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Fractional Modeling and Analysis of Coupled MR
Damping System

Bingsan Chen, Chunyu Li, Benjamin Wilson, and Yijian Huang

Abstract—The coupled magnetorheological (MR) damping sys-
tem addressed in this paper contains rubber spring and magne-
torheological damper. The device inherits the damping merits
of both the rubber spring and the magnetorheological damper.
Here a fractional-order constitutive equation is introduced to
study the viscoelasticity of the combined damper. An introduction
to the definitions of fractional calculus, and the transfer func-
tion representation of a fractional-order system are given. The
fractional-order system model of a magnetorheological vibration
platform is set up using fractional calculus, and the function of
displacement is presented. It is indicated that the fractional-order
constitutive equation and the transfer function are feasible and
effective means for investigating of magnetorheological vibration
device.

Index Terms—Fractional calculus, magnetorheological (MR)
fluid, fractional-order constitutive equation, fractional-order sys-
tem, system modeling.

I. INTRODUCTION

MAGNETORHEOLOGICAL (MR) fluids are particulate
suspensions whose rheological properties are dramat-

ically altered by magnetic fields. In shear flow, an applied
magnetic field can increase the apparent viscosity by several
orders of magnitude. This phenomenon is currently being
exploited in commercial applications.

MR dampers are a new research development in the field
of semi-active control. The mechanical model of an MR fluid
is a key way to reach the ideal control effect of the device. In
fact, the mechanical properties of MR fluids and their dampers
are also influenced by many factors including the vibration
displacement, the acceleration, the vibration frequency among
other factors. The dynamics of an MR damper can be de-
scribed through both theoretical and empirical relationships.
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Stanway[1−2] established a rational mechanics model based
on MR fluids viscosity. The Stanway model contains Coulomb
friction and viscous damping, but the elastic characteristic of
the MR fluids is not included; Zhou and Qu[3] modified the
Bingham model based on a constitutive relation for MR fluids,
the precise calculation of mechanical characteristics is given,
but the model is inconvenient due to its many parameters;
Gamota and Filisko[4] also proposed a similar viscoelastic-
plastic mechanical model.

In this paper, the viscoelastic model of the MR damper is
established by fractional calculus. As the physical meaning
of fractional calculus is not clear, not achieving its genetic
characteristics and infinite memory function, so its practical
engineering application is latter than the integer order calculus,
although they were present almost at the same time. Fractional
calculus has been introduced into rheology by Slonimsky[5]

and Friedrich[6], et al., to study the nonlinear constitutive
relation. Considerable progress has been made in using frac-
tional calculus to study nonlinear viscoelasticity. Bagley and
Torvik[7] used fractional calculus to study the three- dimen-
sional constitutive relation as well as find limits of the model
parameters caused by the thermodynamic effects. Paggi et
al.[8] modeled the thermoviscoelastic rheological behavior of
ethylene vinyl acetate (EVA) to assess the deformation and the
stress state of photovoltaic (PV) modules and their durability;
Jóźwiak et al.[9] studied the dynamic behavior of biopolymer
materials with fractional Maxwell and Kelvin-Voigt rheolog-
ical models. Fractional calculus has been a breakthrough in
the theory and application of the constitutive equation, and
emerged as a new principle and method for the constitutive
equation of viscoelastic materials. Therefore, the constitutive
equation applying fractional calculus theory of viscoelastic
materials is always one key research field.

In this paper, the fractional calculus is introduced to ex-
plore the viscoelastic properties of the composite MR-rubber
damper, and the mechanical properties of the composite are
also studied. The dynamic characteristics of the composite
damper are verified by experiments, which provide the practi-
cal basis for verification of the theoretical results on MR shock
absorber.

II. MODEL ESTABLISHMENT

A. Fractional Order Model

The fractional order derivative rheological model is based
on the spring, dashpot and friction element.
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As shown in Fig. 1 (a), for a = 0, the model is a typical
Hook theorem, given by (1).

σ(t) = τ0ED0
t ε(t), (1)

where σ(t) represents applied stress, E is the elastic modulus,
D0

t ε(t) is the 0 order time derivative with respect to t of the
strain ε(t).

Fig. 1. Elastic coefficient and viscosity: (a) Hookinan spring, a = 0;
(b) Newtonian dashpot, a = 1; (c) Abel sticky pot, 0 < a < 1.

When a = 1 shown as Fig. 1 (b), the behavior obeys the laws
of Newtonian fluid, and the constitutive equation is given by
(2).

σ(t) = τ1ηD1
t ε(t), (2)

where τ1 = η/E is the relaxation time for the dashpot, η is
dynamic viscosity, and E represents the elasticity modulus of
the dashpot, and D1

t ε(t) is the first time derivative of strain
with respect to time t.

In practical application of some materials or devices, the
fluid behaves viscoelastically and the mechanical properties
exhibit both spring and dashpot characteristics. We can use
Fig. 1 (c) to describe the Abel sticky pot.

σ(t) = ταEDα
t ε(t), (3)

where Dα
t ε(t) is the fractional derivative of α order of the

strain with respect to time with evidently 0 ≤ α ≤ 1.

B. Definition of Fractional Derivative

The most common definition of Riemann-Liouville (R-L)
fractional integral is given by[10]

a0D
q
t f(t) =

1
Γ(n− q)

dn

dxn

∫ t

a0

(t− ξ)(n−q)−1f(ξ)dξ,

n− 1 ≤ q < n, (4)

where Γ(·) is gamma function, q is a non-integer order, a0 is
the iterative initial value. In addition, the Caputo definition
is often adopted in engineering applications, given by the
following equation:

C
a Dq

t f(t) =
1

Γ(n− q)

∫ t

a

(t− ξ)(n−q)−1f (n)(ξ)dξ,

n− 1 < q ≤ n, (5)

In order to distinguish Caputo definition from R-L fractional
calculus definition, we decorate it with the additional apex C.
The fractional calculus definitions given by R-L and Caputo
are all defined in time domain as a function f(t). The Laplace
transformation of the R-L definitions is related to the initial
value of the fractional differential and fractional calculus.
Although the solutions can be found, a reasonable physical
interpretation to these solutions is difficult to understand[6].

The advantage of the Caputo fractional calculus definition is
that the physical meaning of the initial value is the same as
integer order calculus.

So for an arbitrary real number p, the definition of fractional
calculus is given by

Dp
t f(t) =

dn

dtn
(Dp−n

t f(t)), 0 < n− p < 1, (6)

Equation (6) can also be simplified to

Dq
t f(t) =

dq

dtq
. (7)

C. Fractional Order Model of MR Damper

In Fig. 2, the shock absorber is composed of an MR damper
and a rubber damper, which possesses the advantages of
the rubber and the MR damper. The damping force can be
adjusted rapidly with little control energy requirement. In
view of the structural characteristics of the coupled shock
absorber, a typical standard linear solid model is presented,
also called the Zener model[10], as shown in Fig. 2 (b). The
fractional order Zener model can be obtained by replacing
the traditional Newton dashpot with the Abel dashpot. The
constitutive relation can be written as[10]:

σ + ταDασ(t) = E2τ
αDαε(t) + E1ε(t), 0 ≤ α < 1, (8)

where E1 is the relaxed modulus, E2 is the unrelaxed modulus
shown in Fig. 2. When a sinusoidal pressure is applied, the
storage modulus (E′) and loss modulus (E′′) can be got from
(8)

E′ =
E2(ωτ)2α + (ωτ)α(E1 + E2) cos

(
α

π

2

)
+ E1

[
1 + (ωτ)α cos

(
α

π

2

)]2

+
[
(ωτ)α sin

(
α

π

2

)]2 , (9)

E′′ =
(E2 − E1)(ωτ)α sin

(
α

π

2

)

[
1 + (ωτ)α cos

(
α

π

2

)]2

+
[
(ωτ)α sin

(
α

π

2

)]2 , (10)

where in both (9) and (10), ω is angular frequency (rad/s), ω
= 2πf , and f is frequency (Hz).

Fig. 2. The principle of the damper and the simplified model: (a)
The schematic diagram of the shock absorber; (b) Simplified model;
(c) The shock absorber.
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Substituting the structure parameters obtained from the
coupled shock absorber into the (9) and (10), the storage
modulus (E′) and loss modulus (E′′) can be calculated, shown
in Figs. 3 and 4. The storage modulus E′ increases as a
function of the system frequency, while the loss modulus E′′

is nonlinear. Using verified parameters and changing the order
of the Abel dashpot from 0.2 to 1, E′ and E′′ exhibit different
characteristics. When the frequency is less than 10 Hz, E′

decreases with the increase of the order α. When the frequency
is larger than 10 Hz, the law is opposite, showing that the
smaller α produces larger elastic properties of the shock
absorber. When 0 < α < 1, the E′′ increases with the increase
of the order α, showing an increase in the viscous behavior.
When α = 1, the E′′ has a fast drop when the frequency
is larger than 10 Hz, when the frequency increases beyond a
certain value, the loss modulus is smaller than a small α, as
the Fig. 4 showing, the loss modulus in α = 1 is smaller than
α = 0.8 when the frequency is larger than 32 Hz.

Fig. 3. The storage modulus of Zener model E′.

Fig. 4. The loss modulus of Zener model E′′.

When the applied magnetic field is manipulated accord-
ing to the damping part of the coupled MR damper, the
viscoelastic properties of the entire shock absorber can be
changed dramatically. The magnetic field can be manipulated
by changing the current, I , of the system. In Fig. 5, the

storage modulus is plotted as a function of frequency for
two different values of α. In Fig. 5 (a), as I is increased, the
storage modulus asymptote increases. Also as I is increased,
the storage modulus approaches the asymptote more rapidly. In
Fig. 5 (b) the asymptotic value of each current is larger than
the corresponding current in Fig. 5 (a). Similar to Fig. 6 (a),
the storage modulus gradually approaches the asymptote as
frequency is increased. As I is increased, the storage modulus
approaches the asymptote much more rapidly.

Fig. 5. The storage modulus E′ of the Zener model with different
currents.

In Fig. 6, the loss modulus is plotted as a function of
frequency. In Fig. 6 (a), for I = 0, the loss modulus reaches
a maximum for f = 8. As frequency is increased, the loss
modulus gradually decreases. For I > 0, the modulus rapidly
increases and reaches a maximum value for f = 4. The
maximums for all values of I are all very similar in magnitude.
However, as frequency is increased, larger currents possess a
smaller loss modulus. In Fig. 6 (b), for I = 0, the maximum
in loss modulus occurs at f = 8. The loss modulus then
gradually decreases. For I > 0, the maximum occurs for f
= 4. Furthermore, the decrease in loss modulus is much more
rapid than what we observed in Fig. 6 (a) for α = 0.6. In
addition, the maximum for all values of I is larger than the
maximums observed in Fig. 6 (a). The viscous characteristics
of the coupled MR damper are reflected in the low working
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frequency. At large frequency the viscous performance of the
damper is decreased, which is directly related to the working
magnetic field.

Fig. 6. The loss modulus E′′ of the Zener model with different
currents.

III. EXPERIMENTAL PLATFORM

From the above analysis, it can be seen that the fractional
order model can accurately describe the viscoelasticity of the
shock absorber. In order to further the study and analyze
the dynamic performance of the damper, equivalent viscous
damping is introduced[11]. The equivalent viscous damping is
used to replace the complex damping machine.

A. Experiment Platform and Model Analysis

From (8), the resistance, f(t), is provided, and the direction
is opposite to the speed of the mass, m. The force applied to
the system is F sinωt, as shown in Fig. 7 (a), the two-order
mode for a single degree of freedom dynamic system is defined
as:

mẍ(t) + cẋ(t) + kx(t) = F sinωt, (11)

where k is the stiffness of the damper, c is the damping coef-
ficient. Here, some characteristic parameters of the vibration
system are introduced: natural frequency of the system ωn

=
√

k/m, critical damping coefficient cc = 2
√

km, and the
damping factor µ = c/cc. So (11) can also be written as

ẍ(t) + 2µω2
nẋ(t) + ω2

nx(t) =
F sinωt

m
, (12)

and the two order vibration system in fractional order form
can be given as:

D2x(t) + 2µωnDβx(t) + ω2
nx(t) = P (t), 0 < β ≤ 1. (13)

Fig. 7. The simplified model and the real experimental platform:
(a) The simplified model of the experimental platform; (b) The real
experimental platform.

In order to simplify (13), here A1 = µωn, A2 = w2
n, so

(13) can be written as follows:

D2x(t) + A1D
βx(t) + A2x(t) = F (t). (14)

Laplace transform was applied on the fractional differential
(14) to get:

s2X(s) + A1s
βX(s) + A2X(s) = F (s). (15)

The Caputo fractional derivative operator can also be used
with initial values x(0+) = c0, ẋ(0+) = c1, this is called the
composite fractional vibration equation. The transfer function
for the fractional order system can be obtained by using the
Laplace transform[12−13]:

G(s) =
1

s2 + µβωβ
nsβ + ω2

n

, 0 < β < 2. (16)

For the differential equation (11), the Grünwald-Letnikov
(G-L) definition is used to solve the differential equation. The
Grünwald-Letnikov method is the direct numerical method for
solving fractional calculus.

The G-L definition of fractional calculus is as follows:

aDβi

t x(t) =
1

hβi

t−a
h∑

j=0

w
(βi)
j xt−jh

=
1

hβi


xt +

t−a
h∑

j=1

w
(βi)
j xt−jh


 . (17)

In (17), a is the initial value for the numerical calculation, and
to meet 0 < a < 1, h is the calculation step size, w

(βi)
j is the

coefficient of a polynomial (1 + z)βj , which can be derived
from the following recursive formula[14]:

wβi

0 = 1, w
(βi)
j =

(
1− βi + 1

j

)
w

(βi)
j−1, j = 1, 2, . . . . (18)
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Equation (18) is substituted into (17), the numerical solution
of (17) can be directly derived from differential equation:

xt =
1

n∑

i=0

ai

hβi


P (t)−

n∑

i=0

ai

hβi

t−a
h∑

j=1

w
(βi)
j xt−jh


 , (19)

where xt is the sampled displacement data. P (t) is the
controllable input external force, and ai denotes the iterative
value during the process of calculation.

The numerical solution and the analytical solution for the
trinomial model (i.e., α2 = 2, α1 = α, α0 = 0) excited
by unit step function are shown in Fig. 8. The solutions are
calculated based on (15) and by the method of Adomian
decomposition, respectively. In Fig. 8, the displacement is
plotted as a function of time. From Fig. 8, both the numerical
and analytical solutions exhibit similar displacement for all
values of time considered. Therefore, the numerical solution
of G-L can be applied to engineering analysis. In this paper,
the fractional order model and the integer order model are
analyzed using the numerical solution.

Fig. 8. Adomian decomposition method solution vs G-L definition
numerical solution.

B. Measurement and Control Device

The measurement and control system of MR damper is
shown in Fig. 7. In the MR damper, the sensor collects the
signals of vibration, displacement and acceleration. LabVIEW
is used to process, analyze, and display the collected data.
Then, based on the specific vibration control requirements and
other related parameters (system structure, magnetorheological
material characteristics, etc.), the required control current
is calculated using the GBIP mode in LabVIEW. Through
LabVIEW, the vibrational damping force can be controlled.
The changes to the vibrational parameters of the experimental
platform can be observed, and the output current can be
adjusted to achieve a more desirable vibrational damping
effect. The response of the shock absorber is of the order of
several tens of milliseconds. A high signal sampling rate is
required in order to meet the required vibrational reduction.

The system consists of temperature, acceleration, and dis-
placement sensors, as well as a data acquisition card of virtual

instrument system, data acquisition terminal, software system
using LabVIEW7.0 version, programmable current source, etc.

IV. EXPERIMENT ANALYSIS

The dynamic characteristics in the MR fluids are considered
with changing mass percent of carbonyl iron. In Figs. 9 and
10, the mass percentages of carbonyl considered are 74 % and
78 %. The eccentricity is large for vibration frequencies of
10 Hz and 11 Hz. The dynamic parameters of the system model
are described in Tables I and II.

TABLE I
f = 10 Hz, THE PARAMETERS A1, A2, β, D(e) OF THE

MODEL IN DIFFERENT WORKING FLUIDS

MRF (%) I (A) A1 (s−2) A2 (s−1) β
∑

D(e)

74 1
28.625 28.723 0.6800 35.624

20.122 22.980 1 189.356

78 1
42.389 42.436 0.6890 36.234

38.452 39.015 1 195.236

74 3
58.963 58.967 0.8400 32.149

51.273 51.519 1 128.265

78 3
64.398 64.386 0.8410 34.572

59.581 59.815 1 168.426

TABLE II
f = 11 Hz, THE PARAMETERS A1, A2, β, D(e) OF THE

MODEL UNDER DIFFERENT WORKING FLUIDS

MRF (%) I (A) A1 (s−2) A2 (s−1) β
∑

D(e)

74 1
30.058 29.264 0.6800 38.605

23.612 24.532 1 249.437

78 1
62.424 61.426 0.6950 40.096

100.000 100.000 1 258.812

74 3
63.912 62.117 0.8400 35.012

100.000 100.000 1 244.707

78 3
69.046 66.084 0.8430 37.155

100.000 100.000 1 234.314

1) The order β of fractional order model is related to the
vibration damping performance of MR fluids. With the same
control current and the nonmagnetic saturation situation, the
damping capacity and the model order β increase with the
increase of the mass fraction of the carbonyl iron powder. As
shown in Fig. 9, at f = 10 Hz, I = 1 A, the fractional order
β increases from 0.68 to 0.689 as mass fraction M increased
from 74 % to 78 % accordingly. Similar situation can be seen
from Fig. 10, at f = 11 Hz, I = 1 A, the fractional order
β increases from 0.68 to 0.695 as mass fraction M adjusted
from 74 % to 78 %. From the results we can find that the order
number is changed with the different working fluids.

2) The viscoelastic characteristics of the system with higher
iron content is stronger: such as, f = 10 Hz, I = 1 A, when
M = 74 %, 78 % respectively, the viscosity coefficients of
A1 are 28.625, 42.389, which shows a significant increase;
viscoelastic ratio ξ is respectively 0.9965 and 0.9988, which
is also increased weakly, so can also be viewed unchanged.
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Fig. 9. f = 10 Hz, the displacements and the fractional order in
different working fluids.

Fig. 10. f = 11 Hz, the vibration displacements and the fractional
order in different working fluids.

3) ∆x1 and ∆x2 represent the variation displacement of
the two working fluids in 1 A, 3 A respectively, it can be seen
that ∆x1 > ∆x2, and under the working current of 3 A, the
changes of MR fluids damping characteristics are reducing.

4) The displacement of the theoretical fractional model and
the integer order model are given in Figs. 9 and 10. It can
be seen that the fitting curve of fractional order model is
more close to the sampled displacement curve than that of
the integer order model, and the results are in agreement
with the computed results of Tables I and II. Based on the
same sampled signal, the residual sum of squares

∑
D(e)

obtained by fitting the fractional order models is less than
that of the integer order models obtained by fitting the integer
model, indicating that the fractional order system model is
more accurate than the integer order system model.

The effect of working fluids on the vibrational energy of
the system is analyzed quantitatively by using the variance
analysis. As shown in Table III, taking I = 1 A in Fig. 9 for
example, σ2

1 is the variance at M = 74 %, and σ2
2 is variance at

M = 78 %, σ2
1/σ2

2 denotes the energy coefficient, we can find
that the replacement of the working fluids has great influence
on the dynamic energy coefficient, whose average value is

1.148, indicating that different MR liquids of the system have
certain influence on the system.

TABLE III
I = 1 A, THE VARIANCE OF THE SAMPLED DATA

SEGMENTS WITH DIFFERENT CURRENTS

No. Sampled data
74 %, 78 %,

σ2
1/σ2

2σ2
1 (mm2) σ2

2 (mm2)

1 6000-6500 0.0313 0.0270 1.159

2 6500-7000 0.0316 0.0267 1.184

3 7000-7500 0.0313 0.0268 1.168

4 7500-8000 0.0313 0.0274 1.142

5 8000-8500 0.0308 0.0277 1.112

6 8500-9000 0.0306 0.0270 1.133

7 9000-9500 0.0307 0.0269 1.141

Average value 8.039/7 = 1.148

V. CONCLUSIONS

The above analysis shows the mechanical properties of the
coupled MR damper using viscous and elastic characteristics,
presenting the properties of an elastic solid and a viscous fluid,
and through the experiment, we have shown that:

1) the constitutive equation with fractional derivative
method is derived from a strict formula, which has definite
physical meaning;

2) the viscoelastic constitutive equation with the fractional
derivative can be used to describe the mechanical vibration
performance of the coupled MR damper with great accuracy
than the integer order model;

3) the dynamic characteristics of the system are related to
the order number of the fractional order model: under the
same operating frequency, with the increase of the control
current, the order of the fractional model is increased, and the
viscoelastic properties of the shock absorber are enhanced.
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