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Abstract— This paper introduces a framework to solve the
problem of determining optimal sensors and actuators trajec-
tories so as to estimate a set of unknown parameters in what
constitutes a cyber-physical system (CPS). Given a distributed
system’s set of partial differential equation describing its
dynamic behavior, the optimal steering of a team of sensors
and actuators is obtained by minimizing the D-optimality
criteria associated with the expected accuracy of the obtained
parameter values. The problem is then reformulated into an
optimal control one, whose solution can be computed by readily
available commercial softwares. A numerical example is used
to demonstrate the feasibility of the proposed method.

I. INTRODUCTION

A. Literature Review

The combination of physical systems and networks has

brought to light a new generation of engineered systems:

Cyber-Physical Systems (CPS) [1]. CPS is defined in [2] in

the following way: “Computational thinking and integration

of computation around the physical dynamic systems form

CPS where sensing, decision, actuation, computation, net-

working and physical processes are mixed”. CPS is foreseen

to become a highly researched area in the years to come with

its own conferences [3][4] and journals [5].

“Applications of CPS arguably have the potential to dwarf

the 20-th century IT revolution” [6]. CPS applications can

be found in medical devices and systems, patient monitoring

devices, automotive and air traffic control, advanced auto-

motive systems, process control, environmental monitoring,

avionics, instrumentation, oil refineries, water usage control,

cooperative robotics, manufacturing control, buildings, etc.

The first step when considering a CPS is to determine

the dynamics of its “physical” part, i.e. the environment

in which the sensors and actuators are going to operate.

First by defining a matching mathematical model, and then

by retrieving the values of the parameters of this model,

the obtained accurate model allows for improved design of

the CPS. In this paper, the parameter estimation process

constitutes a CPS in itself as we are using a mobile actuator-

sensor network for that purpose.
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The “model-analysis-design” process in dynamic systems

control is fundamental in control engineering practice. In

both physical and mathematical modeling, the parameter

estimation is essential in successful control designs. A pre-

cise parameter estimation depends not only on “relevant”

measurements and observations, but also on “rich” excitation

of the system. These are all known concepts in system

identification for finite dimensional systems [7]. In the

present work, the system to be modeled is of distributed

parameter nature (i.e. the states evolve along both time and

space axes). Clearly, common finite-dimensional input-output

relationships cannot be adopted to characterize the system

and in turn, one needs to rely on partial differential equations

(PDEs) for modeling.

However, determining where measurement should be done

as well as where should the system be excited to increase the

relevance of observations and measurements of the states of

a distributed parameter system is not a straightforward task.

One needs to consider the actuation capabilities as well as

location of the sensors so that the gathered information best

helps the parameter estimation. Therefore, it is a necessity

to develop systematic approaches in order to increase the

efficiency of PDE parameter estimators.

The problem of sensor location is not new as in, for

example, review papers ([8][9]). However, the investigation

on how to best excite the PDE system for optimal parameter

estimation has not been attempted so far. This paper presents

a framework for such optimal mobile actuation policy aiming

at optimal parameter estimation of a class of distributed

parameter systems.

In the field of mobile sensor trajectory planning in CPS,

few approaches have been developed so far but a large col-

lection of problems have been considered. Rafajówicz [10]

investigates the problem using the determinant of the Fisher

Information Matrix (FIM) associated with the parameters

he wants to estimate. However, his results are more of an

optimal time-dependent measure than a trajectory. In [9]

and [11], Uciński reformulates the problem of time-optimal

path planning into a state-constrained optimal-control one

which allows the addition of different constraints on the

dynamics of the sensor. Increased observability of the system

is considered in [12]. In [13], Uciński tries to properly

formulate and solve the time-optimal problem for moving

sensors which observe the state of a DPS in order to estimate

its parameters’ value. In [14], [15], the detection of a moving

source within of distributed system is considered for a sensor

network. In [16], the state estimation of a distributed system

is considered; mobile sensors steering policy is decided so as
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to imrpove the state estimate. In [17], both source detection

and process estimation are combined into a single frame-

work. In [18], the Turing’s Measure of Conditioning is used

to obtain optimal sensor trajectories. The problem is solved

for heterogeneous sensors (i.e. with different measurement

accuracies) in [19]. Limited power resource is considered

in [20], [21]. In [22], Demetriou considers the optimal

trajectories of mobile sensors in unison so as to improve

state estimation. In [23], Song adds realistic constraints

to the dynamics of the mobile sensor by considering a

differential-drive mobile robot in the framework of the MAS-

net Project. In [24], a so-called “closed-loop” scheme was

considered for the case where initial estimates of the system’s

parameters were inaccurate. This paper opened a window

towards networking considerations as computations were not

prior to the experiment anymore but “on-line”. For the first

time, actuators trajectories were considered and optimized in

[25] for known sensor trajectories.

To the best of the authors’ knowledge, this paper con-

stitutes the first attempt to solve the problem where both

sensors and actuators trajectories are optimized for pa-

rameter estimation in distributed parameter systems, hence

the ”cyber-physical” nature of the considered system. The

equations describing the system’s dynamics are assumed to

be known but with some unknown parameters. A team of

sensors and actuators is used to stimulate the system so that

measurements from the sensors, possibly mobile, provide

best information for parameter estimation.

B. Problem Formulation for PDE Parameter Estimation

Consider a distributed parameter system (DPS) described

by the partial differential equation

∂y

∂t
= F

(
x, t, y, θ

)
in Ω × T , (1)

with initial and boundary conditions

B(x, t, y, θ) = 0 on Γ × T, (2)

y = y0 in Ω × {t = 0}, (3)

where y(x, t) stands for the scalar state at a spatial point

x ∈ Ω̄ ⊂ R
n and time instant t ∈ T̄ . Ω ⊂ R

n is a bounded

spatial domain with sufficiently smooth boundary Γ, and T =
(0, tf ] is a bounded time interval. F is assumed to be a

known well-posed, possibly nonlinear, differential operator

which includes first- and second-order spatial derivatives and

include terms for forcing inputs. B is a known operator acting

on the boundary Γ and y0 = y0(x) is a given function.

We assume that the state y depends on the parameter

vector θ ∈ R
m of unknown parameters to be determined

from measurements made by N static or moving pointwise

sensors over the observation horizon T . We call xj
s : T →

Ωad the position/trajectory of the j-th sensor, where Ωad ⊂
Ω ∪ Γ is a compact set representing the domain where

measurements are possible. The observations for the j-th

sensor are assumed to be of the form

zj(t) = y(xj
s(t), t) + ε(xj

s(t), t), t ∈ T, j = 1, . . . , N,

(4)

where ǫ represents the measurement noise assumed to be

white, zero-mean, Gaussian and spatial uncorrelated with the

following statistics

E
{
ε(xj

s(t), t)ε(x
i
s(t

′), t′)
}

= σ2δjiδ(t − τ), (5)

where σ2 stands for the standard deviation of the measure-

ment noise, δij and δ( · ) are the Kronecker and Dirac delta

functions, respectively.

With the above settings, similar to [9], the optimal param-

eter estimation problem is formulated as follows: Given the

model (1)–(3) and the measurements zj from the sensors xj
s,

j = 1, . . . , N , determine an estimate θ̂ ∈ Θad (Θad being

the set of admissible parameters) of the parameter vector

which minimizes the generalized output least-squares fit-to-

data functional given by

θ̂ = arg min
ϑ∈Θad

N∑

j=1

∫

T

[
zj(t) − y(xj

s(t), t; ϑ)
]2

dt (6)

where y is the solution of (1)–(3) with θ replaced by ϑ.

By observing (6), it is possible to foresee that the pa-

rameter estimate θ̂ depends on the number of sensors N

and the mobile sensor trajectories xj
s. This fact triggered the

research on the topic and explains why the literature so far

focused on optimizing both the number of sensors and their

trajectories. The intent was to select these design variables so

as to produce best estimates of the system parameters after

performing the actual experiment.

Note that, besides these explicit design variables there

exists an implicit one that is the forcing input in (1).

Therefore, in this paper, we assume that the forcing input

is realized by a group of M actuators, whose trajectories are

to be optimized as well.

Since our approach is based on the methodology devel-

oped for optimal sensor location, we display it here as an

introduction to the theory from [9] and [26]. In order to

achieve optimal sensor location, some quality measure of

sensor configurations based on the accuracy of the parameter

estimates obtained from the observations is required. Such

a measure is usually related to the concept of the Fisher

Information Matrix (FIM), which is frequently referred to in

the theory of optimal experimental design for lumped param-

eter systems [27]. Its inverse constitutes an approximation

of the covariance matrix for the estimate of θ. Given the

assumed statistics of the measurement noise, the FIM has

the following representation [9], [28]:

M =

N∑

j=1

∫

T

g(xj
s(t), t)g

T(xj
s(t), t) dt, (7)

where

g(x, t) = ∇ϑy(x, t; ϑ)
∣∣
ϑ=θ0 (8)

denotes the vector of the so-called sensitivity coefficients, θ0

being a prior estimate to the unknown parameter vector θ

[11], [9].

However, the FIM can hardly be used in an optimization

as is. Therefore, it is necessary to maximize some scalar
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function Ψ of the information matrix to obtain the optimal

experiment setup. The introduction of the scalar criterion

allows us to pose the sensor location problem as an opti-

mization problem. Several choices for such a function can be

found in the literature [29], [27], [30] and the most popular

one is the D-optimality criterion

Ψ[M ] = − log det(M ). (9)

Its use yields the minimal volume of the uncertainty ellipsoid

for the estimates of the parameters. In this paper, only the

D-optimality criterion is considered.

II. OPTIMAL MEASUREMENT/ACTUATION

PROBLEM

A. Mobile Sensor/Actuator Model

We assume that both sensors and actuators are equipped on

vehicles whose dynamics can be described by the following

differential equation

ẋj
x(t) = fx(xj

x(t), uj
x(t)) a.e. on T , xj

x(0) = x
j
x0,

(10)

where x can stand for two different categories. The first

being s for sensors and the second being a for actuators.

With this nomenclature, the function fx (fs : R
N×R

rs →
R

N for sensors, fa : R
M × R

ra → R
M for actuators) has

to be continuously differentiable, the vector x
j
x0 (x

j
s0 ∈ R

N

for sensors, x
j
a0 ∈ R

M for actuators) represents the initial

disposition of the j-th sensor/actuator, and ux (us : T →
R

rs for sensors, ua : T → R
ra for actuators) is a measurable

control function satisfying the following inequality

uxl ≤ ux(t) ≤ uxu a.e. on T, (11)

for some known constant vectors uxl and uxu. Let us

introduce,

s(t) =
(
x1

s(t), x
2
s(t), . . . ,x

N
s (t), x1

a(t), . . . ,xM
a (t)

)T
,

(12)

where xj
s : T → Ωsad is the trajectory of the j-th

sensor and xk
a : T → Ωaad is the trajectory of the k-th

actuator. We assume that all the mobile nodes equipped with

sensors are confined within an admissible region Ωsad (a

given compact set) where the measurements are possible and

reciprocally that all mobile nodes equipped with actuators are

restrained in a domain Ωaad where actuation can be achieved.

Considering the general index x defined earlier, Ωxad can be

conveniently defined as

Ωxad = {xx ∈ Ω : bxi(xx) = 0, i = 1, ..., I}, (13)

where the bxi functions are known continuously differen-

tiable functions. That is to say that the following constraints

have to be satisfied:

hij(s(t)) = bxi(xj
x(t)) ≤ 0, ∀t ∈ T, (14)

where 1 ≤ i ≤ I and 1 ≤ j ≤ (N + M). For simpler

notation, we reformulate the conditions described in (14) in

the following way

γl(s(t)) ≤ 0, ∀t ∈ T, (15)

where γl, l = 1, ..., ν tally with (14), ν = I × (N + M).
It would be possible to consider additional constraints on

the path of the vehicles such as specific dynamics, collision

avoidance, communication range maintenance and any other

conceivable constrains.

The actuation function for the k-th mobile actuator is

assumed to depend on the actuator’s position as reflected

by the following definition

Fk(x, t) = Gk(x, xk
a, t). (16)

.

B. Problem Definition

The measurement/actuation problem can be defined by

reformulating (1) in the following way

∂y

∂t
= F

(
x, t, y, θ

)
+

M∑

k=1

Fk

(
x, t

)
in Ω × T , (17)

initial and boundary conditions remain unchanged. F may

still include forcing inputs terms unrelated to the actuators.

Based on this updated definition, the FIM associated with

the problem is given by the following new representation

M(s) =
M∑

k=1

∫

T

h(xk
a(t), t)dt, (18)

where for the k-th actuator

h(xk
a(t), t) =

N∑

j=1

g(xk
a(t), xj

s(t), t)g
T(xk

a(t), xj
s(t), t),

(19)

and

g(xk
a(t), x(t), t) =

∫ t

0

∇ϑy(x(τ), τ ; ϑ)
∣∣
ϑ=θ0dτ. (20)

In (20), y is the solution of (17) for Fk

(
x, τ

)
=

Gi(x, xi
a, τ)δ(t − τ) for all k ∈ [1, M ].

The purpose of the optimal measurement/actuation prob-

lem is to determine the forces (controls) applied to each

vehicle (conveying either a sensor or an actuator), which

minimize the design criterion Ψ(·) defined on the FIMs

of the form (7), which are determined unequivocally by

the corresponding trajectories, subject to constraints on the

magnitude of the controls and induced state constraints. To

increase the degree of optimality, our approach considers s0

as a control parameter vector to be optimized in addition to

the control function u = [usua]T .

Given the above formulation we can cast the optimal

measurement/actuation policy problem as the following op-

timization problem: Find the pair (s0, u) which minimizes

J (s0, u) = Φ [M (s)] (21)

over the set of feasible pairs

P = {(s0, u) |u : T → R
r is measureable, (22)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ Ωsad × Ωaad} ,

subject to the constraint (15).
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The solution to this problem can hardly have an analytical

solution. It is therefore necessary to rely on numerical

techniques to solve the problem. A wide variety of techniques

are available [31]. However, the problem can be reformulated

as a classical Mayer problem where the performance index

is defined only via terminal values of state variables.

III. OPTIMAL CONTROL FORMULATION

In this section, the problem is converted into a canonical

optimal control one making possible the use of existing

optimal control problems solvers.

To simplify our presentation, we define the function svec

: S
m → R

m(m+1)/2, where S
m denotes the subspace of all

symmetric matrices in R
m×m that takes the lower triangular

part (the elements only on the main diagonal and below) of

a symmetric matrix A and stacks them into a vector a:

a = svec(A) (23)

= col[A11, A21, . . . , Am1, A22, ...

A32, . . . , Am2, . . . , Amm]. (24)

Reciprocally, let A = Smat(a) be the symmetric matrix such

that svec(Smat(a)) = a for any a ∈ R
m(m+1)/2.

Consider the matrix-valued function

Π(s(t), t) =

M∑

k=1

h(xk
a(t), t). (25)

Setting r : T → R
m(m+1)/2 as the solution of the differential

equations

ṙ(t) = svec(Π(s(t), t)), r(0) = 0, (26)

we obtain

M(s) = Smat(r(tf )), (27)

i.e., minimization of Φ[M(s)] thus reduces to minimization

of a function of the terminal value of the solution to (26).

Introducing an augmented state vector

q(t) =

[
s(t)
r(t)

]
, (28)

we obtain

q0 = q(0) =

[
s0

0

]
. (29)

Then the equivalent canonical optimal control problem con-

sists in finding a pair (q0, u) ∈ P̄ which minimizes the

performance index

J̄(q0, u) = φ(q(tf )) (30)

subject to





q̇(t) = φ(q(t), u(t), t)
q(0) = q0

γ̄l(q(t)) ≤ 0
(31)

where

P̄ = {(q0, u) |u : T → R
r is measurable, (32)

ul ≤ u(t) ≤ uu a.e. on T , s0 ∈ ΩM
ad

}
,

and

φ(q, u, t) =

[
f(s(t), u(t))

svec(Π(s(t), t))

]
, (33)

γ̄l(q(t)) = γl(s(t)). (34)

The above problem in canonical form can be solved

using one of the existing packages for numerically solving

dynamic optimization problems, such as RIOTS 95 [32],

DIRCOL [33] or MISER [34]. We chose RIOTS 95, which is

designed as a MATLAB toolbox written mostly in C and runs

under Windows 98/2000/XP and Linux. The theory behind

RIOTS 95 can be found in [35].

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we use a demonstrative example to illus-

trate our method. We consider the two-dimensional diffusion

equation

∂y

∂t
= ∇ · (κ∇y) +

M∑

k=1

Fk (35)

for x = [x1 x2]
T ∈ Ω = (0, 1)2 and t ∈ [0, 1], subject to

homogeneous zero initial and Dirichlet boundary conditions.

The spatial distribution of the diffusion coefficient is assumed

to have the form

κ(x1, x2) = θ1 + θ2x1 + θ3x2. (36)

In our example, we select the initial estimates of the parame-

ter values as θ0
1 = 0.1, θ0

2 = −0.05 and θ0
3 = 0.2, which are

assumed to be nominal and known prior to the experiment.

The actuation function is

Fk

(
x, xk

a, t
)

= 10e
−50

(
(xk

a1
−x1)

2
+(xk

a2
−x2)

2
)

. (37)

where xi
a = [xi

a1 xi
a2]

T . The dynamics of the mobile

actuators follow the simple model

ẋk
a(t) = uk

a(t), xk
a(0) = xk

a0, (38)

and additional constraints

|uk
ai(t)| ≤ 0.7, ∀t ∈ T, k = 1, . . . , M, i = 1, . . . , 2.

(39)

The dynamics of the mobile sensors follow the same model

ẋj
s(t) = uj

s(t), xj
s(0) = x

j
s0, (40)

and additional constraints

|uj
si(t)| ≤ 0.7, ∀t ∈ T, j = 1, . . . , N, i = 1, . . . , 2.

(41)

Our goal is to design their trajectories so as to obtain possibly

the best estimates of θ1, θ2 and θ3.

The determination of the Fisher information matrix for a

given experiment requires the knowledge of the vector of

the sensitivity coefficients g = col[g1, g2, g3] along sensor

trajectories. The FIM can be obtained using the direct
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differentiation method [9] by solving the following set of

PDEs:

∂y

∂t
= ∇ · (κ∇y) +

∑
Fk, (42)

∂g1

∂t
= ∇ · ∇y + ∇ · (κ∇g1),

∂g2

∂t
= ∇ · (x1∇y) + ∇ · (κ∇g2),

∂g3

∂t
= ∇ · (x2∇y) + ∇ · (κ∇g3),

in which the first equation represents the original state

equation and the next three equations are obtained from

the differentiation of the first equation with respect to the

parameters θ1, θ2 and θ3, respectively. The initial and

Dirichlet boundary conditions for all the four equations are

homogeneous.

The strategy is tested on a simple team of one sensor

and one actuator. In order to avoid getting stuck in a

local minimum, computations were repeated several times

from different initial solutions. Fig. 1 present the resulting

trajectories for the run where the initial solutions lead to

the best results (minimal value of the D-optimality criteria).

Steering signals for both sensor and actuator are displayed

in Fig. 2-5. Resulting trajectories for two sensors and one

actuator are given in Fig. 6, and three sensors and one

actuator in Fig. 7. Sensor trajectories are displayed in blue

while actuator trajectories are red.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

Fig. 1. D-Optimal trajectories of a team of one sensor and one actuator.
The initial positions are marked with open circles and the final positions
are designated by triangles

0 0.2 0.4 0.6 0.8 1

−0.6

−0.4

−0.2
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0.2

0.4

0.6

time

u
1

Fig. 2. Optimal control of the sensor with respect to the x1-axis

V. CONCLUSION

We introduced the optimal measurement/actuation frame-

work for parameter identification in a cyber-physical system
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0.4

0.6
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u
2

Fig. 3. Optimal control of the sensor with respect to the x2-axis
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Fig. 4. Optimal control of the actuator with respect to the x1-axis
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Fig. 5. Optimal control of the actuator with respect to the x2-axis
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Fig. 6. D-Optimal trajectories of a team of two sensors and one actuator.
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Fig. 7. D-Optimal trajectories of a team of three sensors and one actuator.

371



constituted of mobile sensors and actuators behaving in a

distributed parameter systems. The problem was formulated

as an optimization problem using the concept of the Fisher

information matrix. The problem was then reformulated

into an optimal control one. With the help of the Matlab

PDE toolbox for the system simulations and RIOTS 95

Matlab toolbox for solving the optimal control problem, we

successfully obtained the optimal solutions for an illustrative

example. Combined with the on-line scheme introduced in

[24], this research represents a realistic example of CPS.

Mobile sensors and actuators are communicating to achieve

the parameter estimation of the physical system they are

monitoring/stimulating. An exciting application consists in

center-pivot operations, where our research center has a

project of using camera-equipped unmanned air vehicles

for soil-moisture measurement combined with irrigators to

stimulate the farming field. Thanks to this framework, an

accurate model of the soil dynamics can be derived and water

savings can be obtained via optimal operations of the center-

pivot.
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