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The decision making model (DMM) previously developed [3,35] has been shown to gener-
ate phase transitions, to be topologically complex as manifest by inverse power-law (IPL)
degree distributions, and to produce temporal complexity through IPL distributions in the
switching times between the two critical states of consensus. These properties are entailed
by the fundamental assumption that the network elements in the DMM imperfectly imi-
tate one another, which is postulated herein as the echo response hypothesis; an echo
being an imperfect copy of an original signal. Some implications of this hypothesis for
the human sciences are explored.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

At the turn of the twentieth century a widely accepted
theory in social psychology was the Theory of Imitation.
Ellwood [12] explained that this theory had two origins;
one from the side of the individual and the other from
the side of society. Tarde [34] argued that imitation was
the fundamental mechanism by which the phenomena of
crowds, fads, fashions and crime, as well as other collective
behaviors, could be understood, but no mathematical dem-
onstration was provided. On the other side, Baldwin [1]
maintained that imitation theory developed out of the
mental development of the child resulting from imitation
being a basic form of learning. It was believed that because
society was a functional combination of individuals all the
properties of society were already contained within the
individual waiting to be discovered. Imitation theory was
a remarkably rigid application of the principle of reduc-
tionism and the critique of the theory by Ellwood was
firmly anchored in the reductionist tradition.

Ellwood pointed out that imitation theory separated
humans from other animals based on their instinct to imi-
tate dominating the entire process of social organization.
However he emphasized that this separation was
contradicted by data as indicated by herds of elephants,
colonies of ants, and swarms of all kinds. The question then
arises whether the separation made by the original inves-
tigators was inconsistent with the notion of imitation, or
was it a consequence of the limitations of verbal as op-
posed to mathematical reasoning?

Imitation remains an important concept in the human
sciences with application inside and outside the social do-
main. The nascent discipline of neuroscience was develop-
ing at the same time that the theory of imitation was being
criticized and investigators were associating various phys-
ical locations in the human brain with psychological and
behavior function. Liepmann [22] determined that human
beings are capable of imitating sounds, movements, ges-
tures, etc., and that this ability was lost in patients with le-
sions in certain areas of the brain. Nearly a century later
functional magnetic resonance imaging (fMRI) experi-
ments demonstrated that the same network of cortical re-
gions is activated during a given action, regardless of how
that action is initiated [18]. This provided a direct neuro-
logical evidence for how the imitation mechanism is real-
ized by the brain.

A significant omission from the early discussions of imi-
tation in the social and neural realms is the fact that no
copy is perfect. Nothing is ever done exactly the same
way twice, so every copy contains deviations from the ori-
ginal, that is, they contain errors. Physical ‘imitators’ are
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mirrors and echoes; the former are formed by reflected
light and the latter by reflected sound. The accumulated
distortion in the reflection process measured at the recei-
ver is determined by a stochastic function and is referred
to as noise. The mathematician Norbert Wiener [39] deter-
mined that time series could be filtered to remove the
noise, which works well for linear processes such as wave
reflection but such linearity is rare in the human sciences.
Consequently, the additive signal plus noise modeling of
echoes is not adequate for understanding the dynamics
of imitation in social and cognitive phenomena. The failure
of the signal plus noise paradigm is due in large part to imi-
tators in the human sciences being active not passive
responders.

The intent here is not to model imitation, nor to present
a theory of imitation. Rather imitation is adopted as a basic
social/psychological mechanism that is part of what it
means to be human. Herein we adopt the hypothesis that
imperfect imitation (echo response) is a fundamental
mode of human behavior and implement the hypothesis
in a mathematical model of networked decision making.
The resulting dynamics are then used to determine what
the echo response hypothesis (ERH) entails about behavior
that is not implicit in the initial statement of the model,
and to determine if that behavior corresponds to the kind
of cooperation observed in nature.

Using a previously developed decision making model
(DMM) [3,35] we establish that the ERH entails criticality
and phase transitions that were emphasized in Gerhard
Werner’s last publication and which he stressed with equal
vigor in our last conversations. He was convinced that crit-
icality is fundamental to the understanding of cognition
and cooperative behavior, as are we. This cooperation is
the very behavior that Ellwood believed the theory of imi-
tation could not explain.

In Section 2 we briefly review the DMM developed and
explored by Turalska et al. [35–37] in the study of social
interactions. What is new here is the explicit recognition
of the importance of the ERH in the formulation of the
model and what that entails about criticality in the social
domain. Section 2.1 focuses on the properties of the
DMM when all the elements in the network are coupled
to one another (all-to-all (ATA) coupling) and establishes
the existence of a phase transition at a critical value of
the control parameter. Section 2.2 extends this analysis
to a two-dimensional lattice with nearest neighbor inter-
actions. These local interactions also give rise to a phase
transition at a critical value of the control parameter that
is larger than in the ATA coupling case. The lattice dynam-
ics are shown to produce inhomogeneous opinion distribu-
tions analogous to that observed in the distribution of
magnetization on a spin lattice.

The kinds of complexity entailed by the ERH in the
DMM are determined in Section 3 to be inverse power laws
in the degree distribution as well as in the distribution of
times between changing network decisions. As we men-
tioned it is not only society that is strongly influenced, if
not dominated, by collective behavior. Coordinated behav-
ior of the aggregate is also found in the dynamics of real
neural networks. The neuronal avalanches produced by
criticality in the human brain [2,13] have been described
Please cite this article in press as: West BJ, Turalska M. Network of ech
j.chaos.2013.06.005
by the DMM as we discuss in Section 4 and in this context
the ERH is argued to be a consequence of the recently ob-
served mirror neurons.

In Section 5 we draw some conclusions.

2. Decision making model

There are a number of ways to model complex dynamic
networks even restricting the analysis to those in which
the ERH can be implemented. One way would be through
stochastic differential equations, where the statistical
uncertainty in the network dynamics is explicitly modeled
by a random force included in the equations of motion. An-
other is to replace the network dynamics at the level of the
individual element with the macroscopic behavior of the
probability or population density and follow its evolution
in the network’s phase space. Herein we model the dynam-
ics of the probability for an individual labeled by a to be in
either of the two states j1ior j2i by the coupled two-state
master equation, which was introduced into physics to de-
scribe the evolution of the discrete probability of a stochas-
tic process:

d
dt

pðaÞ1 ¼ �gðaÞ12 pðaÞ1 þ gðaÞ21 pðaÞ2 ; ð1Þ

d
dt

pðaÞ2 ¼ �gðaÞ21 pðaÞ2 þ gðaÞ12 pðaÞ1 : ð2Þ

The quantity pðaÞj ðtÞ is the probability of the element a
being in the state jji with j = 1,2 at time t and the probabil-
ity is normalized at each point in time such that

pðaÞ1 þ pðaÞ2 ¼ 1: ð3Þ

The states j1i and j2i correspond to the values +1 and � 1,
the decision yes or no, or a switch being on or off, etc. The
dynamics are determined by the choice of the functional
form of the transition rates, that is, the g0s in the master
equation.

Each node of the network is occupied by a dynamic ele-
ment whose changes in time are described by the master
equation given by the coupled equations, Eqs. (1) and (2).
Any individual element is influenced by all the other ele-
ments to which it is directly connected according to the
prescription for the transition rates in the decision making
model (DMM)

gðaÞij ðtÞ ¼ g0exp K pðaÞj ðtÞ � pðaÞi ðtÞ
n oh i

; i – j ¼ 1;2 ð4Þ

where

pðaÞs ðtÞ ¼
MðaÞ

s ðtÞ
MðaÞ : ð5Þ

M(a) denotes the number of links connected to the element
that we are considering and MðaÞ

s ðtÞ is the number of near-
est neighbor elements that are in the state s = 1,2 at time t.
The parameter K is the control parameter that determines
the strength of the interactions between elements of the
network and element a. A single element retains its deci-
sion in the presence of interactions for a time longer or
shorter than sD = 1/2g0 according to the choices made by
its neighbors. This is where the echo hypothesis enters
our understanding of individual behavior. The single
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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element imitates however imperfectly the majority opin-
ion of those with whom it is connected.

If an element is in the state j1i and half of its neighbors
are in the state j2i and half in the state j1i, the single ele-
ment remains in the state j1i as it would in isolation. If the
majority of its neighbors are already in the state j2i the sin-
gle element makes its decision of selecting j2i earlier than
it would have in isolation. In the opposite case when the
majority of its neighbors are in the state j1i the single ele-
ment retains its original decision for a longer time than it
would in isolation. The ERH therefore has a subtle effect
on the dynamics behavior of the individual’s decision mak-
ing. It does not change the individual’s statistical behavior
instead it modifies the time scale for making decisions.

The key point is that the master equation for each ele-
ment is well defined, but it is a stochastic master equation,
which is to say, the individual probabilities are themselves
random functions. In fact the transition coefficients gðaÞij de-
pends on the quantities pðaÞs , which have random values
depending on the stochastic time evolution of the network
elements coupled to the element a. Thus we may define
another frequency

RsðtÞ ¼
NsðtÞ

N
; ð6Þ

where N denotes the total number of elements in the net-
work and Ns(t) the number of those elements in s = ± 1 at
time t. It is evident that the quantity Rs is also an erratic
function of time, even if it is expected to be smoother than
ps. In fact, Rs is a global property, obtained from the obser-
vation of the entire network, while pðaÞs is a property of the
immediate environment of a given element a. The smaller
the cluster, the more erratic the quantity pðaÞs . We also de-
fine the stochastic global variable

nðtÞ � R1ðtÞ � R2ðtÞ ¼
N1ðtÞ � N2ðtÞ

N
; ð7Þ

whose variability is characteristic of the entire network of
echoes, that is, the echoing response of an element to the
echoed opinions of its coupling partners.

2.1. All-to-All DMM

In the situation where the number of nearest neighbors
coupled to the element of interest consists of all the other
individuals in the network we have all-to-all (ATA) cou-
pling; an assumption that is often seen in social theories.
Consider the ATA coupling case and assume that the total
number of elements within the network N becomes infi-
nite. In the N ?1 case the fluctuation frequencies collapse
into probabilities according to the law of large numbers
pðaÞs ¼ Rs ¼ pðaÞs and we can suppress the individual ele-
ment index. In physics this replacement goes by the name
of the mean field approximation in which case the transition
rates in the master equation for the entire network are
written

gij ¼ g0exp½�Kðpi � pjÞ�; i – j ¼ 1;2: ð8Þ

The formal manipulation of the master equation even in
this simplified case is made a little simpler if we introduce
the difference in the probabilities
Please cite this article in press as: West BJ, Turalska M. Network of ech
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P � p1 � p2: ð9Þ

Subtracting Eq. (2) from Eq. (1) after some algebra yields
the highly nonlinear rate equation for the difference
variable

d
dt

P ¼ �ðg12 þ g21ÞPþ ðg21 � g12Þ ð10Þ

where the nonlinearity enters through the transition rate
dependence on the difference variable

g12 ¼ g0exp½�KP�; g21 ¼ g0exp½KP� ð11Þ

in the mean field approximation. By inserting Eq. (11) into
Eq. (10) we obtain

d
dt

P ¼ � @V
@P

ð12Þ

and the network dynamics are determined by the potential
function V(P), which is a symmetric double well potential
with the explicit form

VðPÞ ¼ 2g0

K
P sinh KP� K þ 1

K
cosh KP

� �
: ð13Þ

The cooperative behavior of the infinitely large ATA cou-
pled network described by Eq. (12) is that of an over-
damped particle hopping from one potential minimum to
the other, whose position is P within the potential Eq.
(13) as described by Kramers [20]. For K < 1, half of the
nodes are in the state j1i and half are in the state j2i be-
cause there is only a single broad minimum in the poten-
tial. At the critical value of the control parameter
K = Kc = 1 a bifurcation occurs and the potential develops
two wells separated by a barrier as discussed by Turalska
et al. [35]. The height of the barrier increases with the va-
lue of the control parameter.

Professor Werner stressed the importance of criticality
in understanding the dynamics of the human brain. A
phase transition requires a control parameter, which in
physical phenomena is typically the temperature T control-
ling the density fluctuations in fluids or the magnetic fluc-
tuations in certain solids. At a particular value of the
control parameter, the critical value, the qualitative prop-
erties of the system change, which is to say there is a phase
transition. In the sub-critical region T < Tc the spins in the
Ising model [27] are independent of one another and the
average magnetization is zero. In the super-critical region
T > Tc the spins in the Ising model are strongly coupled
and align with one another to yield a non-zero average
magnetization. In the critical region T � Tc the spins form
spatially separated islands, which according to Stanley
[33] induces a kind of short-range order that is very differ-
ent from the long-range order manifest in the super-critical
domain.

It is interesting that at the critical value of the control
parameter the ATA version of the DMM undergoes a phase
transition. Note that the amplitude of n(t) depends on the
value of the control parameter K. When K = 0, all elements
in the network are independent Poisson processes; thereby
an average taken at any moment of time over all of them
yields zero. Once the value of the coupling becomes non-
zero, K > 0, single elements are less and less independent,
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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resulting in nonzero averages. The quantity Kc is the critical
value of the control parameter K, at which point a phase
transition to a global majority state occurs. In numerical
calculations we use the time average neq = hjn(t)ji as a mea-
sure of this global majority. More precisely, after an initial
106 time steps, the average is taken over the same number
of the consecutive time steps of the model. In Fig. 1 the
thin line indicates the ATA phase transition as measured
by neq. The other phase transitions indicated are for models
discussed in the sequel.

Real network are not ATA coupled since interactions
typically have finite range and elements are spatially sep-
arated. Moreover, real networks have finite numbers of
elements. It is therefore useful to examine how strongly
the mean field solutions are violated when we relax these
constraints. The stability condition can be violated in at
least two different ways. The first way is by reducing the
number of elements N to a finite value. The second way
is by restricting the number of links so the network no
longer has ATA coupling. In real networks both sources of
equilibrium disruption are expected to occur. For the time
being we retain the ATA coupling within the networks and
consider the number of elements N to be finite. In this lat-
ter case we can no longer make the mean field approxima-
tion and the dynamic picture stemming from the above
master equation is radically changed.

If the number of elements is still very large, but finite,
we consider the mean-field approximation to be nearly va-
lid. The difference variable P needs to be replaced by the
global variable n, since the fluctuation frequencies differ
from probabilities as pðaÞs ¼ pðaÞs þ e. Assuming the indepen-
dence of noise term e, one can write the difference variable
as P = p1 � p2 + e, and this leads to the transformation of
Fig. 1. The phase diagram for the global variable neq. The thin solid line
and the dashed line are the theoretical predictions for the fully connected
and the two-dimensional regular network, respectively. In both cases
N =1 and the latter case is the Onsager theoretical prediction [27] for a
two-dimensional regular lattice. The thick solid line corresponds to the
global states observed for the DMM on a two-dimensional regular lattice
(N = 100 � 100 nodes) and g0 = 0.01. Periodic boundary conditions were
applied in the DMM calculations.

Please cite this article in press as: West BJ, Turalska M. Network of ech
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the deterministic equation Eq. (12) into a stochastic differ-
ential equation [3,16,35]:

dnðtÞ
dt
¼ � @VðnÞ

@n
þ eðtÞ ð14Þ

where the additive fluctuations e(t) have amplitudes that
are computationally determined to be on the order of
1=

ffiffiffiffi
N
p

. Here again we see the influence of the imperfect
imitations that echo between individuals in the network.

Note that the double-well potential in the mean field
approximation persists in the present description. The ran-
dom fluctuations induce transitions between the two
states of the potential well. Consequently, for a network
with a finite but large number of elements the phase syn-
chronization of Eq. (12) is not stable and the stochastic dif-
ferential equation represents the dynamics of the network
that must be solved. Furthermore the fluctuations can
drive the particle from one well of the potential to the
other when its amplitude is sufficient to traverse the bar-
rier separating the wells. However, here the fluctuations
arise from the finite number of elements in the network
rather than from non-existent thermal excitations.

Although Eq. (14) is written in the continuous time rep-
resentation, in practice the numerical calculations of DMM
correspond to the adoption of a finite integration time step
Dt = 1. Note that the stochastic rate Eq. (14) replaces the
master equation Eq. (12) in the case of a finite N, and that
Eq. (12) is recovered in the ideal case N =1. Consider the
ATA coupling condition with a finite number of elements
by numerically integrating the master equation for each
element in the network and then calculating the number
of elements in each of the two states. In Fig. 2 the fluctuat-
ing global variable n(t) is depicted as a function of time, un-
der differing conditions. Notice that with increasing N the
fluctuation n (t) become more distinctly dichotomous-like,
with an increasingly sharp transition from the ‘up’ to the
‘down’ state. This pattern corresponds to the entire net-
work keeping a decision for a longer and longer time as
the size of the network increases. The condition of a deci-
sion lasting forever is reached in the ideal case N =1.
The global variable fluctuates between the two minima
of the double-well potential as described by Eq. (14) for
K = 1.05 > Kc and three values of the size of the network
corresponding to an ever increasing influence of the echo
network. The single element follows the fluctuations of
the global variable, switching back and forth from the con-
dition where the state j1i is preferred statistically to that
where the sate j2i is preferred statistically.

Note that if attention were concentrated on a single ele-
ment in a consensus state that individual would still ap-
pear to make transitions according to an exponential
distribution. The only measurable difference in the behav-
ior of the individual from that in the non-interacting state
would be that she tends to be more reluctant to change her
mind. This is a subtle yet profound difference and is a di-
rect result of the imitation mechanism introduced by
means of the ERH. Moreover it is reflected in the difference
observed between the top and bottom panels of Fig. 2 and
may explain why it is so difficult to determine the extent of
the influence of group behavior on individual decisions.
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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Fig. 2. The fluctuation of the mean field-average phase as a function of
time. (top) For a system of N = 500 elements, K = 1.05 and g = 0.01.
(middle) For a system of N = 1500 elements, K = 1.05 and g = 0.01.
(bottom) For a system of N = 2500 elements, K = 1.05 and g = 0.01.
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2.2. Nearest neighbor coupling

Consider a network consisting of N discrete elements
located at the nodes of a two-dimensional square lattice.
Note that this is a featureless square lattice and the ele-
ments are only allowed to directly interact with their near-
est neighbors, unlike the ATA coupling network. Each
element is a stochastic oscillator whose dynamics are de-
scribed by si that can be found in either of two states + 1
or � 1. The dynamics are introduced by choosing the sin-
gle element on site i and updating it in an elementary time
step using the DMM with a transition rate gi:

gi sþ1
i ! s�1

i

� �
¼ g0 exp

K
M
ðMþ1 �M�1Þ

� �
; ð15Þ

gi s�1
i ! sþ1

i

� �
¼ g0 exp

K
M
ðM�1 �Mþ1Þ

� �
: ð16Þ

Here M denotes the total number of nearest neighbors,
which on a square lattice is four, and M+1 and M�1 are
the number of nearest neighbors being in the state + 1
and � 1, respectively. Single elements change states,
thereby making the numbers M+1 and M�1 fluctuate in
time, while, of course, the total number of nearest neigh-
bors is conserved, M+1 + M�1 = M.

All numerical calculation in this section are performed
on a square lattice of either N = 50 � 50 or N = 100 � 100
nodes with periodic boundary conditions. In a single time
step a computer calculation involving the entire lattice is
performed and for every element si the transition rate of
either Eq. (15) or (16) is calculated according to which ele-
ment is given the possibility to change its state. A single
element in isolation is characterized by the control
parameter vanishing K = 0 and fluctuates between the
states with the transition rate g = g0. When the coupling
constant is K > 0, an element in the state + 1(�1)
makes a transition to the state �1(+1) faster or slower
according to whether M�1 > M+1(M+1 > M�1) or M�1 < M+1

(M+1 < M�1), respectively.
Next, we define a global order variable that is com-

pletely equivalent to that used in the ATA network:
Please cite this article in press as: West BJ, Turalska M. Network of ech
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nðtÞ ¼ 1
N

XN

i¼1

si: ð17Þ

Here again the variability of the global variable does not
possess the dichotomous character of single elements. In
Fig. 3 we show examples of the temporal evolution for
the single element si(t). In the upper panel the coupling
parameter the time series for a single element is depicted.
This signal is not too different from the time series when
K = 0, but the latter case results in all the elements being
independent Poisson processes. In the lower panel the glo-
bal order variable n(t) is depicted for the DMM on a 50 � 50
two-dimensional lattice with the coupling parameter
K = 1.70. This value of the control parameter is greater than
the ATA critical value, but smaller than the critical value on
the lattice.

The solution of the lattice master equation under the
assumption of nearest neighbor coupling on an infinite lat-
tice, M = 4, N =1 and g0 ? 0, can be found in [23] and
yields the condition for the global variable to be

neqðKÞ ¼ ð1� ½sinhðK=2Þ��4Þ
1=8
: ð18Þ

For this case the critical value of the control parameter is

Kc ¼ 2ln 1þ
ffiffiffi
2
p� �

¼ 1:7627: ð19Þ

Fig. 1 depicts the phase transition under the condition of
nearest-neighbor interaction on the two-dimensional lat-
tice and shows that, as expected, the numerical evaluation
of neq (K) in the DMM is very close to but less than the the-
oretical prediction of Onsager [27], thereby confirming that
the DMM approaches the Ising model in the limiting case
g0 ? 0.

We have interpreted Fig. 1 to mean that when the con-
trol parameter K is below its critical value, to the far left in
the figure, the elements are statistically independent of
one another. When the control parameter is greater than
the critical value, to the far right in the figure, the network
elements act in concert and cooperative behavior is mani-
fest. So what does this phase transition at the critical value
of the control parameter have to do with inverse power
laws and topology? The topology of a network describes
the connectivity of the elements and had been considered
by many investigators to determine a network’s dynamics.
Consequently, it was also believed that criticality was re-
lated to a network’s topology. However we have learned
that inverse power-law connectivity and criticality are dis-
tinct, in part because some scale-free networks do not un-
dergo phase transitions and some critical networks are not
scale-free [17,21]. We understand that the transition from
essentially independent to cooperative behavior among
the elements at the critical point does not occur at all spa-
tial locations of the lattice DMM at the same time. Like the
density fluctuations in fluids and the magnetic fluctuations
in solids, at the critical point there are islands of correlated
fluctuations separated by large regions of uncorrelated var-
iability in the social model. So let us examine this dynamic
behavior a little more carefully and determine if this
behavior propagates through a social network like a WAVE
at a football game or breaks into different parts of the
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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Fig. 3. Temporal evolution of: (Top) a single element si(t) and (bottom) of the global order parameter n(t); for the DMM realized on a square lattice of
N = 50 � 50 nodes, with g0 = 0.01 and K = 1.70. To illustrate the concept of crucial events we mark the time intervals s between two consecutive events,
according to their definitions assumed in [36]. Notice the differences in time scales.

Fig. 4. (Top) The two-dimensional 50 � 50 lattice over which the DMM elements are distributed. The dynamics is calculated at the three values of the
control parameter indicated. White and black indicate the states + 1 and � 1 respectively. (Bottom) Corresponding correlation C(r) as a function of the
Euclidean distance r between nodes on the lattice.
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network simultaneously, such as the sporadic applause at a
child’s debut concert.

We display the snapshots of the distribution of opinions
across the lattice for three values of the control parameter
in Fig. 4. The results are similar to the lattice-gas model
results for a fluid system spanning the region of phase
Please cite this article in press as: West BJ, Turalska M. Network of ech
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transition given in Fig. 1.5 by Stanley [33]. In the left-most
panel of the triptych in Fig. 4 the distribution of elements
between the up and down states over the lattice is de-
picted at a point in time for the control parameter
K = 1.0. Note the control parameter has a value below the
critical value on the two-dimensional lattice. The spatially
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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uniform random distribution between the two states is
evident. In time this configuration would appear as a flick-
ering background while retaining a lack of coherence. If the
signal represented audible sound the room would be filled
with static and this static is the echoing of opinions across
the lattice.

In the middle panel of the triptych in Fig. 4 is depicted
the phase transition region of the two-dimensional lattice
with K = 1.70. The spatial inhomogeneity of opinion on
the lattice is obvious, with like-minded individuals form-
ing clusters that last for a short time and then dissolve.
These clusters could be the formation of neighborhoods
or political wards that do not break up quickly but persist
over time perhaps appearing to crawl over the lattice with
a degree of autonomy. Bear in mind that this collective
behavior is a consequence of the echo hypothesis and
was not part of the dynamic assumptions included in the
formation of the lattice DMM.

Finally, in the right-most panel of Fig. 4 the DMM net-
work is shown to have undergone a phase transition with
the control parameter above the critical value at K = 2.0.
The vast majority of individual opinions are in the white
state, with a few in the black state being randomly distrib-
uted over the lattice. These random points of controversy
blink on and off over time, changing their location on the
lattice, but for a finite size lattice the overall agreement
is never 100%. There are always the few individuals that
make life interesting because their opinions are
unpredictable.

We use the correlation function C(r) to quantify the
arrangement of opinions across the lattice [33]. For values
of the control parameter below and above the critical
point, the correlation function C(r) decreases rapidly as a
function of the distance between nodes. This short-range
correlation signifies the discussed lack of cooperation be-
tween elements of the lattice. However, close to the critical
value of the control parameter, K = 1.70, we observe the
correlation length to be significantly more extended than
in the two other cases. This property, characteristic of sys-
tems at a phase transition, arises from collective behavior
and tight coupling between distant elements.

The equivalence between a physical phase transition
and that of the DMM for a vanishing transition rate is
merely formal [36], because the DMM does not have a
Hamiltonian origin and does not require an interaction
with a thermal bath at temperature T to determine its
dynamics. This lack of a temperature in the DMM explains
why the equivalence with the Ising model requires that g0

vanish. The isolated transition rate must vanish in order to
freeze the dynamics of the single elements and nullify the
ERH.
Fig. 5. The degree distribution for the Dynamically Generated Complex
Topology created by examining the dynamics of elements placed on a
two-dimensional regular lattice with the parameter values g0 = 0.01 and K
characterizing three regimes of the DMM behavior. Basic properties of
networks characterized by those degree distributions are summarized in
Table 1.
3. Flavors of complexity

The flavors of complexity addressed in this section are
associated with the connectivity of network elements as
well as their variability in time. To realize temporal as well
as topological complexity we rely on numerical results and
focus our attention on the DMM dynamics with K = 1.70,
which, although slightly smaller than the Onsager
Please cite this article in press as: West BJ, Turalska M. Network of ech
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theoretical prediction for the critical control parameter, is
compatible with the emergence of cooperative behavior
due to a phase transition.
3.1. Topological complexity

The dynamically-induced network topology is derived
by applying the so-called ‘correlation network’ approach,
where a topology is generated by linking only those ele-
ments of a dynamic system whose cross-correlation levels
fall above a given threshold [13]. Thus, we record the time
evolution of all nodes interacting under DMM dynamics on
two-dimensional lattice and we evaluate the linear corre-
lation coefficient between all pairs of nodes. If the cross-
correlation coefficient between two nodes is larger than
the arbitrarily chosen threshold value H, we create a link
between them; if not we leave them uncoupled.

This newly created, dynamically-induced topology,
called a Dynamically Generated Complex Topology (DGCT),
clearly depends on the value of coupling used in the
DMM dynamics and the threshold H applied to the matrix
of obtained correlation coefficients. In the subcritical
phase, the randomness dominates over the cooperation
and results in little correlation between units. Similarly
the organized phase is characterized by small values of
cross-correlation, which arise from strong coupling be-
tween nodes, reducing the variability of each element.
However, near the critical point, the coupling between
the units is just strong enough to balance the stochasticity.
This condition results in much higher values of correlation
between nodes that in two previous cases.

The choice of threshold H determines the key proper-
ties of DGCT topology. In all three dynamic regimes adop-
tion of a low threshold leads to the inclusion of most of the
correlation pairs and results in a highly connected net-
work, where almost all nodes are connected to each other.
With increasing H less and less pairs of nodes are
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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correlated highly enough to pass the correlation test and
be connected in the new topology. Since for K < KC and
K > KC the values of correlations are much smaller than
those obtained for K � KC, the DGCT networks created with
the same H and increasing K result in different topologies,
as shown in Fig. 5. In particular, we find that the correla-
tion network prescription generates a scale-free network
with an inverse power index m � 1 at the value of coupling
close to critical one.

The average statistical properties of presented topolo-
gies are listed in Table 1. These network’s basic properties
include the average degree hki, average clustering coeffi-
cient C, the average path length L and network diameter
D [26]. The threshold H is adjusted to a value which results
in similar hki for three considered regimes of K. Similarly to
results reported in [13], the topology constructed from
critical DMM dynamics, at K � KC, possesses the features
of a small world network. It is interesting to observe that
the small world property, characterized by high value of
the clustering coefficient, is accompanied by an increase
in the value of D, suggesting presence of tightly intracon-
nected subunits, which form the correlation network.

Fig. 6 provides further means of characterizing newly
constructed topologies. The plot of average degree hki as
a function of correlation threshold H illustrates mentioned
above fact that with increasing threshold new topology
Table 1
Average statistical properties of the DGCT networks.

K H N hki C L D

1.0 0.45 10,000 50 0.2373 3.3184 8
1.7 0.55 10,000 50 0.5503 4.6963 18
2.0 0.47 10,000 50 0.3532 3.9432 11

Fig. 6. Average statistical properties of correlation networks. Top: Average degre
Bottom right: The average nearest-neighbor degree, hknni, and bottom left: clust
DMM at Kc. Black dots represent individual nodes and gray ones correspond to

Please cite this article in press as: West BJ, Turalska M. Network of ech
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contains fewer connections what results in a smaller hki.
Additionally, we observe that the network created at K � Kc

is assortative, as highly connected nodes tend to be con-
nected with equally highly connected neighbors. When
comparing with results reported in [13], we note signifi-
cant similarities in reported properties of topologies based
on dynamic correlations. Existing differences we attribute
to differences in typical time scale of the DMM and the Is-
ing model and smaller size of the lattice used in DMM
calculations.

The DGCT approach is consistent with the procedure
widely adopted in neuroscience to define functional
connections between different brain regions [13,32].
Numerous studies have shown the scale-free character of
networks created by correlated brain activity as measured
through electroencephalography [24], magnetoencepha-
lography [31] or magnetic resonance imagining [11]. Frai-
man et al. [13] used the Ising model to explain the origin of
the scale-free neuronal network, and found the remarkable
result that the brain dynamics operate at the correspond-
ing critical state. The present research [35,36] was, in part,
inspired by these results [13], and yields the additional
discovery that the emergence of consensus produces
long-range connections as well as a scale-free topology as
a result of the ERH.

Consider the earlier results in the light of the recent
experimental findings on brain dynamics [4]. The analysis
of Bonifazi et al. [4] established that, in a manner similar to
other biological networks, neural networks evolve by grad-
ual change, incrementally increasing their complexity, and
rather than growing along the lines of preferential attach-
ment, neurons tend to evolve in a parallel and collective
fashion. The function of the neuronal network is eventually
determined by the coordinated activity of many elements,
e, hki, as a function of threshold H for three values of coupling constant K.
ering, C, as a function of the degree k for the network extracted from the
averages.
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Fig. 7. Consensus survival probability. Black and gray solid lines refer to
the DMM implemented on a two-dimensional regular lattice with control
paymaster K = 1.70 and to dynamics of the ad hoc network evaluated for
K = 1.10, respectively. In both cases g = 0.01. The dashed lines are visual
guides corresponding to the scaling exponents l = 1.55 and l = 1.33,
respectively.
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with each element contributing only to local, short-range
interactions. However, despite this restriction, correlation
is observed between sites that are not adjacent to each
other, a surprising property suggesting the existence of a
previously incomprehensible long-distance communica-
tion [8,9]. The DMM dynamical approach along with the
ERH affords the explanation that the local but cooperative
interactions embed the elements in a phase-transition con-
dition that is compatible with long-range interdependence.

3.2. Temporal distribution

There is a certain amount of arbitrariness in the defini-
tion of temporal complexity. But even so we note that the
time dynamics of complex networks is characterized by
the occurrence of significant events, which may be finan-
cial crashes [30], brain quakes [7,13], or the abrupt changes
in direction of a flock of birds in flight [5,6]. The time inter-
val between two consecutive critical events is given by a
distribution density w(t), which, drastically departs from
the conventional Poisson statistics, and has the inverse-
power-law form

wðsÞ / s�l; ð20Þ

with l < 2. The occurrence of an event does not have any
memory of the occurrence of earlier events. This property
is usually denoted as renewal, but it must not be confused
with the ordinary Poisson and Markov condition: The sig-
nal generated by these critical events is characterized by
long-range correlation in time, and, most importantly, it
is essentially non-stationary, thereby breaking the ergodic-
ity that is an assumed fundamental property of most mod-
els used in statistical physics [29].

The patterns seen in Fig. 4, particularly that at critical-
ity, correspond to the emergence of correlation links yield-
ing a scale-free network statistically indistinguishable
from that experimentally observed within the brain, using
functional magnetic resonance imaging (fMRI). A number
of studies focusing on these patterns emphasize the spatial
and network complexity emerging from the cooperative
interaction of the network’s elements, but overlook the
temporal complexity of these networks. We [36] filled this
gap by proving that temporal complexity emerges at
criticality.

It was established [36] that the apparently intuitive
notion that topological complexity with a scale-free distri-
bution in the number of links k, P(k) / k�m and time com-
plexity with a scale-free distribution in the consensus
times s, are closely related, is not correct. Fig. 7 illustrates
the consensus survival probability W(t) corresponding to
the critical value of the control parameter Kc = 1.70, gener-
ating the scale-free topology of Fig. 5. Although emerging
from a simple spatial network, that is, from a lattice with
no structural complexity, the survival probability is scale-
free with a = l � 1 � 0.55 over more than four time
decades.

On the other hand, the survival probability of the con-
sensus state emerging from the ad hoc network, with
Kc = 1, and having a scale-free degree distribution is limited
to the time region 1/g0. In addition for N ?1 the survival
probability in this latter case is expected [35] to be
Please cite this article in press as: West BJ, Turalska M. Network of ech
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dominated by the exponential shoulder depicted in Fig. 7.
The exponential shoulder in the survival probability is a
signature of the equilibrium regime of the network dynam-
ics [35] even when the degree distribution retains its scale-
free nature.
4. The mirrored brain

The avalanches recently discovered in neural networks
[2] are thought to be manifestations of self-organized crit-
icality [7,28]. The criticality phenomenon has been identi-
fied as a plausible model for neural dynamics and is
expected to account for the extraordinary long-range inter-
actions between neurons. The cooperation induced at crit-
icality does not imply neural network cognition but
Werner [38] advocated that cognition emerges at critical-
ity and its possible relation to extended criticality is taken
up by Grigolini et al. [16]. The innovative modeling of the
criticality of brain dynamics explaining neuronal ava-
lanches lacked a neurophysiological mechanism even
though the mathematical/physical models apparently cap-
tured many empirical properties of brain activity. Conse-
quently the closeness of the limiting form of the DMM to
the Ising model’s phase transition suggests a possible neu-
ral mechanism for neuronal avalanches, that being the imi-
tative mechanism contained in the ERH.

We have reviewed how the DMM with imitative inter-
actions among elements manifest critical behavior, includ-
ing the transition from local independent network
elements to global collective interactions in a critical state.
In the Introduction the Theory of Imitation was used to
motivate the ERH in social networks even though the
understanding of the imitation mechanism in the social
sciences could not account for collective behavior. The an-
swer to the social scientist’s quandary lay in the emergence
of criticality due to the nonlinear interaction contained in
the implementation of the ERH. However the underlying
oes. Chaos, Solitons & Fractals (2013), http://dx.doi.org/10.1016/
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mechanism in neural networks must be quite different
from that used in social science and another argument
for the adoption of ERH in brain dynamics needs to be
implemented. To formulate this argument we turn to the
recent experimental discovery of mirror neurons.

Historically it had been assumed that neurons in certain
areas of the brain preform a sensing function and others
perform an action function. As mentioned in the Introduc-
tion the nascent discipline of neuroscience was developing
at the same time that the theory of imitation was being
criticized and investigators were associating various phys-
ical locations in the human brain with psychological and
behavior function. In 1908 Liepmann [22] determined that
the ability to carry out specific actions was lost in patients
with lesions in certain areas of the brain. In the past decade
the advances in brain imagining due to fMRI has revealed
that during imitation tasks a network of regions in the infe-
rior frontal cortex and inferior parietal cortex of the brain
are activated [18]. These experiments have called into
question the view that neurons perform a single function.
Mirror neurons discharge both when a monkey executes
an action and when the monkey observes another pre-
forming the same action [25]. Mirror neurons are therefore
adaptive imitators that fire when the monkey acts on an
object and when the monkey observes another individual
making a similar goal-directed action. These neurons show
congruence between observed and executed actions.

In the past decade trimodal mirror neurons have been
discovered in the monkey ventral premotor cortex; in
addition to the motor both visual and auditory function
have been observed [19]. In this way it is assumed that
the sensing function directly maps the observed activity
onto the motor plans necessary to carry out the action,
e.g., in the playing of a musical instrument. D’Ausilio [10]
emphasizes that ‘‘mirror-like mechanisms might be the ba-
sis of human music perception-production abilities’’.

The statistical analysis of the real brain activity led
some investigators [14] to conclude that the brain dynam-
ics are dominated by renewal quakes (neuronal ava-
lanches) and that the probability density of the time
interval between two consecutive quakes has an inverse
power law index l 6 2. Theoretical arguments [15] estab-
lish that this condition is important for the cognitive brain
function. On the basis of the plausible conjecture [8] that
there is a close connection between the cooperative behav-
ior of many elements and brain cognition, implemented
here in the ERH, we believe that the emergence of the
condition l < 2 from the interaction of the elements of
the regular two-dimensional lattice, is an important aspect
of the dynamic approach to the scale-free condition.
5. Discussion and conclusions

We emphasized that to study the importance of a spe-
cific property it is necessary to strip a model down to its
simplest form and determine if the emergent property of
interest remains. Such simplicity assists us in making the
minimal number of assumptions necessary to explain ob-
served behavior. The results presented herein suggest a
new mechanism to explain the cooperative behavior seen
Please cite this article in press as: West BJ, Turalska M. Network of ech
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in flocks, bevies, coveys, gangs and plagues. The new mech-
anism is embodied in the ERH and entails the generic prop-
erties of the DMM. By now it is clear that DMM consists of
a network of simple elements that have a decision to make,
vote either yes or no, move either right or left, turn either
on or off. Left alone each element randomly switches be-
tween these two states without bias. However when these
individuals are allowed to interact with other members of
the network in a way that depends on how many of their
colleagues are in one state or the other embodies the
ERH and subsequently the overall behavior of the network
is dramatically changed.

The echo response mechanism produces a social phase
transitions that occurs in both ATA coupling and in nearest
neighbor coupling on a lattice. The lattice dynamics are
similar to physical critical behavior in a limiting regime,
but in general it has a number of significant differences.
One particularly significant difference is the cause of the
statistical fluctuations, which in physical phenomena is
produced by a thermal bath, but in the DMM is the result
of the law of large numbers (the finite size of the network).

In neural networks the ERH captures the sensitivity of a
given neuron to the dynamics of its neighbors. The phe-
nomenon of criticality imposes on that neuron a sensitivity
to the dynamics of the network as a whole. Consequently
although a neuron is ostensibly only interacting with its
nearest neighbors it responds to the collective activity of
the network. In this way an individual comes to a decision
and some time later, without any additional information,
comes to the totally opposite decision. Without a mecha-
nism to lock the decision in place once it has been made
a person will continue to erratically vacillate between
alternatives. Does this sound like anyone you know?
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