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Strengthening Buffer Operator and Weakening
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Abstract—To reveal the relationship between the weakening
buffer operator and strengthening buffer operator, the traditional
integer order buffer operator is extended to fractional order
one. Fractional order buffer operator not only can generalize the
weakening buffer operator and the strengthening buffer operator,
but also realize tiny adjustment of buffer effect. The effectiveness
of grey model (GM(1,1)) with the fractional order buffer operator
is validated by six cases.

Index Terms—Fractional order, grey system theory, strength-
ening buffer operator, weakening buffer operator.

I. INTRODUCTION

DUE to the growing demand for reliable small sample
statistics, small sample prediction is of great importance

topic. Over the years, many scholars have carried out vigorous
programs[1−4]. Among these programs, it is reported that
the forecasting performance of grey model is better than
many conventional methods with incomplete or insufficient
data[4−6]. Grey system theory is developed by Deng[7]. As the
primary forecasting method of grey system theory, GM(1,1)
has been applied in many fields[4−7]. However, GM(1,1) is
suitable for the stable time series, how to predict the non-
stationary series is a difficult problem which deserves to be
researched.

For non-stationary time series prediction problem, the the-
ory on how to select model would lose its validity. That is
not the problem of selecting better model; instead, when a
system is severely affected by shock, the available data of the
past cannot truthfully reflect the law of the system. Under the
circumstances, buffer operator of grey system theory[7] has
been successfully used in many fields to overcome the above
difficulties[8−13], it combines quantitative and judgmental fore-
cast (qualitative analysis). Many kinds of buffer operators
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have been proposed simultaneously[14−18], how to choose a
suitable kind of buffer operator is very important in practice.
In this paper, many kinds of buffer operators are unified and
generalized based on fractional order method.

The rest of this paper is organized as follows. Section II
is a compendium of grey buffer operator. In Section III, the
inherent relationship between weakening buffer operator and
strengthening buffer operator based on fractional order method
is revealed. In Section IV, real examples for fractional order
buffer operator are discussed. Some conclusions of this study
are provided in the final section.

II. WEAKENING BUFFER OPERATOR AND
STRENGTHENING BUFFER OPERATOR

Assume that X = {x(1), x(2), . . . , x(n)} is the true behav-
ior sequence of a system, the observed behavior sequence of
the system is Y = {x(1)+ϵ1, x(2)+ϵ2, . . . , x(n)+ϵn}, where
(ϵ1, ϵ2, . . . , ϵn) is a term for the shocking disturbance. To
correctly discover and recognize the true behavior sequence X
of the system from the shock-disturbed sequence Y , one first
has to go over the hurdle (ϵ1, ϵ2, . . . , ϵn) (That is to say that
cleaning up the disturbance). If we directly use the severely
impacted data Y to construct model and to make predictions,
then our prediction is likely to fail, because what the model
described was not the true situation X of the underlying
system.

The wide existence of severely shocked systems often
causes quantitative predictions disagree with the outcomes of
intuitive qualitative analysis. Hence, seeking an equilibrium
between qualitative analysis and quantitative predictions by
eliminating these disturbances is an important task in order to
discover the true situation of the system. Grey buffer operator
proposed by Liu can address the problem, its definition is as
follows.

Definition 1[7]. Assume that raw data sequence is X =
{x(1), x(2), . . . , x(n)}. If ∀k = 2, 3, . . . , n, x(k)−x(k−1) >
0, then X is called as a monotonic increasing sequence.
If ∀k = 2, 3, . . . , n, x(k) − x(k − 1) < 0, then X is
called as a monotonic decreasing sequence. If there are
k, k′ ∈ {k = 2, 3, . . . , n} such that x(k) − x(k − 1) > 0,
x(k′)−x(k′−1) < 0, then X is defined as a random vibrating
or fluctuating sequence. If M = max{x(k)|k = 1, 2, . . . , n}
and m = min{x(k)|k = 1, 2, . . . , n}, then M − m is called
as the amplitude of the sequence X .

Lemma 1[7]. X = {x(1), x(2), . . ., x(n)} is a monotonic
increasing sequence. Then, XD = {x(1)d, x(2)d, . . ., x(n)d}
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is a weakening buffer operator(WBO), iff x(k)d ≥ x(k),
k = 1, 2, . . . , n; XD = {x(1)d, x(2)d, . . ., x(n)d} is
a strengthening buffer operator(SBO), iff x(k)d ≤ x(k),
k = 1, 2, . . . , n.

Lemma 2[7]. Assume that X = {x(1), x(2), . . ., x(n)} is a
monotonic decreasing sequence. Then, XD = {x(1)d, x(2)d,
. . ., x(n)d} is a WBO, iff x(k)d ≤ x(k), k = 1, 2, . . . , n;
XD = {x(1)d, x(2)d, . . ., x(n)d} is a SBO, iff x(k)d ≥ x(k),
k = 1, 2, . . . , n.

Lemma 3[7]. Assume that X = {x(1), x(2), . . . , x(n)} is
a fluctuating sequence, XD = {x(1)d, x(2)d, . . . , x(n)d} is
a WBO, iff max{x(k)|k = 1, 2, . . . , n} ≥ max{x(k)d|k =
1, 2, . . . , n} and min{x(k)|k = 1, 2, . . . , n} ≤ min{x(k)d|
k = 1, 2, . . . , n}; XD = {x(1)d, x(2)d, . . ., x(n)d} is a
SBO, iff max{x(k)|k = 1, 2, . . . , n} ≤ max{x(k)d|k =
1, 2, . . . , n} and min{x(k)|k = 1, 2, . . . , n} ≥
min{x(k)d|k = 1, 2, . . . , n}.

Definition 2[7]. Assume that raw data sequence is X =
{x(1), x(2), . . . , x(n)}, XD = {x(1)d, x(2)d, . . . , x(n)d},
where

x(k)d =
x(k) + x(k + 1) + . . .+ x(n)

n− k + 1
, (1)

D is a first order WBO no matter whether X is monotonic
decreasing, increasing, or vibrating. If XD2 = XDD =
{x(1)dd, x(2)dd, . . . , x(n)dd}, D2 is a second order WBO.
Similarity, D3 is a third order WBO.

If

x(k)d =
x(1) + x(2) + . . .+ x(k − 1) + kx(k)

2k − 1
, (2)

then D is a first order SBO when sequence X is either
monotonic decreasing or increasing. If XD2 = XDD =
{x(1)dd, x(2)dd, . . . , x(n)dd}, D2 is a second order SBO.
Similarity, D3 is a third order SBO.
x(0)(k)d = x(0)(k) of WBO is consistent with the results

of above studies, that is they all suggested that more empha-
sis should be placed on the most recent and most relevant
information.

III. THE RELATIONSHIP BETWEEN WBO AND SBO
Due to traditional weakening buffer operators cannot tune

the effect intensity to a small extent, which leads to problems
that the buffer effect may be too strong or too weak. Consider-
ing this situation, and like the fractional-order systems[19−21],
fractional weakening buffer operator is constructed. Then (1)
can be expressed by

XD ={x(1)d, x(2)d, . . . , x(n)d}

= [x(1), x(2), . . . , x(n)]


1
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then second order WBO can be expressed by

XD2 = [x(1), x(2), . . . , x(n)]
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Similarly, p
q (

p
q ∈ R+) order WBO is

XD
p
q = [x(1), x(2), . . . , x(n)]
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n
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...
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p
q

Theorem 1. For original data X = [x(1), x(2), . . . , x(n)],
−p

q (
p
q ∈ R+) order WBO from (1) is the p

q order SBO.
Proof. Set 
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 = A,

since −p
q (

p
q ∈ R+) order WBO is

XD− p
q =X
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q

=X


n 0 0 . . . 0
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...
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...
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...
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p
q

The result of XA
p
q is a vector. When each component of

XA
p
q is not less than the corresponding component of X , we

can write as XA
p
q ≥ X . If sequence X is either monotonically

decreasing or increasing, because XA
p
q ≥ X and A is an

invertible matrix, we have XA
p
q A− p

q ≥ XA− p
q , that is X ≥

XA− p
q . So −p

q order WBO is the p
q order SBO when sequence

X is either monotonically decreasing or increasing.
If sequence X = [x(1), x(2), . . . , x(n)] is a fluctuating

sequence, x(l) = max{x(k)|k = 1, 2, . . . , n}, x(h) = min{
x(k)|k = 1, 2, . . . , n}, because [x(l), x(l), . . . , x(l)]A

p
q ≥

[x(l), x(l), . . . , x(l)] and A is an invertible matrix, we have
[x(l), x(l), . . . , x(l)]A

p
q A− p

q ≥ [x(l), x(l), . . . , x(l)]A− p
q ,

that is [x(l), x(l), . . . , x(l)] ≥ [x(l), x(l), . . . , x(l)]A− p
q ; Sim-

ilarly, we have [x(h), x(h), . . . , x(h)] ≤ [x(h), x(h), . . . ,
x(h)]A− p

q . So −p
q order WBO is the p

q order SBO when
sequence X is a fluctuating sequence.

So −p
q (pq ∈ R+) order WBO from (1) is the p

q order
SBO. �

Corollary 1. For original data X = [x(1), x(2), . . . , x(n)],
−p

q (
p
q ∈ R+) order SBO from (2) is the p

q order WBO.
Corollary 2. For original data X = [x(1), x(2), . . . , x(n)],

if nonnegative matrix B satisfies XB− p
q (pq ∈ R+) > 0 and

XD− p
q = XB− p

q is SBO (WBO), then XD
p
q = XB

p
q is

WBO (SBO).
The procedures of GM(1,1) model with p

q order WBO
(pq WGM(1,1)) are more complex than the traditional GM(1,1),
because more work must be done before forecasting. The
procedures can be summarized as follows:
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Step 1: Given a raw data sequence X(0) = {x(0)(1),
x(0)(2), . . ., x(0)(n)}, p

q order WBO sequence is X(0)D
p
q =

{x(0)(1)d
p
q , x(0)(2)d

p
q , . . ., x(0)(n)d

p
q }.

Step 2: Sequence {x(0)(1)d
p
q , x(0)(2)d

p
q , . . ., x(0)(n)d

p
q }

is used to establish GM(1,1), accumulated generating operator
x(1)(k)d

p
q =

∑k
i=1 x

(0)(i)d
p
q , k = 1, 2, . . . , n.

Step 3: The parameter a and b can be obtained by[
â

b̂

]
= (ATA)−1ATY

where

Y =


x(0)(2)d

p
q

x(0)(3)d
p
q

...
x(0)(n)d

p
q

 , A =


−x(1)(1)d

p
q +x(1)(2)d

p
q

2 1

−x(1)(2)d
p
q +x(1)(3)d

p
q

2 1
...

...

−x(1)(n−1)d
p
q +x(1)(n)d

p
q

2 1


Step 4: After substituting â and b̂ into x̂(0)(k + 1) =

x̂(1)(k + 1) − x̂(1)(k) = [x(0)(1) − b̂
â ](1 − eâ)e−âk (k =

1, 2, . . . , n−1), we can make prediction x(0)(n+1), x(0)(n+
2), . . ..

Step 5: If the predicted value x(0)(n+1), x(0)(n+2), . . .
is not consistent with the result of qualitative analysis, then
change the order number p

q . (If we want to pay more attention
to the recent data, the order number p

q must be the larger one.
If we want to pay more attention to the old data, the order
number p

q must be the smaller one. Because the strengthening
buffer operator reflects the priority of old data[22]).

Step 6: Repeat Step 1-5 until the predicted values x(0)(n+
1), x(0)(n+2), . . . are consistent with the result of qualitative
analysis.

IV. EXPERIMENTATION RESULTS

To test the proposed model, mean absolute percentage
error (MAPE = 100% × 1

n

∑n
k=1

∣∣∣x(0)(k)−x̂(0)(k)
x(0)(k)

∣∣∣) is used
to evaluate the precision.

Case 1. Energy consumption forecasting in China[23]
The data from 1998 to 2005 (X(0) = {13.22, 13.38, 13.86,

14.32, 15.18, 17.50, 20.32, 22.47}) are used to establish
different GM(1,1) models with different WBO, and the data
from 2006 to 2007 are used to determine the optimal order of
WBO. The results are shown in Table I.

As can be seen from Table I, 0.1WGM(1,1) is the best
model among the above models in out-of sample data. So
0.1WGM(1,1) is used to predict the data from 2008 to 2009.
The results are listed in Table II. As can be seen from Table II,
0.1WGM(1,1) yielded the lowest MAPE in out-of-sample data.
This implies that 0.1WGM(1,1) can improve the prediction
precision.

TABLE II
THE RESULTS OF TWO GREY MODELS

Year Actual value 0.1WGM(1,1) The result of Reference[23]

2008 29.10 28.86 28.59

2009 31.00 31.41 31.23

MAPE 0.98 1.26

Case 2. Electricity consumption per capita forecasting
in China[24]

The data from 2000 to 2005 (X(0) = {132.4, 144.6, 156.3,
173.7, 190.2, 216.7}) are used to obtain different GM(1,1)
models with different WBO, and the data of 2006 is predicted
by these models. The results are shown in Table III.

As can be seen from Table III, both WGM(1,1) models are
better than the best result of Reference[23], as a conclusion,
fractional order WBO has a perfect forecasting capability.

Case 3. The qualified discharge rate of industrial
wastewater forecasting in Jiangxi in China[17]

The data from 2000 to 2005 (X(0) = {68.63, 75.9, 77.59,
83.06, 88.66, 92.13}) are used to construct two GM(1,1)
models with WBO, and the data from 2006 to 2007 are
predicted by these models. The results are shown in Table
IV.

As can be seen from Table IV, the WGM(1,1) model is
better than the best result of Reference[17], so fractional order
WBO can improve the prediction accuracy of conventional
GM(1,1) model.

TABLE IV
THE FITTED VALUES AND MAPE OF TWO GREY MODELS

Year Actual value GM(1,1) WGM(1,1)

2006 93.23 93.4 93.95

2007 93.89 94.5 95.77

MAPE 0.42 1.75

Case 4. The electricity consumption forecasting in
Vietnam[25]

The data from 2000 to 2003 (X(0) = {1927, 2214, 2586,
2996}, unit: KTOE) are used to construct four models with
WBO, and the data from 2004 to 2007 are predicted by these
models. The results are shown in Table V.

As can be seen from Table V, the WGM(1,1) model is better
than the best result of Reference[17], so fractional order WBO
can improve the prediction accuracy of conventional GM(1,1)
model.

Case 5. The logistics demand forecasting in Jiangsu[26]

The data from 2005 to 2008 are used to construct three grey
models with WBO, and the data from 2009 are predicted by
these models. The results are shown in Table VI.

As can be seen from Table VI, the WGM(1,1) model is
better than the traditional grey model, so fractional order WBO
can improve the prediction accuracy of conventional GM(1,1).

TABLE VI
THE FITTED VALUES AND MAPE OF THREE GREY MODELS

Year Actual value GM(1,1)[26] 1WGM(1,1) 0.5WGM(1,1)

2009 5154.46 5330 5008 5138

MAPE 3.41 2.84 0.32

Case 6: The energy production forecasting in China[27]
The 1985-1989 data are used for model building, while the

1990-1995 data are used as an ex-post testing data set. The
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TABLE I
THE RESULTS OF DIFFERENT GREY MODELS

Year Actual value 0.3WGM(1,1) 0.1WGM(1,1) The best result of Reference[23]

2006 24.63 23.95 24.05 27.95

2007 26.56 25.97 26.34 26.16

MAPE 2.43 1.55 2.12

TABLE III
THE FITTED VALUES AND MAPE OF DIFFERENT GREY MODELS

Year Actual value -0.6WGM(1,1) -0.7WGM(1,1) The best result of Reference[24]

2006 249.4 248.3 250.8 241.21

MAPE 0.44 0.56 3.28

TABLE V
THE FITTED VALUES AND MAPE OF FOUR GREY MODELS

Year Actual value GM(1,1) AGM(1,1)[25] 1WGM(1,1) 0.1WGM(1,1)

2004 3437 3477 3334 3215 3439

2005 3967 4042 3807 3452 3953

2006 4630 4699 4347 3706 4544

2007 5256 5462 4963 3979 5224

MAPE 2.12 4.68 15.92 0.72

results given by the GM(1,1) model and 1.5WGM(1,1) as well
as the observed values are shown in Table VII.

TABLE VII
THE FITTED VALUES AND MAPE OF TWO GREY MODELS

Year Actual value GM(1,1)[27] 1.5WGM(1,1)

1990 103922 106069 103407

1991 104844 111296 105320

1992 107265 116781 107270

1993 111059 122536 109255

1994 118729 128574 111277

1995 129034 134910 113337

MAPE 6.71 3.50

Table VII shows that the 1.5WGM(1,1) model is better for
forecasting the energy production in China. The forecasted
values are more precise than the GM(1,1) model, for data
sequence with large random fluctuation.

V. CONCLUSION

Let us now return to the name of the fractional calculus. The
fractional calculus is a name for the theory of integrals and
derivatives of arbitrary order. which unifies and generalizes
the notions of integer-order differential and integral. Similarly,
fractional order WBO unifies and generalizes the notions of
WBO and SBO. As can be seen from Table II-VII, GM(1,1)
with the fractional order buffer operator can predict the devel-
opment trend of the system accurately.

Six real cases were seen to obtain good results, however, the
order p

q may be not optimal. In this paper, the order p
q is chosen

from more computational experiments. In future studies, it is

suggested that the particle swarm algorithm should be used to
determine the optimal order.
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