

1 

1 + 

s 

ω l p 

⎞ 

⎟ ⎠ 

(51)

In their method, tuning parameters x = [ k p , ω i , ω z , ω p , ω l p , n, r, μ]

are found through an optimization procedure in which min { ω c,bm 

ω c (x ) 
}

( ω c,bm 

is the target bandwidth) is considered as a cost function un-

der constraints (30), (31) , and (33) . The tuned FO-PID controller

is compared with an IO-PID controller (controller (26) with λ =
μ = 1 ) which is tuned by an empirical method ( Schmidt, Schit-

ter, & Rankers, 2014 ) and it is revealed that the FO-PID controller

increases the achievable bandwidth frequency in comparison with

IO-PID controller. 

Dastjerdi, Saikumar, and HosseinNia (2018) proposed an indus-

trially applicable tuning method using the loop-shaping method

for controller (51) without FO-low pass filter ( LP ( n,r ) ). In that

method, knowing the value of the phase and gain margin, the con-

troller is tuned using some curves which are obtained based on the

loop-shaping approach (for more details see Dastjerdi et al. (2018) ).

The advantage of this method is that it does not need to solve

complicated equations, so it is very convenient for industrial ap-

plications. Moreover, this method is less sensitive to gain variations

of the plant. 
Moreover, another tuning method based on the combination

f Internal Model Control (IMC), loop-shaping, and second gener-

tion of CRONE is proposed in Maâmar and Rachid (2014) . This

ethod is very simple and straightforward and FO-PID controllers

re tuned for all process plants based on the phase margin, cross-

ver frequency, and type of the plant. In addition, Cervera, Ban-

os, Monje, and Vinagre (2006) considered combination of FO lead

ompensator (controller (15) ), FO-PI (controller (20) ), and an IO

ow-pass filter and tuned it upon constraints (30), (31), (35) , and

36) using loop-shaping tools. 

Some researchers introduced tuning methods based on solving

hese nonlinear equations ( (30) to (38) ) by utilizing mathematical

ethods such as the graphical method, the Newton–Raphson nu-

erical iterative algorithm and so on. Feliu-Batlle et al. (2007) car-

ied out research to tune controller D 

1 −λI λ (controller (29) )

or the second order plus time delay process systems ( G (s ) =
ke −Ls 

(T 1 s + 1)(T 2 s + 1) 
). It is noteworthy to say that the controller

s multiplied by ( 1 + 

α

s 
) where α is very small and set by the

rial and error method in order to decrease the settling time

alue. The constraints (30) , (31) and (33) were solved using the

ewton–Raphson numerical iterative algorithm. They assert that

 

1 −λI λ controllers are more robust and stable than IO-PID con-

rollers (23) against changes in T 1 . Moreover, Chen, Dou, Vinagre,

nd Monje (2006) used an accurate approximation method to di-

ectly solve constraints (30) , (31) , and (32) to tune FO-PI con-

rollers (controller (20) ) robust against gain variations for any gen-

ral plant. 

Luo and Chen (2009) tuned three controllers including IO-

ID (23) , FO-PD (controller (22) , μ∈ (0, 2)), and FO-[PD] (con-

roller (27) , μ∈ (0, 2)) controllers for fractional order plants

 G (s ) = 

1 

s (T s α + 1) 
). The constraints (30) , (31) and (32) are solved

sing the graphical method for designing a robust controller

gainst gain variations. It is concluded that IO-PID controllers are

ot proper for some cases because they cause systems to become

nstable and also FO-[PD] controllers are more robust and have

etter performances than FO-PD ones. Moreover, they used this

pproach for tuning FO-PI and FO-[PI] for the similar type of frac-

ional order plants. They concluded that there are no differences

etween FO-PI (20) and FO-[PI] (28) controllers for this type of

lant ( Malek et al., 2013 ). Similarly, Luo, Zhang, Lee, Kang, and

hen (2014) followed this method to tune the FO-PD controller for

 servo hard disk drive. This method is also used to tune FO-PI

ontrollers (20) for the first order plants ( Muresan, Folea, Mois, &

ulf, 2013 ). 

. Realization of fractional order controllers 

Control engineers are faced with a big difficulty which is the

ealization of FO-controllers when they want to utilize this type of

ontrollers. Implementation of FO-controllers will be done in two

teps. First, the irrational function s ν must be approximated with

 rational function. There are some methods for obtaining the ra-

ional approximation functions of s ν in the S, Z and δ domain. In

ther words, there are continuous approximation functions ( S do-

ain) and discrete approximation functions ( Z and δ domain). Sec-

nd, the rational transfer functions can be implemented by ana-

ogue circuits (for continues transfer functions) or by special digital

evices such as PLC, PIC, FPGA and so forth (for discrete approxi-

ation functions). 

.1. Continuous approximation methods ( S domain) 

One of the important problems in implementing of fractional

rder controllers can be addressed as finding a way for the ratio-
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al approximation of the irrational transfer function s ν . There are

everal mathematical methods for the rational approximation of s ν .

n the control theory, the Continuous Fractional Expansion (CFE)

ethod, which is a well-known method for function evaluation, is

 proper way among many other mathematical methods. In this

ay, any irrational function G ( s ) can be expressed as ( Podlubny,

etraš, Vinagre, O’leary, & Dor ̌cák, 2002; Vinagre, Podlubny, Her-

andez, & Feliu, 20 0 0 ): 

 (s ) ≈ a 0 (s ) + 

b 1 (s ) 

a 1 (s ) + 

b 2 (s ) 

a 2 (s ) + 

b 3 (s ) 

a 3 (s ) + . . . 

(52)

his technique yields to approximate the irrational function G ( s ) by

 rational function which is achieved by dividing two polynomial

unctions of the variable s : 

 (s ) ≈ P n (s ) 

Q m 

(s ) 
= 

p 0 + p 1 s + . . . + p n s 
n 

q 0 + q 1 s + . . . + q m 

s m 

(53) 

hich is passed through these points

(s 1 , G (s 1 )) , . . . , (s 1+ a , G (s 1+ a )) where a = m + n + 1 . 

A method upon the CFE technique is suggested by Matsuda

n selected logarithmically spaced points (s k , k = 0 , 1 , 2 , . . . ) . His

pproximation method is ( Podlubny et al., 2002; Vinagre et al.,

0 0 0 ): 

(s ) ≈ a 0 + 

s − s 0 

a 1 + 

s − s 1 

a 2 + 

s − s 2 
a 3 + . . . 

(54) 

here: 

• V 0 (s ) = H(s ) , V i +1 (s ) = 

s − s i 
V i (s ) − a i 

, a i = V i (s i ) 

The most widely applicable method for the approximation of s ν

n a limited frequency range is the Oustaloup’s method ( Podlubny

t al., 2002; Sabatier et al., 2015; Valério & Sa da Costa, 2004;

inagre et al., 20 0 0; Xue, Zhao, & Chen, 2006 ): 

 

ν ≈ C o 

k = N ∏ 

k = −N 

(
1 + 

s 

ω′ k 
)

(
1 + 

s 

ω k 

) (55) 

here: 

• C o = 

(√ 

ω h 

ω b 

)
ν , ω′ k = ω b 

(
ω h 

ω b 

)
k + N+ 1 −ν

2 
2 N+1 , ω k =

ω b 

(
ω h 

ω b 

)
k + N+ 1+ ν

2 
2 N+1 , ω h > ω b 

• ω h and ω b are frequency bands on which s ν is acted. 

Quality of the Oustaloup’s method near frequency bands may

ot be satisfactory when ω h is very high and ω b is very low. So, an

xtension of this method is proposed to overcome this problem by

ombining the Taylor’s series and Oustaloup’s method ( Xue et al.,

006 ): 

 

ν ≈ C o 

(
ds 2 + bω h s 

d(1 − ν) s 2 + bω h s + dν

)
k = N ∏ 

k = −N 

s + ω′ k 
s + ω k 

(56) 

n which: 

• C o = 

(
dω b 

b 

)
ν ∏ k = N 

k = −N 

ω k 

ω′ k 
The suggested values for b and d are respectively 10 and 9

 Xue et al., 2006 ). 
Similar to the Oustaloup’s method, Chareff proposed an ap-

roximation for functions in the form of G (s ) = 

1 

(1 + 

s 

P T 
) ν

as

inagre et al. (20 0 0) : 

1 (
1 + 

s 

P T 

)
ν

≈
∏ N−1 

i =1 

(
1 + 

s 

z i 

)
∏ N 

i =1 

(
1 + 

s 

p i 

) (57) 

here: 

• a = 10 
y 

10(1 −ν) , b = 10 
y 

10 ν

• p 0 = P T 
√ 

b , p i = p 0 (ab) i , z i = ap 0 (ab) i 

• N = 

[
log( ω max 

p 0 
) 

log(ab) 

]
+ 1 in which ω max is the desired bandwidth 

These coefficients are computed so that deviation from the orig-

nal magnitude response in the frequency domain becomes less

han y ( dB ). Yüce, Deniz, and Tan (2017) introduced an approxima-

ion method based on Laplace transform of FO integrator (4) by

tilizing the least square fitting tool of Matlab. In this way: 

 

−1 
{ 

1 

s ν+1 

} 
= 

t ν

ν�(ν) 
= F (t) (58)

t is assumed that function Y (59) is fitted properly to the function

 and then m i and n i parameters are achieved by using the least

quare fitting tool in Matlab. 

 (t) ≈ Y (t) = m 1 e 
−n 1 t + m 2 e 

−n 2 t 

+ m 3 e 
−n 3 t + m 4 e 

−n 4 t + m 5 e 
−n 5 t + c (59) 

hen, the inverse Laplace transform is applied to (59) and the ap-

roximation function is obtained as: 

 { Y } = 

m 1 

s + n 1 

+ 

m 2 

s + n 2 

+ 

m 3 

s + n 3 

+ 

m 4 

s + n 4 

+ 

m 5 

s + n 5 

+ 

c 

s 
≈ 1 

s ν+1 

(60) 

pon the Newton’s iterative method for solving nonlinear equa-

ions, Carlson introduced an approximation method for FO transfer

unctions. In this respect ( Shrivastava & Varshney, 2015; Tepljakov,

etlenkov, & Belikov, 2012; Valério & Sa da Costa, 2004 ): 

(G (s )) ν ≈ H n (s ) = H n −1 (s ) 
(a − 1)(H n −1 (s )) a + (a + 1) G (s ) 

(a + 1)(H n −1 (s )) a + (a − 1) G (s ) 
(61)

here: 

• a = 

1 

ν
, H 0 (s ) = 1 

It is obvious that this method is restricted to that a must be an

nteger number. So, some researchers tried to overcome this limi-

ation. Shrivastava and Varshney (2015) considered that the Carl-

on’s method is applicable for ν = 0 . 1 , 0 . 2 , and 0.5. Then, they

uilt other ν values in the range of [0.1,0.9] by combination of

hese three values (for example, 0 . 3 = 0 . 1 + 0 . 2 or 0 . 8 = 0 . 3 + 0 . 5 )

nd obtained a table for approximation of ( s ν , ν ∈ [0.1, 0.9]). More-

ver, Tepljakov et al. (2012) modified the Carlson’s method in or-

er to approximate s ν in a frequency range. They declared that

he behaviour of the s ν in a frequency band is similar to an FO

ead/lag compensator (15) . If the ν−1 is not an integer number, it

ill be decomposed by a special algorithm (for more information

ee Tepljakov et al. (2012) ) as: 

= 

i = k ∑ 

i =1 

1 

m i 

(62) 

hen, the approximation function in the frequency band is ob-

ained as: 
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Table 1 

β and γ tuning parameters. 

Methods Forward Euler Tustin Al-Alaoui Backward Euler Implicit Adams 

β 1 

γ 0 0.5 
7 

8 
1 1.5 

Table 2 

Discretetime conversion rules. 

Methods s → z Conversion Taylor series Machado et al. (2001) 

Backward-Difference (Euler) ( Chen et al., 2009; Chen et al., 2004; 

Machado et al., 2001; Vinagre et al., 20 0 0 ) 

s ν ≈
[ 

1 − z −1 

T 

] 
ν ( 

1 

T 
) ν [1 − νz −1 + 

ν(ν − 1) 

2! 
z −2 + . . . ] 

Trapezoidal (Tustin) ( Chen et al., 2009; Chen et al., 2004; Machado 

et al., 2001; Vinagre et al., 20 0 0 ) 

s ν ≈
[ 

2(1 − z −1 ) 

T (1 + z −1 ) 

] 
ν ( 

2 

T 
) ν [1 − 2 νz −1 + 2 ν2 z −2 + . . . ] 

Al-Alaoui ( Chen et al., 2009; Chen et al., 2004 ) s ν ≈
[ 

8(1 − z −1 ) 

7 T (1 + 

z −1 

7 
) 

] 
ν - 

Simpson ( Machado et al., 2001 ) s ν ≈
[ 

3(1 − z −1 )(1 + z −1 ) 

T (1 + 4 z −1 + z −2 ) 

] 
ν ( 

3 

T 
) ν [1 − 4 νz −1 + 2 ν(4 ν + 3) z −2 + . . . ] 
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(G (s )) ν ≈
i = k ∏ 

i =1 

(
1 + 	s 

1 + x 	s 

)
1 

m i ≈
i = k ∏ 

i =1 

H 

(
1 

m i 

)
n (63)

where H 

1 

m i 
n is calculated through (61) while a = m i . 

In addition, Aware et al. (2017) introduced a new method for

approximation of s ν in the frequency band of ( ω L , ω H ). They ob-

tained this method by optimizing the number of poles and zeros

to maintain the phase value of s ν within the ε◦ tolerance of its

actual value as follows: 

s ν ≈ (s − z 1 )(s − z 2 ) . . . (s − z n ) 

(s − p 1 )(s − p 2 ) . . . (s − p n ) 
, (64)

in which: 

• p 1 = 10 2 ν+ log (ω L )+1 , p n = 10 log (p n −1 )+2 −μ, z 1 = 10 ω L , 

• z n = 10 log (z n −1 )+2 −μ, μ = 0 . 64 ε, n = min (n ) 
p n > ω H 

. 

Lino and Maione (2017) obtained an approximation method for

FO lead/lag compensator (15) which is: 

(s ) = k p x 
μ
(

1 + 	s 

1 + 	xs 

)ν

≈
∑ N 

k =0 B N−k s 
k ∑ N 

k =0 A N−k s 
k 
, 

ν > 0 , 

{
Lead 0 < x < 1 

Lag 1 < x 
(65)

where: 

• A N−k = 

N ∑ 

i =1 

a N−i L 
C 
ki 

, B N−k = 

N ∑ 

i =1 

b N−i L 
C 
ki 

, L C 
ki 

= T k 
j 2 ∑ 

j= j 1 

(
i 
j 

)(
N−i 
k − j 

)
x k − j 

• j 1 = max { 0 , k + i − N} , j 2 = min { i, k } 
• a i = 

(
N 
i 

)
(N − i + 1 + ν) (i ) (N − ν) (N−i ) ∗ , b i = 

(
N 
i 

)
(i + 1 + 

ν) (N−i ) (N − ν) (i ) ∗
• (ν + i + 1) (N−i ) = (ν + i + 1)(ν + i + 2) . . . (ν + N) 

• (N − ν) (i ) ∗ = (N − ν)(N − ν − 1) . . . (N − ν − i + 1) 

• (ν + N + 1) (0) = (ν − N) (0) = (N − ν) (0) ∗ = 1 

As it asserts that the s ν in a frequency band can be considered

as an FO lead/lag compensator ( Tepljakov et al., 2012 ), this method

can be applied to approximate s ν in a frequency range. 

5.2. Discrete approximation methods ( Z domain) 

In this age, using digital logic in some applications such as

controller implementation has been increased because of develop-

ment of digital computers. FO-controllers are not exceptional and
here are many investigations for digital implementation of these

ontrollers. Tenreiro Machado (1995) was one of the pioneer re-

earchers who proposed an algorithm for the digital implemen-

ation of FO-controllers. The first step in digital implementation

s the discretization of the FO-transfer function. For this purpose,

here are several methods which are categorized into two main

roups: Direct discretization and indirect discretization methods

 Chen, Vinagre, & Podlubny, 2004 ). 

.2.1. Direct discretization methods 

In these methods, two steps must be taken for obtaining a dis-

rete function of fractional order differentiators. At first, it is im-

ortant to select a proper generating function. Generating func-

ions express the discretization of fractional order differentiators

 s = ω(z −1 ) ) and usually have the below general configuration

 Barbosa, Machado, & Silva, 2006 ): 

(z −1 ) = 

1 − z −1 

βT 
(
γ + ( 1 − γ ) z −1 

) (66)

n which β , γ , and T are respectively the gain tuning parameter,

hase tuning parameter, and sample period. The most commonly

sed generating functions are most usable for the discretization

re listed in Table 2 . Most of these generating functions can be ob-

ained using (66) by considering gain and phase tuning parameters

isted in Table 1 . 

Obviously, the generating functions which are listed in

able 2 are irrational. So, in the second step, it is necessary to ap-

roximate these irrational formulas with finite order rational for-

ulas. To obtain this goal, two most applicable mathematics meth-

ds (Power Series Expansion (PSE) and CFE) are utilized in direct

iscretization methods in many studies. In other words, it can be

aid that: 

 

±ν (z) ≈ CF E{ ω(z −1 ) ν} or D 

±ν (z) ≈ P SE{ ω(z −1 ) ν} (67)

s it was shown in Table 2 , Machado et al. (2001) proposed some

iscrete approximation functions by applying the Taylor series,

hich is one of the mostly used PSE methods, to several gener-

ting functions. 

One of the well-known approximation function is obtained

ased on the PSE method by utilizing the Euler generating function

nd the Grünwald–Letnikov definition (10) . In this respect, the dis-

rete approximation of the FO integro-differential operator is got-

en by using the short memory principle ( Chen et al., 2009; Chen

t al., 2004; Vinagre et al., 20 0 0 ): 
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• A and B are described in (65) 
(s ) ±ν = T ∓νz −[ L T ] 

[ L T ] ∑ 

j=0 

c νj z 
[ L T ] − j (68)

n which: 

• L is the memory length, c ν
j 

= (1 − (1 + ν) 

j 
) c ν

j−1 
, c ν

0 
= 1 

In order to improve the accuracy of the discrete approximation

unctions in high frequencies, Chen et al. (2004) introduced a new

enerating function by combining the Tustin and Simpson generat-

ng functions. Their new generating function is: 

 

ν ≈ k 0 

(
1 − z −2 

1 + r 2 z −1 

)
ν (69) 

here: 

• k 0 = 

6 r 2 
T (3 − a ) 

, r 2 = 

3 + a − 2 
√ 

3 a 

3 − a 
a ∈ [0, 1] is a weighting

factor or a tuning knob 

Then, this generating function is expanded rationally by the im-

lementation of the CFE method using MATLAB Symbolic Toolbox

 Chen et al., 2004 ). 

Chen et al. (2009) proposed a discrete approximation method

pon the Muir-recursion formula, which is applicable in the geo-

hysical data processing, in order to express the Tustin generating

unction rationally and claimed that their method is as accurate as

he Taylor series expansion method. In this method: 

 

ν ≈
(

2 

T 

)
ν

(
1 − z −1 

1 + z −1 

)
ν = 

(
2 

T 

)
ν lim 

n →∞ 

A n (z −1 , ν) 

A n (z −1 , −ν) 
(70) 

n which: 

• A 0 (z −1 , ν) = 1 , A n (z −1 , ν) = (1 − c n z 
n ) A n −1 (z −1 , ν) , c n =⎧ ⎨ 

⎩ 

ν

n 
n : is odd 

0 n : is even 

Similar to (65) , a closed-form formula is obtained for discrete

pproximation of FO lead/lag compensators ( Lino & Maione, 2017 )

s: 

(s ) = k p x 
μ
(

1 + 	s 

1 + 	xs 

)ν

≈
∑ N 

h =0 D N−h z 
h ∑ N 

h =0 C N−h z 
h 

, 

ν > 0 , 

{
Lead 0 < x < 1 

Lag 1 < x 
(71) 

ith: 

• C N−h = 

∑ N 
k =0 A N−k L 

D 
hk 

, D N−h = 

∑ N 
k =0 B N−k L 

D 
hk 

, j 2 = min { h, k } 
• L D 

hk 
= ( 

2 

T 
) k 
∑ j 2 

j= j 1 (−1) k − j 
(

k 
j 

)(
N−k 
h − j 

)
x k − j , j 1 = max { 0 , k + h − N} 

• A N−k and B N−k are described in (65) 

.2.2. Indirect discretization methods 

There are two stages in indirect discretization methods. At the

rst stage, the irrational transfer function s ν is approximated by

 rational transfer function by using methods which are described

n Section 5.1 . Then, by replacing s in the approximation function

ith generating functions which are represented in table (2) ( s →
(z −1 ) ), the discrete approximation function is obtained. In other

ords, 

 

ν ≈ P n (s ) 

Q m 

(s ) 

s = ω(z −1 ) ===�⇒ s ν ≈ G (z) . (72)

For instance, Folea, De Keyser, Birs, Muresan, and

onescu (2017) approximated s ν with Oustaloup’s method
55) firstly. Then, to obtain the discrete approximate transfer

unction, they replaced s with 

 = 

(1 + α)(z − 1) 

T (z + α) 
, (73) 

here T is sampling period and α ∈ [0, 1]) is a weighting factor

 De Keyser & Muresan, 2016; Folea et al., 2017 ). This method is

eneralized for any non-rational continuous-time transfer function

y passing following steps or a general ( De Keyser, Muresan, &

onescu, 2018 ). After replacing s with (73) , the frequency response

s obtained replacing z = e jωt where ω is a vector of equally-

paced frequencies. Then, the impulse response of the discrete-

ime fractional order system is obtained using the inverse Fast

ourier Transform (FFT) to the previous calculated frequency re-

ponse. The approximated transfer function is achieved from the

mpulse response using some techniques such as Steiglitz–McBride

n the form of 

 (z −1 ) = 

a 0 + a 1 z 
−1 + . . . + a n z 

−N 

b 0 + b 1 z −1 + . . . + b n z −n 
, 

n is the order of approximation. (74) 

.3. δ domain approximation methods 

Although the digital implementation is widely used in this era

ecause of the development of digital computers, there is a big

oncern in discrete approximation methods. As it is known, sta-

le poles and minimum-phase zeros in the s-plane are lain inside

he unit circle in the z-plane when the bilinear transformed is uti-

ized. So, the high resolution presentation of compensators with

ong words are essential for ensuring stability. But, it is impossi-

le to get infinite accuracy in designing values of coefficients in

 software and hardware implementation because a finite number

f bits are available ( Lino & Maione, 2017 ). Furthermore, when the

ampling rate is increased, zeros and poles of discrete approxima-

ion functions get close to each other and concentrate at the point

1,0). Hence, discrete approximation functions are very sensitive to

mall variations of coefficients in high sampling rates and even

ay lose their stability in some cases. To overcome these dilem-

as, the δ operator can be a proper solution because it allows

 gradual transformation from the discrete to continues time do-

ain. For this purpose, the continues transfer function is converted

o the δ domain through the below equation ( Lino & Maione, 2017;

aione, 2011 ): 

 = 

1 

T 
ln (δT + 1) ≈ δ

0 . 5 δT + 1 

(75)

here T is the sampling period. Similar to indirect discretization

ethods, it is possible to approximate irrational transfer functions

ith presented methods in Section 5.1 and then use the preceding

quation to obtain δ domain approximation functions. 

Moreover, some researchers introduced some direct methods to

btain rational δ domain transfer functions. Similar to (71) and

65) , a closed-form formula is obtained for the approximation of

O lead/lag compensators δ domain as Lino and Maione (2017) : 

(s ) = k p x 
μ
(

1 + 	s 

1 + 	xs 

)ν

≈
∑ N 

h =0 F N−h δ
h ∑ N 

h =0 E N−h δh 
, 

ν > 0 , 

{
Lead 0 < x < 1 

Lag 1 < x 
(76) 

ith: 

• E N− j = 

∑ j 

k =0 

(
N−k 
j−k 

)
(0 . 5 T ) j−k A N−k , 

F N− j = 

∑ j 

k =0 

(
N−k 
j−k 

)
(0 . 5 T ) j−k B N−k 
N−k N−k 
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Fig. 10. Block diagram of the canonical representation. 
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As it has been explained, all methods (65), (71) , and (76) can

be used for s ν which acts on a frequency band. In addition,

Maione (2011) introduced a formula to approximate s ν in δ domain

as Maione (2011) : 

s ν ≈ G 

(N) 
δ

= 

∑ N 
k =0 c k δ

N−k ∑ N 
k =0 d k δ

N−k 
(77)

In which: 

• c (N− j) (ν) = 

∑ j 
r=0 

p (N−r) (ν)(0 . 5 T ) j−r 
(

N−r 
j−r 

)
• d (N− j) (ν) = 

∑ j 
r=0 

q (N−r) (ν)(0 . 5 T ) j−r 
(

N−r 
j−r 

)
• p j (ν) = q (N− j) (ν) = (−1) j 

(
N 
j 

)
(ν + j + 1) (N− j) (ν − N) ( j) 

• (ν + j + 1) (N− j) = (ν + j + 1)(ν + j + 2) . . . (ν + N) 

• (ν − N) ( j) = (ν − N)(ν − N − 1) . . . (ν − N + j − 1) 

• (ν − N ) (0) = 1 , N is the order of approximation 

It must be noted that for the implementation of the δ transfer

functions, the following equation is used ( Maione, 2011 ). 

δ−1 = 

T z −1 

1 − z −1 
(78)

5.4. Digital implementation 

The first step in the digital implementation is getting the fi-

nite difference equation which is achieved by the discrete approx-

imation methods elaborated in Section 5.2 and 5.3 . Then, all dis-

crete approximation of FO transfer functions can be implemented

directly to any microprocessor based devices like as PLC, PIC, PCL

I/O card, FPGA , FPAA , switched capacitors, etc. ( Petráš, 2012; Petráš,

Dorcák, Podlubny, Terpák, & O’Leary, 2005 ). Fig. 10 shows the im-

plementation of the canonical form (74) of discrete approxima-

tion of FO transfer functions. To implement this form, two codes

are needed: initialization and loop code (see the pseudo-code in

Caponetto, 2010; Chen et al., 2009 ). 
Fig. 11. Finite lad
.5. Analogue implementation 

Although digital controllers are used widely nowadays because

f the revolution of cost-effective digital computers, they have

ome limitations in some aspects. The first problem comes from

he nature of the discretization. This is related to the sampling pe-

iod which must be significantly more than the time of computa-

ion length. Also, a memory with high capacity is needed for high

rder discrete approximations. Digital controllers are not as fast

s analogue controllers. As a result, although several digital con-

rollers have been recently used to control relatively high modes

f systems, they are not proper for very fast processes such as

ibration control ( Podlubny et al., 2002 ). As some limitations are

entioned, analogue realization is the only solution in some cases.

lthough there are several ways for analogue realization such as

ydraulics, mechanical, electronics etc, this section focuses on elec-

ronics implementation. 

A circuit which represents fractional order behaviour is termed

 “fractance”. Basically, there are three fractance devices: Domino

adder network, tree structure of electrical elements and trans-

ission line circuit ( Chen et al., 2009 ). It asserts that ladder lat-

ice networks can approximate FO transfer functions more accu-

ate than the lumped networks ( Roy, 1967 ). Consider the finite

adder circuit which is depicted in Fig. 11 , in which Z 2 k −1 (s ) ,

 2 k ( s ), k = 1 , . . . , n are the impedance of circuit elements. The

quivalent impedance of the whole circuit Z ( s ) is obtained by

odlubny et al. (2002) 

(s ) = Z 1 (s ) + 

1 

Y 2 (s ) + 

1 

Z 3 (s ) + 

1 

Y 4 (s ) + 

1 

. . . 
1 

Y 2 n −2 (s ) + 

1 

Z 2 n −1 (s ) + 

1 

Y 2 n (s ) 

, (79)

o, first, continuous approximation function of FO-controllers must

e expressed in the form of (79) . Then, Z 2 k −1 (s ) and Y 2 k ( s ), k =
 , . . . , n will give the type of necessary electrical elements using

he first Cauer’s canonic LC circuit ( Kvasil & Čajka, 1981 ) (for more

nformation, see examples in Podlubny et al., 2002 ). If b i < 0, then

he circuit is depicted in Fig. 12 is considered ( Podlubny et al.,

002 ). The entire circuit has equivalent impedance of −Z in which

 can be a resistor, capacitor or coil. 

There are also some methods for the direct implementation

f fractional order derivatives s ν which lead to increase the ac-

uracy of the realization of FO controllers. In these methods,

here is no need for approximation of FO transfer functions.

ohannan (2002) found some electrical elements, named as “frac-

or”, exhibit fractance attributes. It is revealed that Lithium Hy-

razinium Sulfate ( LiN 2 H 5 SO 4 ) behaves in a wide range of tem-

eratures and frequencies like an electrical element with the
der circuit. 
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Fig. 12. Negative-impedance converter. 

Fig. 13. Schematic of a simple circuit of half order integrator. 
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Fig. 15. Schematic of implementing each set of zero-pole pair of s ν . 
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 F = 

k 

s 0 . 5 
(80) 

ig. 13 shows a circuit which implements the half order in-

egrator by using a fractor made from ( LiN 2 H 5 SO 4 ) material

 Bohannan, 2002 ). It is hoped that many investigations will be

one in the future in materials to build fractors with a wide range

f exponents. Then, it facilitates introducing fractional order con-

rol elements to engineering applications without using approxi-

ation methods. 

Another way for direct realization of fractional order con-

rollers is using new electrical element whose name is “Memris-

or” ( Coopmans, Petráš, & Chen, 2009 ). Memristor is an electri-

al element which exhibits a fractional order behaviour with the

mpedance of ( Coopmans et al., 2009 ): 

 MS = K s ν (ν, K ) ∈ R (81)

wo configurations which are shown in Fig. 14 (a) and (b) are con-

idered for the analogue implementation of fractional order con-

rollers. The equivalent impedance of the entire circuit Fig. 14 (a)

nd (b) are respectively Z(s ) = − M 

K 

s −ν and Z(s ) = − K 

M 

s ν , (ν ∈ R )

n which M called memristance with the physical unit of Ohm

 Coopmans et al., 2009 ). Although this method is promising, fur-

her research has to be conducted to prove this method can im-

lement the FO transfer functions. 

In addition, Aware et al. (2017) developed an analogue imple-

entation technique based on their approximation method (64) . In

his technique, first, s ν is approximated using (64) , and then, each

et of zero and pole ( z i , p i ) is implemented as shown in Fig. 15 . In
Fig. 14. Analogue fraction
ig. 15 , firstly, any available capacitor ( C i ) is selected. Then, 

 

 

 

 

 

R i = 

1 

p i C i 
, R 

′ 
i 
= 

1 

z i − p i 
ν < 0 

R i = 

1 

z i C i 
, R 

′ 
i 
= 

1 

p i − z i 
ν > 0 

(82) 

. Several useful codes for fractional order controllers 

Now, it is noteworthy to introduce some Matlab codes which

implify using FO calculus in control field. One of these toolboxes

s CRONE CSD toolbox which is designed for tuning all generations

f CRONE controllers ( Sabatier et al., 2015 ). The online version of

his toolbox is available through this link . 

Valério and Sa da Costa (2004) introduced a general and user

riendly toolbox which is termed Ninteger. It has three identifi-

ation methods. Also, it has many approximation methods which

ave been described in this article. Moreover, it is proper for

uning all generations of CRONE and FO-PID controllers (con-

roller (17) ) in both time and frequency domain. 

One of the useful open source software for tuning FO-PID con-

rollers (controller (17) ), FO-lead/lag compensators and all IO-filters

n both time and frequency domain is FLOreS which is designed

t the mechatronic system design group of TU Delft University by

.H. HosseinNia et al. ( van Duist, van der Gugten, Toten, Saiku-

ar, & Hossein Nia Kani, 2018 ). Also, it has several approxima-

ion methods like Ninteger software and is available through the

ink https://www.researchgate.net/publication/3254 424 40 _ FLOreS _

 _ Fractional _ Order _ Loop _ Shaping _ toolbox _ for _ MATLAB . 

Furthermore, there are some simple codes for the frequency do-

ain analysis of fractional order functions in Chen et al. (2009) .

achhab, Svaricek, Wobbe, and Rabba (2013) designed a FO tool-

ox which automatically tune an FO-PID controller based on given

pecifications and dynamics of the plant. Moreover, this software

ncludes some approximation methods. Tepljakov, Petlenkov, and

elikov (2011) developed a very general toolbox whose name is

OMCON which has several options including both time and fre-

uency analysis, fractional order controllers in the state-space,

RONE controllers, approximation methods, optimization criteria 

or tuning FO-controllers, and identification with FO-models. In ad-

ition, it has some FO-blocks which can be added in Simulink li-

rary of Matlab. It can be downloaded through this link . 

Dingy (2017) wrote a book about FO controllers and also de-

igned a toolbox which contains every method which is described
al-order operators. 

http://archive.ims-bordeaux.fr/CRONE/toolbox/pages/accueilSITE.php?guidPage=home_page
https://www.researchgate.net/publication/325442440_FLOreS_-_Fractional_Order_Loop_Shaping_toolbox_for_MATLAB
http://fomcon.net/fomcon-toolbox/download/
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in his book. This toolbox which is termed FOTF includes several

approximation methods, functions for analyzing FO controllers in

both time and frequency domain, Simulink blocks for FO functions,

and tuning methods for FO controllers. This toolbox is available

through the link . 

7. Discussion 

In this section, the advantages and disadvantages of using FO

calculus in the control area are commented based on the litera-

ture reviewed in this article. Many researchers believe that FO con-

trollers outperform IO ones ( Cao, Chen, & Stuart, 2016; Ge, Chen, &

Kou, 2015; Hosseinnia, Tejado, Milanés, Villagrá, & Vinagre, 2014;

Liu, Zhao, & Chen, 2017; Luo et al., 2011; Marinangeli, Alijani, &

HosseinNia, 2018; Monje et al., 2004; Valério & da Costa, 2006;

Zarghami, Babazadeh, & Hosseinnia, 2016 ). In the case of linear

controllers, on the one hand, it can be asserted that FO-PID con-

trollers give more flexibility to designers to select the tuning pa-

rameters due to two important factors. First, the orders of integra-

tion and differentiator of the controller are not restricted to integer

numbers. Second, the stability region of tuning knobs ( k p , k i , and

k d in controller (17) ) which guarantees the stability of the whole

system for a specific phase margin value is bigger than one for

IO-PID controllers as proposed by Hamamci (2007) . On the other

hand, the tuning knobs of FO-PID controllers are more than classi-

cal IO ones, so, designers can consider more efficient constraints

for tuning FO-PID compared to classical IO ones. In comparison

with high order IO-PID controllers, since FO-PID controllers are ap-

proximated with several zeros-and poles, their performances are

similar with high order IO-PID. But the tuning of FO-PID is easier

because two extra orders must be tuned in FO-PID instead of de-

termining places of several zeros-poles in high order IO-PID con-

trollers. 

Among several constraints, isodamping behaviour (con-

straint (32) ) has attracted a lot of attention from researchers

in tuning FO controllers. It is reported that FO-PID controllers are

more robust against plant uncertainties than IO-PID ones ( Luo

et al., 2011; Meral & Çelík, 2018; Monje et al., 2004; Valério &

da Costa, 2006 ). It is asserted that the third generation of CRONE

is one of the most appropriate solutions when uncertainties of a

plant are more general than just gain-like perturbations ( Oustaloup

et al., 1995; Pommier et al., 2002; Sabatier et al., 2004 ). Hence,

from robustness viewpoint, FO controllers are more effective in

comparison with IO ones. 

Furthermore, some researchers believe that it is possible to

consider the energy efficiency constraint for tuning FO-PID con-

trollers ( Chopade, Khubalkar, Junghare, Aware, & Das, 2018; Das,

Aware, Junghare, & Khubalkar, 2018; Khubalkar, Junghare, Aware,

& Das, 2017 ). As a result, from the energy perspective, FO-PID

can outperform classical IO-PID controllers; for instance, using FO-

PID decreases averagely 20% power consumption of a DC motor

( Das et al., 2018 ). Another example, it is showed that using FO-

PID controllers for a magnetic levitation system leads to a bet-

ter fuel efficiency in comparison with classical IO-PID controllers

( Chopade et al., 2018 ). 

In addition, FO controllers can properly compensate distur-

bances due to undesired nonlinearities such as dead zone, back-

lash, hysteresis, and static distortion in the systems which results

in increasing the precision of the systems ( HosseinNia, Magin, &

Vinagre, 2015a; Ma & Hori, 2004; Singh & Roy, 2018 ). Moreover,

some research manifests that using FO transfer functions for de-

scribing the dynamic characteristics of some special plant is more

precise than IO ones ( Chen, 2006; Chen et al., 2009; Machado

et al., 2001; Tejado et al., 2014b; Zhao et al., 2005 ). Also, it is con-

cluded that FO controllers are more proper than IO controllers for
O plants ( Hamamci, 2007; Luo et al., 2011 ). Therefore, for some

pecial plants, it is necessary to use FO calculus in both modelling

nd control. 

It can be concluded that FO controllers have better performance

han IO ones and improve significantly the performance of systems.

owever, there are two big barriers which confine the adoption of

O controllers in the industry. Firstly, tuning of the FO controllers

s more complex than IO ones. This problem is solved to some

xtent by present tuning methods and toolboxes which are elab-

rated in Sections 4 and 6 , respectively. Even though, based on

he knowledge of the author, there are few reports about tuning

f FO controllers for motion systems (high cross-over frequency

s required). Secondly, realization of FO controllers need devices

ith high memory capacity because FO controllers are approxi-

ated with high order transfer functions. Since there is no direct

ethod for realization of FO controllers, approximation methods

ust be used for this purpose. In order to increase accuracy of the

pproximation methods, the order of estimated functions must be

ncreased which leads to a high order controller. Although some

esearchers are trying to solve this problem, their methods need

urther efforts to be complete ( Bohannan, 2002; Coopmans et al.,

009 ). It is hoped that researchers can propose a direct method for

ealization of FO controllers using some special materials such as

emristor and ( LiN 2 H 5 SO 4 ). 

To wrap up, FO calculus advances the control area in many as-

ects. It can be claimed that FO calculus facilitates modelling of

omplicated dynamic systems such as distributed parameter sys-

ems, biomimetics materials, smart materials, etc. ( Cao et al., 2016;

hen, 2006; Ge et al., 2015; Huang, Chen, Li, & Shi, 2016 ). More-

ver, it improves performance of both linear and nonlinear con-

rollers particularly from the robustness viewpoint. In addition,

t is claimed that FO calculus has potential to shape the phase

nd gain of the frequency response independently and achieve the

ode ideal transfer function ( Chen, 2006 ). However, nobody at-

empted to solve this significant problem. All in all, it is predicted

hat overcoming mentioned barriers leads to substitution of IO-PID

ontrollers with FO ones in the near future. 

. Conclusion 

FO controllers have attracted much attention from academia

nd industrial associations. In this article, linear FO controllers are

eviewed with the focus on the frequency domain. In this respect,

O calculus including basic definitions of FO derivative and in-

egrator were introduced. Next, four well-known linear FO con-

rollers which are TID controller, CRONE generations, FO lead/lag

ompensators, and FO-PID controllers were commented and af-

er that, their representative tuning methods were elaborated. Al-

hough many simple tuning methods for FO controllers were re-

orted, most of them are useful for process control problems (low

andwidth and high time delay systems) and motion control prob-

ems (high bandwidth systems) have not been considered much

n the literature yet. Then, continues and discrete approximation

ethods of FO controllers and their analogue and digital imple-

entation were explained. Approximation methods lead to high

rder functions which makes the implementation of FO controllers

o be more difficult than IO ones. Although much of recent re-

earch resolved this problem to some extend, further investiga-

ions are required. Then, some useful codes which facilitate using

O calculus in the control field were presented. Finally, It is antici-

ated that IO-PID controllers are replaced with FO ones in the near

uture by finding a direct method for implementation of FO con-

rollers. All in all, this review paper helps beginners to get started

apidly and learn how to select, tune, approximate, and implement

O-controllers. 

https://nl.mathworks.com/matlabcentral/fileexchange/60874-fotf-toolbox
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