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a b s t r a c t

Fractional-order proportional–integral (PI) and proportional–integral–derivative (PID) controllers are

the most commonly used controllers in fractional-order systems. However, this paper proposes a

simple integer-order control scheme for fractional-order system based on active disturbance rejection

method. By treating the fractional-order dynamics as a common disturbance and actively rejecting it,

active disturbance rejection control (ADRC) can achieve the desired response. External disturbance,

sensor noise, and parameter disturbance are also estimated using extended state observer. The ADRC

stability of rational-order model is analyzed. Simulation results on three typical fractional-order

systems are provided to demonstrate the effectiveness of the proposed method.

& 2013 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Fractional-order system and control have been studied by
many researchers in the past decade because fractional calculus
can model real-world phenomena more precisely [1,2]. Some
fractional-order models, such as heating–furnace [3], gas–
turbine [4,5], and heat solid models [6] are obtained using system
identification methods. Compared with integer-order model, the
exact fractional-order model of a process usually has a compli-
cated structure, which could be reduced and approximated to a
simple one [7,8]. Otherwise, fractional-order controllers, as a
generalization of traditional integer-order controllers, have been
suggested to enhance the performance of control systems [9,10].
Some fractional-order controllers have been introduced in the
literature such as the fractional PID controller [3,7,8,11–19], the
fractional lead–lag compensator [20], different generations of the
CRONE controllers [21–24], and optimal fractional controllers
[25]. It is particularly pointed out that Ref. [26,27] proposed a
new method to control single-link lightweight flexible manipu-
lators in the presence of changes in the load. The nonlinear effects
by Elsevier Ltd. All rights reserve

,

ustb.edu.cn (J. Wang),
have been compensated and the system transfer function is
reduced to a double integrator. The proposed method in this
paper is also a little similar to that.

For fractional-order model, fractional-order controller can be

naturally considered as the best controller. However, the active

disturbance rejection control (ADRC), proposed as an alternative

paradigm for control system design, offers a novel perspective

[28,29]. The active disturbance rejection concept originated from

Han [30], and full account of ADRC is provided in Ref. [31]. The

original ADRC contains tracking differentiator, nonlinear PID, and

extended state observer (ESO). Bandwidth-parameterization

method is proposed to improve ADRC for easy tuning [32].

Stability [33–35] and frequency response [36] are also researched.

ADRC has been applied to DSP-based power converter [37], delay

system [38], motion control [39–42], hysteretic system [43], high-

performance turbofan engines [44], flight control [45], intercon-

nected power system [46], decoupling [47], micro-electro-

mechanical systems (MEMS) gyroscopes [48,49], noncircular

turning process [50], and coordinated robust nonlinear boiler–

turbine–generator control system [51].
Motivated by these applications, a novel approach named

fractional-order dynamics rejection scheme is proposed for
fractional-order system based on active disturbance rejection
method. By treating the fractional-order dynamics as a common
disturbance and actively rejecting it, ADRC achieves the desired
response, and ESO estimates effectively the external disturbance,
sensor noise, and parameter disturbance. Stability analysis
d.
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demonstrates that the fractional-order system can be controlled by
ADRC, and simulation results show satisfactory system response.

This paper is organized as follows: A brief introduction of the
fractional-order system is described in Section 2. Section 3
presents the ADRC and its stability analysis. Section 4 demon-
strates the proposed algorithm of some examples, including a
heating–furnace, gas–turbine, and heat solid models. Conclusions
are given in Section 5.
2. Fractional-order systems

The Grünwald–Letnikov’s definition is the most popular defi-
nition of fractional-order derivatives for fractional-order control
and its application; it has the form,

Daf tð Þ ¼
daf ðtÞ

dta
¼ lim

h-0

1

ha
X1
j ¼ 0

�1ð Þ
j

a
j

 !
f t�jhð Þ, aAN ð1Þ

where (�1)j
a
j

 !
is the usual notation for binomial coefficients,

such as (1�z)a.
The first-order derivative of function f(t), denoted by D1f(t), is

defined as

D1f tð Þ ¼
df ðtÞ

dt
¼ lim

h-0

f ðtÞ�f t�hð Þ

h
ð2Þ

Obviously, the fractional-order derivative is important for
long-term conditions. However, the integer-order derivative is
only relevant for the current moment. The fractional-order
derivative characteristic makes the system response slow and
sensitive to disturbance.

The Laplace transform of the Grünwald–Letnikov fractional-
order derivative is given by

L½Daf ðtÞ� ¼ saFðsÞ ð3Þ

where zero initial condition is considered.
A general single-input–single-output fractional-order system

can be expressed as

any anð ÞðtÞþan�1y an�1ð ÞðtÞþ � � � þa1y a1ð ÞðtÞþa0yðtÞ

¼ bmu bmð ÞðtÞþbm�1u bm�1ð ÞðtÞþ � � � b1u b1ð ÞðtÞþb0uðtÞ ð4Þ

The transfer function is represented by

G sð Þ ¼
BðsÞ

AðsÞ
¼

bmsbmþbm�1sbm�1þ � � � b1sb1þb0

ansanþan�1san�1þ � � � þa1sa1þa0
ð5Þ

where an4an�14 � � �4a140 and bm4bm�14 � � �4b140 are
arbitrary positive rational numbers. Assumption is made that
ai,bj i¼ 0,1, � � �n:j¼ 0,1, � � �nð Þ are positive, and an4bm.

All rational numbers can be expressed as a ratio of two
integers. Eq. (5) is therefore rewritten as follows:

H sð Þ ¼
h2ðsÞ

h1ðsÞ
b¼

b h2m2
s

m2
q þh2 m2�1ð Þs

m2�1
q þ � � � þ1

� �

s
m1
q þh1 m1�1ð Þs

m1�1
q þ � � � þh11s

1
qþh10

¼

b
Pm2

i ¼ 1 h2is
i
qþ1

� �

s
m1
q þ

Pm1�1
i ¼ 0 h1is

i
q

, ð6Þ

where q40, m140, m2Z0 are integers, ba0, and m1Zm2.
Obviously, this fractional-order system is a commensurate-order
system. In this paper, the fractional-order systems are assumed to
be bounded-input bounded-output (BIBO) stable according to the
Matignon theorem [52].

For the above-mentioned fractional-order systems, Tavakoli-
Kakhki proposed a reduction technique to approximate these
systems into three simple structures [7]. Without loss of general-
ity, we consider the three most common types of fractional-order
dynamic systems under the above conditions as follows:

TypeI : a1y a1ð Þ þa0y¼ b0u ð7aÞ

TypeII: a2y a2ð Þ þa1y a1ð Þ þa0y¼ b0u ð7bÞ

TypeIII: a3y a3ð Þ þa2y a2ð Þ þa1y a1ð Þ þa0y¼ b1u b1ð Þþb0u, a3Zb1

ð7cÞ

In the zero initial condition, the transfer functions are

GI sð Þ ¼
b0

a1sa1þa0
ð8aÞ

GII sð Þ ¼
b0

a2sa2þa1sa1þa0
ð8bÞ

GIII sð Þ ¼
b1sb1þb0

a3sa3þa2sa2þa1sa1þa0
ð8cÞ
3. Active disturbance rejection control

The prevailing control scheme for fractional-order system is the
fractional-order controller, which achieves theoretical effectiveness
and completeness but must be approximated to high integer-order
differential form and is difficult to apply to ready-made manufactur-
ing line. The current research proposes an integer-order control
scheme, which considers the fractional-order dynamics as a common
disturbance to the desired integer-order dynamics and actively rejects
this disturbance to present an integer-order system that is a single/
double integrator. ESO is implemented in which the fractional-order
dynamics are treated as a disturbance and is canceled. Then, the
fractional-order system is reduced to a unit gain single/double
integrator, which can be easily controlled by a proportional or
proportional–derivative (PD) controller. To explain the ADRC/ESO
clearly, the second-order ADRC/third-order ESO is described as a
Type II system in this section. The general parameterization of n-order
ADRC and ESO was proposed by Gao [32].

3.1. Fractional-order dynamics rejection scheme

For Type II system, the external disturbance, denoted by w, is
also considered. Eq. (7b) can be rewritten as

a2y a2ð Þ þa1y a1ð Þ þa0y¼wþb0u ð9aÞ

where y and u are the output and input, respectively. Referring to
Eqs. (6) and (9a) is equivalent to

y a2ð Þ þ
a1

a2
y a1ð Þ þ

a0

a2
y¼

1

a2
wþ

b0

a2
u ð9bÞ

Eq. (9b) can be rewritten as

€y ¼�y a2ð Þ�
a1

a2
y a1ð Þ�

a0

a2
yþ €yþ

1

a2
wþ

b0

a2
u�beuþbeu

¼ �y a2ð Þ�
a1

a2
y a1ð Þ�

a0

a2
yþ €yþ

1

a2
wþ

b0

a2
�be

� �
u

� �
þbeu

¼ f þbeu ð10Þ

where

f ¼�y a2ð Þ�
a1

a2
y a1ð Þ�

a0

a2
yþ €yþ

1

a2
wþ

b0

a2
�be

� �
u

where, f is referred to as the generalized disturbance because it
represents the fractional-order dynamics �y a2ð Þ� a1=a2

� �
y a1ð Þ, the

external disturbance w, and the unknown internal dynamics
� a0=a2

� �
yþ €yþ b0=a2

� �
�beÞu

�
.
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From Eq. (10), if knowledge of (b0/a2) is given, be can be tuned
near (b0/a2). It has been proved that be is very robust in active
disturbance rejection based control system [25,39].

3.2. Extended state observer

Define h¼ _f , the state equation form of Eq. (10) is

_x1

_x2

_x3

2
64

3
75¼

0 1 0

0 0 1

0 0 0

2
64

3
75

x1

x2

x3

2
64

3
75þ

0

be

0

2
64

3
75uþ

0

0

1

2
64

3
75h

y¼ 1 0 0
� 	 x1

x2

x3

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

ð11Þ

where x3¼ f is an augmented state and f can be estimated by
ESO as

_z1

_z2

_z3

2
64

3
75¼

0 1 0

0 0 1

0 0 0

2
64

3
75

z1

z2

z3

2
64

3
75þ

0

be

0

2
64

3
75uþL y�ŷ

� �

ŷ¼ 1 0 0
� 	 z1

z2

z3

2
64

3
75

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

where L¼ b1 b2 b3

h iT
is the observer gain vector. Using the

bandwidth-parameterization method, all observer poles can be
placed at �oo, which is the observer bandwidth, and

L¼ 3oo 3o2
o o3

o

h iT
ð13Þ

Sensor noise, sampling rate, and state-space model are important
in designing ESO. A perfectly tuned oo must be larger than the state
frequency to estimate effectively the state and disturbance. It must
also be smaller than the frequency of the sensor noise, which should
be filtered out and can be easily realized by the limited sampling
rate. By adopting a properly designed and well-tuned ESO, outputs
y and _y and disturbance f can be estimated precisely. The second
model in Section 4.4 is taken for example. Parameters be and oc are
fixed, and oo is set as 10, 20, 50, 100, 200 and 500. The system
responses with different oo are shown in Fig. 2. The little oo makes
the ESO track slowly and the big oo amplifies the sensor noise.

3.3. Control algorithm

The ESO outputs track y, _y, and f. Denoting z1 ¼ ŷ, z2 ¼ _̂y, and
z3 ¼ f̂ , the control law is chosen as

u¼
�f̂ þu0

be
ð14Þ

Therefore, Eq. (10) becomes €y ¼ f�f̂ þu0. Ignoring estimation
error when t-N, the Type II system is reduced to a unit gain
double integrator, i.e.,

€y ¼ f�f̂ þu0 � u0 ð15Þ

which can be easily controlled by a PD controller

u0 ¼ kp r�ŷ
� �

þkdð� _̂yÞ ð16Þ
Fig. 1. Common ADRC system.
where r is the set point. � _̂y is used instead of _r� _̂y to avoid the
_r pulse. Thus, from the condition discussed above, Eq. (15) is
rewritten as

€y ¼ kp r�yð Þþkd � _yð Þ ð17Þ

The closed-loop system transfer function is

G sð Þ ¼
kp

s2þkdsþkp
ð18Þ

which is the desired response of ADRC.
By applying the bandwidth-parameterization method, kp and kd

are selected as kp¼2oc and kd ¼o2
c , where oc is the controller

bandwidth. A large oc can increase not only the response speed but
also the magnitude and rate of change of the control signal. On the
other hand, a small oc can enhance the stability. In practice, the
observer bandwidth oo should be larger than the controller band-
width oc so that the observer can follow the controller. Thus,
controller bandwidth oc should be tuned in a wide range between
the upper and the lower bounds. The upper bound is related to the
control signal, operation cost, and observer bandwidth oo. The lower
bound is related to stability margin and desired response. The second
model in Section 4.4 is also taken for example. Parameters be and oo

are fixed, and oc is set as 1, 2, 5, 10, and 20. The system responses
with different oc are shown in Fig. 3. The little oc makes the system
response slow and the big oc makes it fast. There are only red lines in
figure output y, because the output y (blue line) and ESO estimation
(green line) are so closed to the desired responses (red line), which
are drawn at last.

The ADRC stability for a rational-order model is shown below.

3.4. Stability
Lemma 1. Let the integer q40, P(s) be a polynomial with positive
parameters and Q(s) be a polynomial that satisfy Q(0)40 and
degQ(s)rdegP(s)þq. If any root of P(s) is not in the set

z zAC, � 1
2q prargzr 1

2qp



 on

, then k040 exists such that all roots

of ksqP(s)þQ(s) are outside the set z zAC, � 1
2q prargzr 1

2qp



 on

for

each k4k0.

Proof. Considering k40, the roots of ksqP(s)þQ(s) are identical
to the roots of sqP sð Þþ1

kQ sð Þ. As the roots of a polynomial are
continuously dependent on the parameters [53], and

degQ ðsÞrdegPðsÞþq¼ deg sqPðsÞ
� �

,

all roots of sqP sð Þþ1
kQ sð Þ move toward the roots of sqP(s) corre-

spondingly as k increases. The roots of sqP sð Þþ1
kQ sð Þ can be

classified into two distinct groups. The first group is formed by
q roots directed at the origin of the complex plain. The left root is
in the second group, which moves toward the roots of P(s) when k
increases. Hence, the roots in the second group are all outside the

set z zAC, � 1
2q prargzr 1

2qp



 on

if k is sufficiently large.

Therefore, the only remaining issue is to show that the roots in

the first group are not in the set z zAC, � 1
2q prargzr 1

2qp



 on

. Let

l be a root in the first group. Thus

lim
k-þ1

l¼ 0:

As P(0)40 and Q(0)40, for a large enough k, the real parts of

P(l) and Q(l) are both positive and approximately P(0) and Q(0),

respectively. Meanwhile, the absolute values of the imaginary

parts of P(l) and Q(l) are very small. Hence, the arguments of P(l)
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Fig. 2. System responses with different oo.
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and Q(l) are almost zero such that

arg
Q ðlÞ
PðlÞ

¼ argQ lð Þ�argP lð ÞA �
p
2

,
p
2

� �
:

As klq
¼�(Q(l)/P(l)) and k40, we can obtain

arglqA �p,�
p
2

� �
[

p
2

,p
� �

,
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indicating that arglqe[�(p/2), (p/2)]. Hence

argl=2 �
1

2q
p,

1

2q
p

� �
:

Considering l can be any of the q roots in the first group, the
proof is completed.&

Lemma 2. Let us assume that the following model is open-loop
stable:

yðsÞ ¼HðsÞuðsÞ, ð19Þ

where s, y, and u represent the differential operator, the output,
and the control input, respectively,

H sð Þ ¼
h2ðsÞ

h1ðsÞ
b0, b0a0 h1 sð Þ ¼ s

m1
q þ

Xm1�1

i ¼ 0

h1is
i
q,

h2 sð Þ ¼
Xm2

i ¼ 0

h2is
i
q, h20 ¼ 1, h2m2

a0,

q40, m140, and m2Z0 are integers, and m1Zm2. Then, the

following ADRC scheme can stabilize the closed-loop system:

_z1 ¼ z2�b1ðz1�yÞþbeu

_z2 ¼�b2ðz1�yÞu¼ 1
be
ð�z2þp1ðv�z1ÞÞ

8<
: ð20Þ

Proof. Based on the results in Ref. [35], the close-loop system can
be expressed as

yðsÞ ¼ GcðsÞvðsÞ, ð21Þ
where

Gc sð Þ ¼
1

cðsÞ
bv sð Þh2 sð Þ,

c sð Þ ¼
be

b0
a sð Þh1 sð Þþby sð Þh2 sð Þ,

aðsÞ ¼ s sþb1þp1

� �
,

bvðsÞ ¼ p1 s2þb1sþb2

� �
,

byðsÞ ¼ b1p1þb2

� �
sþp1b2:

Let l¼ s
1
q . Then, c(lq), a(lq)h1(lq), 1=lq� �

a lq� �
h1 lq� �

, and

by(lq)h2(lq) are the polynomials of l. Further

deg
1

lq a lq� �
h1 lq� �� �

þq¼ deg a lq� �
h1 lq� �� �

Zdeg by lq� �
h2 lq� �� �

:

As Eq. (19) is open-loop stable, all roots of h1(lq) are outside the

set z zAC, �ð1=2qÞprargzr ð1=2qÞp


 �

[54].

Considering 1
lqa lq� �

h1 lq� �
¼ lq

þb1þp1

� �
h1 lq� �

, the argument

of any of its root is not in the interval ½� 1=2q
� �

p, 1=2q
� �

p�.
Thus, from Lemma 1, any root of c(s) cannot be in the set

z zAC, �ð1=2qÞprargzrð1=2qÞp


 �

if be=b0

� �
is large enough.

As be is a controller parameter, the requirement can be met by

choosing be such that beb040 and by enlarging 9be9. Hence, close-

loop stability is guaranteed [54].&

Theorem 1. Assume that the following rational-order linear-
time-invariant (LTI) model is open-loop stable:

y sð Þ ¼

Pr2

i ¼ 0 g2,is
a2,iPr1

j ¼ 0 g1,js
a1,j

u sð Þ, ð22Þ

where 0¼ ai,0oai,1o . . .oai,ri
i¼ 1,2ð Þ, ai,r1

Zai,r2
, and the

real numbers g1,j40 (j¼0,1,y,r1), g2,i40 (i¼1,2,y,r2), g2,0¼1.
Then, Eq. (22) can be stabilized by the ADRC scheme [Eq. (20)].

Proof. As rational numbers can be expressed in fractional form, q

can be set equal to the lowest common multiple of the denomi-
nators in all the powers that exist in the model transfer function.
This condition means that Eq. (22) can be expressed in the form of
Eq. (19). Thus, the proof is completed according to Lemma 2.&

4. Simulation result

In this section, ADRC and the fractional-order dynamics rejec-
tion scheme are used on fractional-order systems, including a
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Table 1
Test models and ADRC parameters.

No. Model ADRC parameters

be oo oc

1 G1
I sð Þ ¼ 1

0:4s0:5 þ1
2.5 300 10

2 G2
II sð Þ ¼ 1

0:8s2:2 þ0:5s0:9 þ1
1 300 10

3 G3
II sð Þ ¼ 1

0:6s0:8 þ0:9s0:3 þ1
2 300 10

4 G4
II sð Þ ¼ 1

0:4s2:4 þ s
2.5 500 10

5 G5
III sð Þ ¼ 0:8s1:2 þ2

1:1s1:8 þ0:8s1:3 þ1:9s0:5 þ0:4
2 300 10
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heating–furnace, a gas–turbine, a heat solid, and some published
models. Taking into consideration input disturbance w and the
sensor noise, a common ADRC system is shown in Fig. 1.

4.1. Heating–furnace model

Based on a set of measured values yn

i (i¼0,1,y,M), Podlubny
et al. identified three models of a real experimental heating
furnace [3]. Among the three, the most accurate model is
described by a three-term fractional differential equation, which
belongs to the Type II system presented in this paper.

a2y a2ð Þ þa1y a1ð Þ þa0y¼ b0u ð23Þ
The parameters were obtained considering external distur-
bance w

14994:3yð1:31Þ þ6009:52yð0:97Þ þ1:69y¼wþu ð24Þ

From the proposed approach presented in Section 3, tuning
be ¼ 0:0001� b0=a2 ¼ 1=14994:3, oo¼100000, and oc¼0.2 is
easy. External disturbance w¼�0.1 constitutes a step signal
when t¼60 and the sensor noise is considered. The step response
and control signal are shown in Fig. 4. The ESO outputs, which are
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the estimation of y and f, are compared with the actual y and f,
respectively. The desired response is also given for comparison
with y and ŷ.

Fig. 4 shows that ESO estimates y and f accurately. Output y

is the same as the desired response. The fractional-order
dynamics and the external disturbance are estimated and
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cancelled effectively, although output y is affected by the
sensor noise.

To control this system, Ref. [55–58] proposed turning meth-
ods, respectively, which led to the FOPID controllers

CFOPID�1ðsÞ ¼ 100 s0:31þ10þs�0:5
� �
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Table 2
ADRC parameters and FOPID controllers.

Model ADRC parameters FOPID

be oo oc

G2
II

1 1000 60 C(s)¼20.5(s1.2
þ1)

G3
II

2 500 30 C(s)¼1.72þ41.524s�0.668
þ1.59s0.824

G4
II

2.5 500 10 C(s)¼6.3092(1þ0.9435s)1.205
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Fig. 10. Comparison of ADRC and FOPID on hypothetical models.
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CFOPID�2 sð Þ ¼ 714:9739þ
107:0099

s0:6
þ287:7011s0:35

CFOPID�3 sð Þ ¼ 736:8054�
0:5885

s0:6
�818:4204s0:35

CFOPID�4 sð Þ ¼ 1924:7�
111:8922

s0:325
�653:2185s0:325

Fig. 5 shows the step response and control signal of ADRC and
FOPID. For fair comparison, external disturbance and sensor noise
are not considered.

4.2. Gas–turbine model

The fractional-order gas–turbine model is derived from the
input–output operating data using the system identification method
[4,5]. The input of the model is the fuel rate, and the output is the
turbine speed. In general, the gas turbine is operated between 90%
and 93% of the rated speed demand. The structure of this fractional-
order model also belongs to the Type II system as follows:

GII sð Þ ¼
b0

a2sa2þa1sa1þa0
ð25Þ

At 90% of the rated speed demand, the fractional-order model is

GGT90 sð Þ ¼
103:9705

0:00734s1:6807þ0:1356s0:8421þ1
ð26Þ

Similarly, at 93% of the rated speed demand, the fractional-
order model is identified as

GGT93 sð Þ ¼
110:9238

0:0130s1:6062þ0:1818s0:7089þ1
ð27Þ

The ADRC is tuned for 90% of the rated speed demand model.
The best be is (b0/a2)¼8532.6; thus, be is set as be¼10000 to come
up with a realistic design. oo and oc are tuned as oo¼100 and
oc¼10. The external disturbance w¼�10 constitutes a step
signal when t¼2 and sensor noise is considered. At 90% of the
rated speed demand, the ESO output and the actual response are
compared and shown in Fig. 6, which also shows the desired
response. Fig. 7 shows the same response under the same be, oo,
and oc when the rated speed demand changes to 93%. ESO is very
effective, and output y is closed to the desired response.

4.3. Heat-solid model

A heat solid model is categorized to belong to the Type I
system

GHS sð Þ ¼
1

39:69s1:26þ0:598
ð28Þ

heated by an electrical radiator in which the temperature is
measured by a pyrometer; the input and the output are voltages.
Thus, the parameters are obtained using an identification method
based on minimization of the quadratic criteria-difference
between measured and model values [6].

For a Type I system, the first-order ADRC/second-order ESO is
more suitable. Tuning be ¼ 0:03� 1=39:69, oo¼300, and oc¼10
is easy. The external disturbance w¼�10 constitutes a step signal
when t¼2 and sensor noise is considered. The simulation results
shown in Fig. 8 demonstrate that the first-order ADRC/second-
order ESO performs well in the Type I system.

4.4. Other examples

This section includes some published fractional-order systems,
which are hypothetical models [10,11,13–15]. Most are controlled
by fractional-order controllers, but ADRC is used to demonstrate
the effectiveness of the fractional-order dynamics rejection
scheme proposed in this paper. One Type I system, three Type II
systems, and one Type III system are chosen to test the ADRC
tuned in Table 1. The simulation results are shown in Fig. 9. The
external disturbance w¼�10 constitutes a step signal when t¼2
and sensor noise is considered.
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Adopting the same oc, all step responses are clearly and
interestingly the same as the desired response. Although the
measurement of output y is affected by sensor noise, ESO
estimates y and f accurately. The external disturbance w is also
estimated and cancelled. Based on ADRC, the proposed fractional-
order dynamics rejection scheme is demonstrated to be effective
in fractional-order systems.

Ref. [55,14,15] proposed tuning methods of FOPID to control
model 2, model 3, and model 4. Table 2 gives the re-tuned ADRC
parameters and FOPID controllers. Fig. 10 shows the step
response of ADRC and FOPID. For fair comparison, external
disturbance and sensor noise are not considered. It is clearly that
ADRC is effective in fractional-order system control as FOPID.
5. Conclusions

Generally, fractional-order system is controlled by fractional-
order controller. However, in this paper, a novel approach based
on ADRC has been successfully applied on fractional-order sys-
tems, where fractional-order dynamics are treated as a common
disturbance and actively rejected. Meanwhile, the external dis-
turbance, sensor noise, and parameter disturbance are estimated
and rejected. The stability of ADRC has been proven. The simula-
tion test results of three physical models and five hypothetical
models showed that the output was close to the desired response
of ADRC. Using simple tuning parameters, ADRC can control easily
fractional-order systems. Thus, ADRC is also likely appropriate in
other types of fractional-order system controls.
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