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Abstract— Unmanned Aerial Systems are currently in use for
a wide variety of applications with digital cameras and thermal
cameras, but recent advances in Short Wave Infrared (SWIR)
imaging systems or imagers have led to their commercial
availability. The SWIR spectrum is a reflected light region
and similar to near-infrared (NIR) is invisible to human eyes.
The unique properties of this spectrum such as penetration
of haze and smoke and its high sensitivity to moisture make
it a potentially significant addition to small UAS (sUAS)
applications. The use of sUASs to provide higher temporal
and spatial resolutions has the potential for new applications
otherwise impossible. In this paper, a tutorial introduction to
the SWIR spectrum and its enabled potential applications for
small UASs is presented. Furthermore this paper outlines how
sUAS remote sensing applications stand to benefit from the use
of SWIR imaging systems, as the effectiveness of SWIR bands
in satellite imagery for metrics related to water content have
already been demonstrated. Results from real world sUAS flight
missions are included.

I. INTRODUCTION

Short Wave Infrared (SWIR) imaging systems or imagers
are increasingly becoming commercially available, enabling
their integration into Unmanned Aerial Systems (UASs).
These unique imagers measure light in the SWIR region of
the electromagnetic spectrum, typically defined as between
1µm and 3µm, beyond the visible light spectrum (0.4 µm
to 0.7 µm) and beyond the near infrared region (0.7 µm
to 1 µm). While the near infrared (NIR) spectrum can be
measured by CMOS or CCD technology even though it is
invisible to the human eye, the SWIR spectrum requires
a different detector, such as an Indium Gallium Arsenide
(InGaAs) detector. The manufacturing challenges and costs
has slowed its adoption in commercial applications. In com-
parison to other visible light or thermal infrared imagers, the
cost for SWIR systems are typically higher and suffer from
significantly reduced resolution and increased weight. How-
ever, its unique properties can provide valuable information
where visible, NIR or thermal imagery are ineffective.

This paper is intended to introduce the SWIR spectrum of
light, highlight some of its uses, describe its implementations
and challenges including calibration techniques, demonstrate
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unique qualities and predict its future enabled small UAS
applications. In Section II, an introduction to the SWIR
spectrum is presented. Current uses of SWIR in military
and remote sensing applications are described in Section III.
Section IV introduces SWIR imagers and integration into
UASs. Two example UAS SWIR applications are described
in Section V. Finally, concluding remarks are presented in
Section VI.

II. SHORT WAVE INFRARED

Visual light comprises of only a small portion of the
electromagnetic spectrum. Beyond 0.7 µm (what humans
perceive to be the color red), longer wavelengths of light
exist but are invisible to the human eye. However, with the
use of imaging equipment, it is possible to record these
wavelengths. Many UASs are already equipped with cameras
that can image in the NIR spectrum which ranges from
0.7 µm to the limit of CMOS or CCD detector sensitivity
at 1 µm. Beyond NIR, from 1 µm to roughly 3 µm is
referred to as the short wave infrared spectrum (Fig. 1
). While this spectrum is beyond NIR, it still primarily
responds to reflected electromagnetic energy as opposed to
emitted energy, and thus is not normally used for thermal
measurements [1]. The majority of energy in the SWIR
spectrum is either reflected or absorbed by objects, similar
to the light properties in the visible and NIR spectrum.

Fig. 1: Electromagnetic Light Spectrum.

The SWIR spectrum is recognized for its significant ab-
sorption by water, and bands of absorption by water vapor
and CO2. Water vapor has significant impact on the transmis-
sion of light in the atmosphere in the SWIR spectrum with
bands of absorption around 0.935µm, 1.13 µm, 1.38 µm,
1.88 µm and 2.68 µm [1]. However, the strong absorption
by water in the SWIR spectrum results in SWIR imagers
exhibiting significant sensitivity to moisture. In Fig. 2, the
water in the bottle appears dark rather than transparent. Next
to the bottle, the darker spot on the apple is a visible marker
of a bruise, which released moisture under the skin of the
apple. In the visible spectrum, such bruising would not be
visible. Man-made objects, such as clothing also typically
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reflects highly in the SWIR spectrum as can be seen in Fig.
3.

Fig. 2: Water and Bruised Apple. The bruise is imperceptible
in visible light, but is visible in the SWIR spectrum.

Fig. 3: Person wearing a black jacket and holding a black
rock. Clothing is often highly reflective in the SWIR spec-
trum.

While silicon-based CCD or CMOS image sensors are
unable to measure SWIR spectrum energy, silicon electro-
luminescence occurs in the SWIR spectrum. Applying a
voltage across a silicon-based solar cell will illuminate the
cells, similar to applying a voltage across an LED will
illuminate the LED. This property can be used in solar
cell inspection. Fig. 4a and Fig. 4b depict the difference in
electroluminescence (EL) between a poorly performing solar
cell (Fig. 4a) and a well-performing solar cell (Fig. 4b) as
measured by a SWIR imager.

(a) EL of a poorly performing
solar cell

(b) EL of a well performing
solar cell

Fig. 4: Comparison of Electroluminescence of Solar Cells

III. CURRENT SWIR APPLICATIONS

The unique properties of the SWIR spectrum and SWIR
imagers have led to a wide variety of applications. While
there are many valuable applications in industrial processing
such as solar cell inspection or art analysis, the following
section will focus on existing applications where UAS inte-
gration may further enhance operation or provide additional
capabilities. In this section, existing surveillance applications
and remote sensing applications are introduced.

A. Surveillance

Recent advances in SWIR imagers have made them viable
for military applications [2]. A comparison of visible, NIR
and SWIR spectrum imagers for military applications was
presented in [3]. The authors identified several potential uses
where SWIR imagers have an advantage over visible and
NIR cameras: haze penetration, forest and oil fire penetration,
maritime and ground target contrast and long range visibility.
While SWIR imagers suffer from low resolution, they are
comparable to many currently available TIR imagers.

While the SWIR spectrum is a reflected spectrum, similar
to visible and NIR spectrums, the longer wavelength of
SWIR results in an enhanced visibility because it is less ef-
fected by the Rayleigh scattering effect. While small particles
(such as in haze or smoke) scatter visible light, SWIR passes
through relatively unscattered. This ability to see through
haze is the key advantage for enhanced long range visibility
in surveillance applications in comparison to visible light
cameras. In the case of fire penetration from forest fires or
oil fires, the ability of SWIR to ’see’ through smoke particles
has significant value.

SWIR imagers have also been shown to demonstrate a
capability for low-light or night vision [4]. The high quantum
efficiency of many SWIR imagers enable useful low-light
operation. When combined with a SWIR illumination source,
invisible to human eyes, night visibility is possible with an
SWIR imager. On clear nights, the phenomenon of airglow,
the faint emission of light by the atmosphere, can provide
enough illumination in the SWIR spectrum to enable night
time visibility for very sensitive SWIR imagers [4].

B. Satellite Imagery

Images in the SWIR spectrum are also abundant in re-
mote sensing applications. Many satellites have imagers with
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specific regions of spectral sensitivity, referred to as bands,
within the SWIR region. For remote sensing applications, the
SWIR spectrum is recognized for its sensitivity to moisture,
which can be correlated to important metrics such as leaf
water content and other crop canopy physiological statuses
[5]. Over the past decades, researchers have used SWIR
bands to indicate leaf and canopy moisture [6], plant water
stress [7], the remote sensing of vegetation liquid water [8]
and forest fire burn severity [9].

A list of common satellites and their SWIR bands can
be found in Tab. I. While the majority of SWIR bands are
in the region between 1.55µm and 1.75µm, some satellites
have bands in the atmospheric window between 2.1µm and
2.4 µm and around 1.25µm. Landsat 8 OLI introduces a new
SWIR band between 1.36-1.38µm, notable because it exists
at a region where water vapor is not transparent. The result is
that high altitude clouds reflect highly compared to the dark
background of water vapor in the earth atmosphere, which
then can be used to correct other satellite imagery distorted
from these high altitude clouds.

Many of the applications utilize a common spectral vege-
tation difference index in the form of

Index =
ρNIR − ρSWIR

ρNIR + ρSWIR
(1)

where ρNIR is the reflectance in the NIR spectrum band,
ρSWIR is the reflectance in the measured SWIR spectrum.
There are several indexes identified, each with different
applications utilizing difference SWIR bands provided by
different satellite systems. The availability of SWIR wave-
lengths for sUASs enable these indices to be calculated
at a higher spatial resolution than previously available by
utilizing optical bandpass filters. Literature describes three
major spectral indices that have been identified. The Nor-
malized Difference Water Index (NDWI) utilizes the shorter
wavelengths within the SWIR spectrum (1.2 µm - 1.3 µm)
and was recognized as a way to measure vegetation liquid
while being less sensitive to atmospheric effects than NDVI
[8]. The Normalized Difference Infrared Index (NDII) uses
the SWIR spectrum between 1.55 µm - 1.75 µm and has
been used to identify historic (up to 10 years) fire scar
damage [10] as well as an indicator of canopy water stress
[6]. The Normalized Burn Ratio (NBR) utilizes the longer
SWIR spectrum between 2.05 µm - 2.45 µm to map forest
burns and mapping burn severity [9].

IV. SWIR IMAGING EQUIPMENT

Although not as common as digital cameras or thermal im-
agers, SWIR imagers have become available commercially.
Currently, most SWIR imaging sensors are made with In-
dium Gallium Arsenide (InGaAs) detector arrays. Although
other detectors such as Germanium (Ge), Indium Antimonide
(InSb), and Mercury Cadmium Telluride (HgCdTe) detectors,
InGeAs arrays have been more practical due to their higher
quantum efficiency and low dark current at room temper-
ature, although these sensors are typically only effective
between the 0.9 µm to 1.7 µm wavelengths [4]. A plot

of the quantum efficiency of an InGeAs detector can be
found in Fig 5, courtesy of Infrared Cameras Inc (ICI). As
with most electronics, the drive for miniaturization has led
to the availability of small and light-weight systems, many
suitable for integration into UASs. The rest of this section
will introduce issues related to the calibration of SWIR
imagers and the use of bandpass filters for SWIR spectrum
separation.

Fig. 5: SWIR Quantum Efficiency, courtesy of ICI http:
//www.infraredcamerasinc.com

A. SWIR Calibration Techniques

As with all optical imaging equipment, calibration is
necessary for reliable and accurate measurements. While
the SWIR spectrum is invisible to the human eye, many of
the techniques of calibration for multi-spectral cameras are
suitable for SWIR imagers. An in-depth discussion of many
calibration techniques can be found in [11]. However, unlike
visible spectrum imagers, SWIR imagers typically have a
much lower resolution and pixel count which introduces ad-
ditional challenges. Commercially available SWIR imagers
have resolutions of 320 x 240 or 640 x 480, comparable to
many commercially available TIR imagers. Special care must
be taken in noise reduction techniques to prevent the ob-
scuring of details which may result in artifacts or inaccurate
data. Common issues found in SWIR imagers include pixel
nonuniformities and line noise. Nonuniformity corrections
(NUCs) techniques are suitable for SWIR imagers, similar
to their application in thermal imagers.

In cases where reflected radiation measurements are re-
quired, radiometric calibration can be applied. Since SWIR
spectrum has similar characteristics as visible and near
infrared spectrums, similar radiometric calibration can be
applied, however special care must be taken in target se-
lection. Certain ink and prints may be discernible in the
visible spectrum (Fig. 6a), but not in the SWIR spectrum (Fig
6b). Additionally, while SWIR is predominately a reflected
energy region, objects that are extremely hot (above 300
degrees C) may emit radiation in the SWIR region and
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TABLE I: Satellite SWIR Bands

Satellite Resolution Band Regions (µm)
ASTER 30 m 1.6-1.7, 2.145-2.185, 2.185-2.225, 2.235-2.285, 2.295-2.365, 2.360-2.430

AVHRR/3 1.09 km 1.58-1.64
EO-1 ALI 30 m 1.2-1.3, 1.55-1.75, 2.08-2.35

Landsat 7 ETM+ 30 m 1.55-1.77, 2.09-2.35
Landsat 8 OLI 30 m 1.57-1.65, 2.11-2.29, 1.36-1.38

MODIS 500 m 1.23-1.25, 1.628-1.652, 2.105-2.155, 1.36-1.39

(a) Visible Spectrum (b) SWIR Spectrum

Fig. 6: Comparison of Visible and SWIR Images of marker
ink. SWIR contrast artificially stretched for comparison

should be avoided for reflected energy calibration. However,
once the SWIR imager is calibrated to provide accurate and
repeatable data, it is suitable for surveillance applications.

B. Bandpass Lens Selection

As previously described, one application of SWIR imagers
is in the field of remote sensing. It is possible to utilize
bandpass optical filters to restrict wavelength sensitivity to
provide similar bands as found in satellite imagery. The
high quantum efficiency of InGaAs detectors enable a SWIR
imager to work well in low-light situations, such as when a
bandpass filter is used. This ability introduces a wide range of
applications that utilize specific SWIR bands for calculation
as with the previously described spectral indices that use
SWIR bands. For example, a bandpass filter with a center
wavelength at 1.6 µm with a bandwidth of 50 nm would
result in a similar spectral sensitivity as Landsat 8 - Band 6
(1.575 µm - 1.625 µm compared to 1.570 µm to 1.650 µm).

However, there are challenges to the implementation of
bandpass filters in the SWIR spectrum as there are in the
visible and NIR spectrum. Many commercially available
bandpass filters, including those used by many multi-spectral
cameras, are subject to wavelength shifting as a function of
angle of incidence. The center wavelength of a bandpass filter
will shift towards towards shorter (blue) wavelengths as the
viewing angle widens. This relationship can be calculated as

λr = λ0

(
1− sin2 θ

n2

) 1
2

(2)

where λr is the resulting wavelength, λ0 is the center
wavelength, n is the effective index of refraction of the filter
and θ is the angle of incidence. For example, a bandpass
filter centered around 1.600 µm with an index of refraction

of 2.1, will have shifted to 1.580 µm when viewed at an
angle of 20◦ (equivalent to a field of view of 40◦). This
may introduce significant errors for narrow bandpass filters
on imagers with a wide field of view (FOV). This affect can
be mitigated through the use of additional lens to collimate
the light before focusing.

Bandpass filter selection should consider both the spectral
reflectance of the object and the spectrum of light that passes
through the atmosphere. Unlike the visible spectrum, not all
sunlight passes through the atmosphere due to the bands of
absorption, especially water vapor around 0.938 µm, 1.13
µm, 1.38 µm, 1.88 µm and 2.68 µm. At all of these bands,
there is a limited amount of reflected energy for a SWIR to
measure. This can be visualized in Fig. 7 (data reproduced
from the USGS Spectral Library [12]).

Fig. 7: Spectral Band specifications from Landsat 8, Sunlight
transmission through atmosphere and spectral reflectances
of green grass, dry grass, melting snow and wetland area.
Spectral band specification from Landsat 8 OLI reproduced
from data by [13]. Sunlight transmission data reproduced
from the SMARTS model of atmospheric transfer of sunshine
[14]. Spectral reflectance data reproduced from the USGS
Spectral Library [12]

.

While some satellite imagery is limited by atmospheric
transmission windows, a UAS with a SWIR imager with
appropriate bandpass filters would be able to collect a wider
range of spectral measurements. This has been shown to
be valuable for improved spectral indices for water stress
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detection or soil moisture measurements [15].

V. SWIR UAS APPLICATIONS

The use of SWIR imagers for UAS applications is rel-
atively unexplored and few applications have been docu-
mented. However, as SWIR imagers become more available,
there will be opportunities to explore. In the following
section, two specific potential applications will be discussed
that highlight the unique capabilities of SWIR: soil moisture
measurements and shallow vernal pool identification and
analysis.

A. Soil Moisture Measurements

Recently, as much as forty-six percent of California has
been classified as in stage 4 exceptional drought. As water
conservation becomes ever more important in the state,
agricultural regions will need to be as efficient as possible
with resource allocation. To improve water conservation
efforts, wide-scale water usage monitoring is necessary with
sufficient spatial resolution. The use of a sUAS with a SWIR
imaging system is one of the many methods proposed to
provide the necessary monitoring.

Moisture effects on soil reflectance in the SWIR spectrum
has been well documented with spectrometers in laboratory
settings. Within the visual spectrum, wet soil reflects signifi-
cantly less light than dry soil, a process that is both familiar
and well studied. However, measurements of soil moisture
is difficult in this range as the amount of light reflected does
not vary after some level of moisture, usually within 1-2 of
volumetric water content. The reflectance response to varying
levels of soil moisture begins to exhibit larger separation in
the NIR and SWIR range. Previous studies have identified
an exponential model relating soil moisture and reflectance
[16],

R = Rsat + (Rdry −Rsat)× exp(−c× wc) (3)

where Rsat is the reflectance of saturated soil, Rdry is the
reflectance of dry soil, c describes the rate of change because
of soil moisture, wc is the water content (expressed as
volumetric content) and all values are wavelength dependent.

This model has been validated with SWIR images as
well. To validate the model, a controlled experiment was
conducted. As seen in Fig. 8, 10 cups were filled with sand
and mixed with distilled water. Water content was measured
by volume at 2%, 5%, 8%, 11% and 15%. The set of
soil samples were imaged with a SWIR imager with a full
spectrum lens referred to as broadband (sensitivity between
900nm to 1700nm), a 1100nm lens with a bandwidth of
12 nm and a 1600nm lens with bandwidth of 50nm. Soil
samples were intentionally not smoothed to simulate real-
world conditions. Radiometric calibration was accomplished
with a NIST calibrated white panel from LabSphere [17] and
distilled water as the black body. Using the full spectrum of
a SWIR imager (broadband) resulted in the highest nonlin-
earity, whereas the use of the 1600nm centered bandpass lens
resulted in the most linear regression (Fig. 9). All three lens
resulted in a R2 fit to the described model above 0.9. The

Fig. 8: Image of soil moisture data collection.

result of this experiment validated the use of the previously
described model and validated the use of 1600 nm centered
bandpass filter as the filter that would provide the most linear
response to soil moisture as a function of volumetric content.

Fig. 9: Reflectance of soil as a function of water volume com-
paring three lens configurations. Reflectance measurements
depict a more linear relationship when using a bandpass filter
lens with a center wavelength at 1600nm.

Future UAS missions will combine ground truth measure-
ments of top soil moisture with SWIR aerial imagery to
validate the use of the described model for soil moisture
estimation. While this application would only be effective
when the soil is bare and when looking at the top layer of
soil, the information would be valuable for understanding
the hydrological connectivity in semi-arid environments,
where many rare and endangered species of flora and fauna
congregate.
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Fig. 10: Orthomap in Color

Fig. 11: Orthomap in NIR

B. Vernal Pool Identification and Analysis

In Central California, brief seasonal rain occasionally
concentrates forming what is known as vernal pools. These
vernal pools are critical complexes teaming with unique
endemic flora and fauna. Some of these pools may only
be several centimeters deep and exist for a brief week, but
are a valuable ecological resource. Within Central California,
the majority of the original vernal pool habitats have been
destroyed through farming and urban development. Ecolog-
ical monitoring and conservation of these vernal pools are
critical for maintaining this part of the California ecosystem.
Principally, the monitoring of ecosystem properties in these
ephemeral habitats requires high frequency sensing. Tradi-
tional approaches to remote sensing, which entail fixed orbit
satellites or single flight photography, fail in these systems
because the identifying features are too small or too rapidly
changing. The use of UASs have the potential to both provide
the high spatial resolution and the high temporal resolution

Fig. 12: Orthomap in SWIR

to both identify and quantify these vernal pools.
While NIR imagery can be used for mapping water

features, energy in the NIR spectrum is not fully absorbed in
water less than 1 m. An subset of sUAS imagery collected
in Color, NIR, and SWIR is seen in Figures 10, 11 and 12.
The shallow pool outside the levy is indistiguishable in color
imagery and is faint in NIR. However, the full outline of
the water level is clearly depicted in SWIR. In contrast, the
deeper water pool within the levy is more apparent in NIR,
however, the even more shallow ponds are indistinguishable
from soil and bareground. The increased sensitivity of SWIR
to water enables accurate water feature measurements which
is a critical need for conservation efforts.

Future UAS missions will utilize SWIR imagery to iden-
tify and analyze the size and distribution of these temporary
vernal pools to aid in the understanding and conservation of
these rare and threatened ecosystems.

VI. CONCLUSION

SWIR imagers are starting to be become more available
commercially and they hold significant potential value in
providing information that would be difficult to perceive
in visible, NIR or thermal imagery. When combined with
the capabilities of sUASs, the possibilities are endless. The
unique properties of the SWIR spectrum such as the ability
to penetrate haze and smoke are extrodinarly valuable for a
wide variety of surveillance, reconnaissance, or intelligence
gathering for law enforcement, military or fire fighting
applications. In remote sensing operations, such as agricul-
tural or environmental applications where data analysis and
processing are complex and multi-variate, SWIR reflectance
measurements may prove to be key for water detection and
quantification. The SWIR spectrum is already in use for
these applications from satellite imagery, so the transition
to sUASs is well known. The potential applications enabled
through a higher spatial and temporal resolution of SWIR
information are only just being realized. The validation of
soil surface moisture measurements and the use of SWIR
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for shallow water detection are only the beginning for SWIR
applications for sUASs.
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