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Abstract—Fractance element reflects the fractional order be-
havior of circuits, which can show the characteristics of the
actual circuits. Higher-order logic theorem proving is based
on the rigorous and correct mathematical theories. It becomes
more and more important in the verifications of high-reliability
systems. Fractance element is formalized using the proof of
higher-order logic theorem in this paper. Firstly, the formalized
model of fractional calculus which is based on Caputo definition
is established in higher-order logic theorem proof tool. Then
some properties of fractional calculus are proved, including the
zero order property, the fractional differential of a constant
and the consistency of fractional calculus and integer order
calculus. Finally, fractance element and fractional differential
circuit constituted by fractance element are formally analyzed.
These formalizations demonstrate the effectiveness of the formal
method in the analysis of fractance element.

Index Terms—Fractional Calculus, Caputo Definition, Theo-
rem Proving, Fractance Element, Fractional Differential Circuit.

I. INTRODUCTION

FRACTANCE element is a component with fractional
order impedance. It can accomplish the function of frac-

tional calculus for signal. Fractance element is different from
the impedance, capacitive reactance or inductive reactance.
It can show the characteristics between capacitance and in-
ductance [1]. Fractance circuit refers to the circuit which
includes fractance elements. Components in the circuits are
often considered to be a resistance, capacitance, or inductance
which is with integer order. However, due to the materials
or other reasons, the components in actual circuits do not
show these desirable characteristics. Actually, they present
the characteristics between these ideal characteristics. Ignoring
these facts will lead to inaccurate modeling. In addition,
accuracy problems will emerge if we adjust the circuits
according to the misconception that the components present
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ideal characteristics. Fractional calculus is the theoretical basis
of fractance element and fractance circuit. It can be used
to effectively describe the dynamic process of some systems
which cannot be accurately described by integer order calculus
[2]. Now, fractional calculus is widely used in hyperchaotic
system [3], viscoelastic system [4], anomalous diffusion, fluid
dynamics [5], image processing [6], signal processing, seismic
analysis, control of robot [7], electric power transmission line
[8], fuzzy control [9] and other fields. Studies have shown
that the models using fractional calculus can better and more
accurately describe the characteristics of actual systems [10].

The current phase of research on fractance element and
fractance circuit is concerned with their realization. For in-
stance, the realizations of fractance element and fractance
circuit are discussed in references [11− 13]. In reference [11],
the fractional order operator is realized by using the finite
inertia and the cascade of proportional differential circuit.
Reference[12] presents an implementation of variable order
analog circuit by using operational transconductance amplifier.
Besides, the realization of fractional analog circuit by using
the method of binomial expansion is given in reference[13]. A
wide variety of implementation schemes have been proposed
and these schemes have also been obtained in some applica-
tions. However, few studies have focused on the analysis of
the fractance element and fractance circuit. For the analysis of
fractance element and fractance circuit, the traditional methods
include paper-and-pencil based proofs, analog simulation and
computer algebra system. The results of these methods cannot
achieve 100% rate of precision because of the cumbersome
process, approximation errors, difficulty in building environ-
ment for application of these methods and that the algorithms
for symbolic computation have not been verified. Formal
methods can avoid these precision problems. Model checking
and theorem proving are two commonly used formal methods.
Considering the characteristics of fractional calculus, we use
theorem proving to formally analyze the fractance element and
fractance circuit. Theorem proving formalizes the systems and
their properties into mathematical models, and then converts
the mathematical models into logical models. It logically
estimates the correctness of systems. Theorem proving is
the strictest and most standardized method so far and the
credibility of conclusion is also the highest. The theorem proof
tool we use is HOL4. HOL system is one of the theorem prover
and it is developed by Cambridge University. HOL4 is the
fourth edition of HOL system and it is the newest edition. It
is implemented basing on the meta-language. Meta-language
is an interactive programming language and it is efficient and
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strict. Now, HOL4 is widely used in the validation of software
and hardware, and has obtained welcome results. Besides,
HOL4 has a rich theorem library, including Boolean algebra,
collection, Gauge integral, complex number and so on. The
more theorems HOL4 has, the stronger the deduction ability
is. Because a proof in the HOL4 system is constructed by
repeatedly applying inference rules to axioms or to previously
proved theorems.

As mentioned above, fractional calculus is the theoretical
basis of fractance element, so we should formalize fractional
calculus before the formal analysis of fractance element.
On FMCAD2011, Umair and Osman [14] have formalized
the Gamma function and the Riemann-Liouville definition of
fractional calculus and formally verified some properties of
them. And then they analyzed the fractional order behaviors of
capacitance and differentiator. Their work pioneered the use of
formal method for the analysis of fractional order systems. Shi
Likun [15] has formalized the Grunwald-Letnikov definition of
fractional calculus and formally analyzed the fractional order
FC component and fractional position servo system in HOL4.
In this paper, for the purpose of perfecting the definitions and
properties of fractional calculus in HOL4, and improving the
modelling and deduction ability of HOL4, we firstly establish
the higher-order logic model of fractional calculus which is
based on Caputo definition, and then formally verify some
related basic properties of it. The formalization of theorem
is known as the goal in HOL4 and we will use the existed
definitions and theorems in HOL4 to prove the goal. It will
illustrate the correctness of the theorem if the goal has been
verified. We form these verified properties into separate theo-
rems, so these definitions and theorems can be used directly
by other users. At last, in order to illustrate the consistency of
fractional calculus and integer order calculus and the validity
of theorem proving method for the analysis of fractional order
systems, we use the formalizations to formally analyze the
fractance element and fractional differential circuit.

The rest of the paper is organized as follows: we present
the formalizations of basic theories in Section 2, including
the formalization of fractional calculus which is based on
Caputo definition, and the verifications of some related basic
properties. These basic properties include zero order property,
the fractional differential of a constant and the consistency
of fractional calculus and integer order calculus. In Section
3, the formalizations of these basic theories are applied to
analyze fractance element and fractional differential circuit.
The relationship of fractance element and ideal components,
as well as the unification of fractional differential circuit and
integer differential circuit are proved here. Section 4 concludes
the paper.

II. FORMALIZATIONS OF BASIC THEORIES

A. Caputo Definition of Fractional Calculus
The origin of fractional calculus can be traced back to more

than 300 years. Fractional calculus is based on the definition
of integer order calculus. It extends the order of integer order
calculus from integer to non-integer. It can be used to describe
actual systems more accurately. Grunwald-Letnikov, Riemann-
Liouville and Caputo definition are the three commonly used

definitions of fractional calculus. These three definitions have
different characteristics. Grunwald-Letnikov definition is suit-
able for numerical computation while Riemann-Liouville def-
inition which is defined in the form of differential-integral can
make the mathematical analysis of fractional calculus become
easier. Caputo definition can facilitate the modeling of actual
problems and compact the Laplace transform of fractional
calculus. The solution of fractional calculus equation is also
given in the form of Caputo definition. In addition, Caputo
definition is more able to reflect the feature that fractional
calculus is the expansion of integer order calculus. Therefore,
Caputo definition is more widely used in the modeling of
actual problems [16].

These three definitions are defined from different perspec-
tives. Riemann-Liouville definition and Caputo definition are
the improvement of Grunwald-Letnikov definition. These three
definitions can achieve unification under certain conditions.
When the initial value is 0, the Grunwald-Letnikov defini-
tion and Caputo definition are equivalent. And the Riemann-
Liouville definition and Caputo definition are equivalent when
the original function f(t) is (bvc+1)th order derivable and all
of the derivatives are 0, where v is the fractional order and the
operator bvc returns the biggest integer which is not greater
than v.

In this paper, we research on the Caputo definition. The
mathematical expression of fractional calculus based on Ca-
puto definition is shown in Formula(1) [17].

C
a Dv

t f(t) =
1

Γ(m− v)

∫ t

a

f (m)(x)
(t− x)v−m+1

dx. m = bvc+ 1

(1)

where C
a Dv

t is the operator of fractional calculus with order v,
lower limit a and upper limit t. Formula(1) is the unified ex-
pression of fractional differential and integral. When the order
v is a positive value, Formula(1) means fractional differential
and it means fractional integral when v is a negative value.
The letter C on the top left corner of the operator is the
abbreviation of Caputo. It indicates that Formula(1) is defined
by Caputo definition, so that we can distinguish it from other
definitions. Γ represents Gamma function[17] and its definition
is as below.

Γ(z) =
∫ ∞

0

e−ttz−1 dt (2)

where the real part of z is greater than 0. Gamma function is
the most commonly used basic function of fractional calculus.
It extends the factorial from a natural number to a real number.
Gamma function is also known as generalized factorial.

When modeling and verifying fractance element in HOL4,
the formal model of fractional calculus based on Caputo
definition is needed. We firstly establish the formal model of
fractional calculus based on Caputo definition in HOL4.

Definition 1. Fractional Calculus based on Caputo Defi-
nition
∀f v a t.frac c f v a t = if (v = 0) then f t

else
lim(λn.1/Gamma (&(flr v) + 1 − v) ∗ (integral(a, t −

1/2 pow n)(λx.(((t − x) rpow (&(flr v) + 1 − v − 1)) ∗
(n order deriv(flr v + 1)f x)))))
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Definition 1 is formalized basing on the real library[18],
transcendental function library and integer order integral li-
brary[19] which have been already formalized in HOL4. The
operator frac c represents the Caputo definition of fractional
calculus. f is the initial function of type (real− > real).
v is a real number which indicates the order of fractional
calculus. t and a are the upper and lower limit, respectively.
Gamma represents Gamma function which has been formal-
ized in reference[14]. (flr v) is the formalization of bvc.
integral(a, t−1/2 pow n) represents integral with lower limit
a and upper limit (t − 1/2 pow n) where pow is a power
function with natural exponent.

Formula(1) is a definite integral with variable upper limit.
The formalization of variable upper limit is a difficulty for our
work. The function integral(a, b)f in HOL4 only represents
integral with lower limit a and upper limit b, where a and b
are both constant. The variable upper limit should be recon-
structed according to the existing definitions and theorems in
HOL4. We solve this problem by nesting the integral into the
limitation. Taking the existing definitions and theorems into
account, we construct formula (t− 1

2n ) and take the limit of
it as limn→+∞(t − 1

2n ). The variable upper limit t will be
expressed when 1

2n becomes very close to 0 as n becomes
very large. Here we use lim(λn.t− 1/2 pow n) to formalize
the variable upper limit t in HOL4. lim(λn.f) computes the
limit of f when n tends to infinity and it is a function in
sequence library [20].

Caputo definition has certain requirements for the original
function. As can be seen from Formula(1), it firstly requires
the original function f(x) is mth order derivable. Moreover,
the product of f (m)(x) and 1

(t−v)v−m+1 should be integrable.
Besides, in practical applications of fractional calculus such
as fractance element, their parameters are always based on
time so that we can analyze the systems from one moment to
the next moment. So, the upper limit and lower limit which
is based on time here should satisfy the condition that the
upper limit should be greater than lower limit. Furthermore, we
stipulate Formula(1) is limited because a limitation is used to
denote the variable upper limit in the formalization of Caputo
definition. These existent conditions of Caputo definition are
formalized as follows:

Definition 2. Existent Conditions
∀f v a t n l.frac c exists f v a t n l = (∀m.m <=
(flr v+1) ==> (λt.n order deriv m f t) differentiable t)
∧ (∀v.integrable(a, t− 1/2 pow n)(λx.(((t− x) rpow
(&(flr v)+1−v−1))∗(n order deriv(flr v+1) f x))))∧
a <= t− 1/2 pow n ∧ (λn.1/Gamma (&(flr v) + 1− v) ∗
(integral(a, t− 1/2 pow n)(λx.(((t− x) rpow (&(flr v) +
1− v − 1)) ∗ (n order deriv(flr v + 1) f x)))))−− > l)

Only the above conditions are met, the Caputo definition and
its formalization are existent. When using operator C

a Dv
t , we

always assume that these existent conditions are established.
The formalization of these conditions can be utilized to be
the antecedent when proving the subsequent properties of
fractional calculus.

B. Zero Order Property

If function f(t) satisfies the existent conditions of Caputo
definition and the order of fractional calculus is 0, the frac-
tional calculus of f(t) will return the original function. The
property is shown in Formula(3).

C
a D0

t f(t) = f(t) (3)

The formal verification of this property in HOL4 is given
in the following theorem.

Theorem 1. Zero Order Property
∀f v a t n.
frac c exists f v a t n l ==> (frac c f 0 a t = f t)
where frac c and frac c exists have been formalized in
Definition 1 and Definition

2. A special case that the order is 0 has been considered in
Definition 1, so the proof of Theorem 1 is relatively simple.
There are two proving methods in HOL4 system, including
forward proof and goal oriented proof. The second method is
more commonly used. In this paper, we use the method of
goal oriented proof. This method uses the tactic of HOL4,
and the existing conditions, definitions and theorems to divide
the original goal into one or more relatively simple sub-goals.
Then we only have to prove these sub-goals. And the original
goal will be proved when all the sub-goals are proved. In
the proof of Theorem 1, the combination of tactic REPEAT
and tactic GEN TAC is used to remove all of the universal
quantifiers firstly. And then the proof is completed by using
Definition 1 to rewrite the current goal.

C. Fractional Differential of a Constant

C
a Dv

t C =
{

C, v = 0
0, v > 0 (4)

Caputo definition is commonly used in engineering appli-
cations. This is partly because the fractional differential of
a constant under Caputo definition is bounded, as shown in
Formula(4), while it is unbounded under other definitions. For
example, under Riemann-Liouville definition, the fractional
differential of a constant C is expressed as RL

a Dv
t C = Ct−v

Γ(1−v) ,
which will be bounded unless the starting point t tends to
∞. However, it is impossible to set the starting point to
−∞ when analyzing the transient process. Hence, Caputo
definition is more appropriate in engineering applications[21].
The formal verification of this special property in HOL4 is
given in Theorem 2.

Theorem 2. Fractional Differential of a Constant
∀f : real− > real c : real v : real a t.
(∀a t n l.frac c exists f v a t n l) ∧ (0 <= v) ==>
(frac c (λt.c) v a t = if (v = 0) then c else 0)

The integer order derivative of a constant is included in the
verification of Theorem 2. In order to simplify the verification
process and facilitate the formal verification of other verifi-
cation, here we firstly verify the integer order derivative of a
constant and form it as a separate lemma.

Lemma 1. Integer Order Derivative of Constant c
∀m c.(0 < m) ==> (n order deriv m (λx.c) t = 0)
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Lemma 1 verifies that the mth order derivative of constant c
is 0. This result is consistent with the mathematical result. The
variable m in Lemma 1 is a positive integer and it has infinite
possibilities. For such goal, we generally use mathematical
induction method to prove it. The proof of Lemma 1 is finished
by using mathematical induction method twice. We firstly
make an induction on m and then divide the goal into two
cases whose precondition is (0 < 0) and (0 < m + 1),
respectively. As we all know, the premise condition (0 < 0)
is not established. The inference rule of HOL4 is that any
conclusion can be deduced by the impossible precondition.
Here we use the tactic FULL SIMP TAC to complete the
proof of the first case. In the proof of the second case, we
firstly verify that the (m+1)th order derivative of c is equal to
the mth order derivative of the derivative of c, and then prove
that the derivative of c is equal to 0. Finally, the proof of the
second case can be done by doing a mathematical induction
on m again. Hence Lemma 1 is proved.

Theorem 2 is implemented with statement if · · ·
then · · · else· · · because it has two cases. One case is that the
differential order is 0 and the other one is that the differential
order is greater than 0. We firstly proceed with Theorem
2 by separating the goal into two sub-goals using tactic
COND CASES TAC.

The first sub-goal describes that the fractional differential
of a constant returns the constant itself when the differential
order is 0. We finish the proof of the first sub-goal by using
an assumption and Theorem 1 to rewrite the goal.

For the case that the differential order is greater than 0, we
firstly use tactic COND CASES TAC to divide the present
goal into two sub-goals:

C = 0
and
lim(λn.1/Gamma (&flr v + 1 − v) ∗ integral(a, t −

1/2 pow n)(λx.(t − x) rpow (flr v + 1 − v − 1) ∗
n order deriv (flr v + 1) (λt.C) x)) = 0.

For the sub-goal C = 0, C is an arbitrary constant so
we cannot say that C must equal to 0. But there is a
contradiction between (v 6= 0) and (v = 0) in the assumption.
According to the inference rule of HOL4, we apply tactic
FULL SIMP TAC to deduce sub-goal C = 0. In the proof
of the second sub-goal, we firstly establish a new sub-goal:
∀n c x.n order deriv (flr v + 1) (λt.c) x = 0
It can be seen that the new sub-goal is the conclusion in

Lemma 1. We can directly apply Lemma 1 to prove the above
sub-goal as long as we can prove that the order (flr v + 1)
is greater than 0. It is difficult to prove (0 < flr v + 1).
Here, the assumption is used to deduce that v is greater than
0 firstly. Secondly, we prove that (flr v) is equal to or greater
than zero by using theorems NUM FLOOR LE2 and
REAL LT IMP LE. Thirdly, it can be naturally proved
that (flrv + 1) is greater than 0 by using the combination
of theorem GSY M ADD1 and tactic REWRITE TAC as
well as theorem LESS EQ IMP LESS SUC and tactic
FULL SIMP TAC. Now that Lemma 1 can be used to
deduce the above sub-goal. Then the proved sub-goal can be
applied to simplify the original goal. Now, the second sub-goal
of Theorem 2 is simplified to:

lim(λn.1/Gamma (&flr v + 1 − v) ∗ integral(a, t −
1/2 pow n)(λx.(t− x) rpow (&flr v + 1− v− 1) ∗ 0)) = 0

Then the item integral(a, t − 1/2 pow n)(λx.(t −
x) rpow (&flr v + 1 − v − 1) ∗ 0)) is simpli-
fied to (integral(a, t − 1/2 pow n)(λx.0)) by using
theorem REAL MUL RZERO. Next, we prove that
(lim(λn.1/Gamma (&flr v + 1 − v) ∗ 0)) is equal to
(lim(λn.0)). With this, the second sub-goal of Theorem 2
is simplified to:

lim(λn.0) = 0

Finally, the formal verification of Theorem 2 is done by
using the definition lim, theorem INTEGRAL CONST
and theorem SEQ CONST .

D. Integer Order Differential is the Special Case of Fractional
Differential

Fractional differential is the generalized form of integer
order differential and integer order differential is the special
case of fractional differential. When the order m is a positive
integer and the initial condition is 0, fractional differential is
consistent with integer order differential. Theorem 3 is the
formal verification of this property. Lemma 2 and Lemma 3
are the required lemmas in the verification of Theorem 3. We
also prove these two lemmas separately.

Theorem 3. Integer Order Differential is the Special Case
of Fractional Differential
∀f m n t.(0 <= m∧(∀t n.frac c exists f (&m) a t n l)∧
((n order deriv m f a) = 0)) ==> (frac c f (&m) a t =
n order deriv m f t)

Lemma 2. The Derivative of nth Order Derivative is
(n+1)th Order Derivative
∀m f t.(∀m.m <= n + 1 ==> (λt.n order deriv m f t)
differentiable t) ==> ((λt.n order deriv n f t) diffl
(n order deriv (n + 1) f t)) (t)

Lemma 3. Newton Leibniz Formula
∀(f : real− > real) (f ′ : real− > real) a : real b : real.
a <= b∧ (∀t.a <= t∧ t <= b ==> (f diffl f ′ t) t) ==>
(integral(a, b) f ′ = f b− f a)

Lemma 2 shows that equation dfn(t)
dt = fn+1(t) will be

tenable if function f(t) is (n+1)th order derivable. Lemma 3
verifies that the integral of function f ′ in interval [a,b] equals
to the difference value between the value of function f at upper
limit and the value of function f at lower limit, where f is the
original function of f ′. Proofs of these two lemmas are chal-
lenging for us. The key is to transform the goal flexibly. When
proving Lemma 2, we are unable to do a further conversion of
the goal until we change our way of thinking. The precondition
of Lemma 2 is that function f is mth order derivable for every
m which meets condition (m ≤ n+2). Taking the definition of
mth order derivative into account, we convert the precondition
to that f ′ is mth order derivative for every m which meets
condition (m ≤ n + 1), where f ′ is the derived function of
f . This conversion enables the proof to be applied with the
definition of mth order derivative, and then we can overcome
the difficulty. Analogously, in the proof of Lemma 3, we need
to prove a sub-goal (n order deriv 1 f x = deriv f x)
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which is also unable to do further transformation under the
existing theorems. Here, if the number 1 is replaced with
(SUC 0) which means (0 + 1), it will be possible for us
to use the definition of mth order derivative to rewrite the
sub-goal and then finish the proof.

In Theorem 3, the antecedent (0≤m) limits that Formula(1)
just indicates fractional differential. (n order deriv m f a =
0) denotes that the initial condition of fractional calculus is
0. HOL4 is a rigorous tool for logical verification and error
will occur if the type is not consistent. Here, the order m
is a natural number of type num while the order defined in
frac c needs to be the type of real. So we should introduce
operator & to map the natural number m to its corresponding
real number of type real here. Only in this way, we can avoid
the error of type inconsistency.

The formal verification of Theorem 3 is relatively complex.
We firstly simplify Theorem 3 to two sub-goals by using
Definition 1 and tactic RW TAC:

f t = n order deriv m f t
−−−−−−−−− 0.∃t n.frac c exists f (&m) a t n l
1.n order deriv m f a = 0
2.&m = 0

and
lim(λn.

1/Gamma (&flr(&m) + 1−&m) ∗
integral(a, t− 1/2 pow n)
(λx.
(t− x) rpow (&flr (&m) + 1−&m− 1) ∗
n order deriv (flr (&m) + 1) f x)) =
n order deriv m f t
−−−−−−−−− 0.∃t n.frac c exists f (&m) a t n l
1.n order deriv m f a = 0
2.&m <> 0

What should be mentioned here is that the statements under
imaginary line are the assumptions which are the known
conditions of the goal. For the first sub-goal, we firstly prove
(m = 0) by using theorem GSY M REAL INJ and the
known conditions. Then the proof of the first sub-goal can
be done by utilizing the definition n order deriv def . In
the proof of the second sub-goal, we firstly deduce another
condition (0≤&m) from the known condition (&m<>0)
by applying the statement (ASSUM LIST (fn thl =>
ASSUME TAC(REWRITE RULE[REAL LT NZ]
(el 3 (rev thl))))) to the current goal. Here,
ASSUM LIST (fn thl) represents the operation on the
assumption list, ASSUME TAC and REWRITE RULE
are the tactics of HOL4, REAL LT NZ is a theorem and
(el 3 (rev thl)) is a positioning statement. Next, we establish
a new sub-goal:
∀n x.(&(flr((&(m : num)) : real) : num) : real) = &m

And the above new sub-goal can be verified by using theorem
REAL IN and NUM FLOOR EQNS. Then we utilize
the proved sub-goal to simplify the initial goal to:

lim(λn.1/Gamma (&m + 1 − &m) ∗ integral(a, t −
1/2 pow n)(λx.(t − x) rpow (&m + 1 − &m −
1) ∗ n order deriv (flr (&m) + 1) f x)) =
n order deriv m f t

The next step is to simplify (flr (&m)) to m
by using theorem REAL INJ . Then we use theorem
REAL ADD SUB and REAL SUB REFL to prove that
(&m + 1 − &m − 1) is equal to 0. Next, the sub-goal
(∀n x.(t − x) rpow 0 ∗ n order deriv (m + 1) f x =
n order deriv (m + 1) f x) is verified and used to simplify
the second sub-goal of Theorem 3 to: lim(λn.1/Gamma(1)∗
integral(a, t − 1/2 pow n)(λx.n order deriv (m +
1) f x)) = n order deriv m f t

The property of Gamma function GAMMA 1 EQUAL 1
which has been verified in reference [14] is used here to verify
that (Gamma 1) is equal to 1. Finally, we accomplish the
proof of Theorem 3 by using Lemma 2, Lemma 3, the known
conditions and the definition and properties of limit function.

Establishing sub-goal is needed in the proving pro-
cess many times. But when we use the proved sub-
goal to rewrite the goal, it fails. For instance, when
proving goal (lim(λn.1/Gamma(1) ∗ integral (a, t −
1/2 pow n) (λx.(t − x) rpow 0 ∗ n order deriv (m +
1) f x)) = n order deriv m f t), we establish a sub-
goal ((t − x) rpow 0 ∗ n order deriv (m + 1) f x =
n order deriv (m + 1) f x) and then prove it. The types
of variables in the sub-goal are completely consistent with the
types in initial goal, but it fails when we use the sub-goal to
simplify the initial goal. This is because (λn) in the initial goal
has the implication of arbitrary n. We overcome this problem
by adding (λn) to the sub-goal when we established it.

E. Integer Order Integral is the Special Case of Fractional
Integral

Similarly, when the order of fractional calculus is a negative
integer m, the fractional integral C

a Dm
t is the same as the mth

order integral of integer order calculus. When the order of
fractional calculus is -1, there is Formula(5).

C
a D−1

t f(x) =
∫ t

a

f(x)dx (5)

We formally verify Formula(5) in HOL4 as follows:
Theorem 4. First Order Integral is the Special Case of

Fractional Integral
∀f a t.FLR NEG 1 ∧ FLR NEG 0 ==> (frac c f
(−&(1 : num)) a t = lim(λn.integral(a, t−1/2 pow n) f))

Definition of FLR NEG 1 and FLR NEG 0 are re-
spectively shown as follows:
FLR NEG 1 = (&flr (−&(1 : num)) = −1)
FLR NEG 0 = (flr (−&(1 : num)) + 1 : num = 0 :
num)

The first definition indicates that −1 is round off to −1. The
second definition demonstrates that the result of the rounding
off of −1 plus 1 is 0. When proving Theorem 4, we firstly
use Definition 1 to rewrite the goal and then utilize tactic
COND CASES TAC to divide the goal into two sub-goals:

ft = lim(λn.integral (a, t− 1/2 pow n) f)
and
lim(λn.1/Gamma (&flr (−1)+1−−1)∗integral(a, t−

1/2 pow n)(λx.(t − x) rpow (&flr (−1) + 1 −
−1 − 1) ∗ n order deriv (flr (−1) + 1) f x)) =
lim(λn.integral (a, t− 1/2 pow n) f)
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According to the inference rules of HOL4, the first sub-goal
can be deduced by the contradictory assumptions. For the sec-
ond sub-goal, we firstly use theorem REAL SUB RNEG
to simplify (1 − −1) to (1 + 1). Then we utilize the above
two definitions and some laws of computing to simplify the
current goal. Finally, the definition of mth order derivative and
theorem ETA THM are used to realize the proof.

Proofs of properties not only ensure the correctness of the
formalization of fractional calculus based on Caputo definition,
but also reduce the interventions of user when formally analyze
the fractional order systems. The formalizations of fractional
calculus and its properties are the keys to formally analyze
fractional order systems. The work in this section provides the
bases to the formal analysis of fractance element and fractional
differential circuit.

III. FORMALIZATION OF FRACTANCE ELEMENT

The actual circuits tend to show the fractional order be-
havior. For example, the modeling and analysis of traditional
capacitance is always based on the integer order differential
theory. However, with the development of nonlinear theory
and fractal differential geometry theory, the researchers found
that the traditional capacitance which is based on integer
order calculus is just the idealization of the actual model.
Actually, the ideal capacitance does not exist in practice. This
is mainly because that the electrolyte materials which make
up the capacitance show the fractal dimension characteristic.
In fact, the capacitance presents the fractional characteristics
on the physical property. The integer order differential and
integral circuit which respectively show the behaviors of high
and low pass, are also the results of the idealized processing
of real circuit. Fractance element and fractional differential
circuit can describe the fractional order behaviors of circuits.
We will use fractional calculus to model them. Then the
relationship of fractance element and ideal elements as well
as the unification of fractional differential circuit and integer
differential circuit are verified. The purpose is to illustrate that
fractional calculus is the extension of integer order calculus
and the real systems can be described more comprehensively
by using fractional calculus. Meanwhile, the correctness of the
above formalizations and the effectiveness of theorem proving
method in the analysis of fractional order systems are also
demonstrated here.

Any lumped parameter element can be described by math-
ematical model and physical model. Fractance element is no
exception. In this section, we will give the circuit symbol graph
and mathematical expression of fractance element, and then
formally analyze it and fractional differential circuit which is
the simplest circuit composed by fractance element.

Fractance element is a two-port element and it can be
represented by symbol F. The circuit symbol graph of it is
given in Fig.1.

Fig. 1. Fractance Element

In the complex frequency domain, the impedance of frac-
tance element is shown as Z(S) = kSv , where k is a constant
coefficient and v is the order of fractance element. In reference
[1], when the order v is greater than 0, fractance element which
has the form of Z(S) = kS−v is called fractional capacitance
and it is called fractional inductance when it is in the form
of Z(S) = kSv . The voltage and current of fractance element
satisfy Ohm’s law and the relationship of them is given in
Formula (6).

i(t) = kDv[v(t)] (6)

As can be seen from Formula (6), the current of fractance
element is the vth order calculus of voltage and v is a real
number. Due to the arbitrariness of order v, the definition of
fractance element is broader than common components and the
function of fractance element is also more powerful. Definition
3 is the formalization of fractance element in HOL4.

Definition 3. Fractance Element
∀k v t v t.i t k v t v t = k ∗ frac c v t v 0 t
where i t and v t are the current and voltage of fractance
element at moment t, respectively. k is the constant coefficient
and frac c is the formalization of fractional calculus based
on Caputo definition which is given in Definition 1.

According to the circuit analysis theory, the current flowing
through the resistance R is i(t) = v(t)

R , while the current
flowing through the capacitance C is i(t) = C dv(t)

dt and the

current flowing through the inductance L is i(t) =
∫ t
0 v(τ)dτ

L .
Introducing the concept of fractance element, the resistance
can be understood as the case where the order of fractance
element is 0, and the capacitance can be understood as the case
where the order is 1 and the inductance can be understood as
the case where the order is -1. Therefore, there are connections
between the fractance element and the traditional resistance,
inductance and capacitance. The traditional components are
three ideal models of actual components. Fractance element
can better describe the performance of practical elements in the
circuit. Based on Definition 3, we will use the formalizations
in Section 2 to formally verify the relationship between
fractance element and the three ideal components. The formal
verifications of these three relationships using higher-order
logic are shown below.

Theorem 5. Relationship between Fractance Element and
Resistance
∀k v t t.(v = 0 : real) ==> (i t k v t v t = k ∗ v t t)

Theorem 6. Relationship between Fractance Element and
Capacitance
∀k v t t.(v = &(1 : num)) ∧ (∀v t n l a.
frac c exists v t v a t n l) ∧ (n order deriv 1 v t 0 =
0) ==> (i t k v t v t = k ∗ deriv v t t)

Theorem 7. Relationship between Fractance Element and
Inductance
∀k v t t.(v = −&(1 : num)) ∧ FLR NEG 1 ∧
FLR NEG 0 ==> (i t k v t v t = k ∗
lim(λn.integral(0, t− 1/2 pow n) v t))

Theorem 5 verifies that the fractance element exhibits the
behavior of a resistance for v = 0. Here, the relationship
between the flowing current and voltage is expressed as
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i(t) = kv(t) in time domain, where k equals to 1
R and R is

the value of resistance. The proof of Theorem 5 is completed
by using Definition 3 and Theorem 1 to rewrite the goal and
make a further calculation. Theorem 6 proves that fractance
element displays the characteristic of ideal capacitance for
v = 1. At this time, the relationship between the flowing
current and voltage is expressed as i(t) = k dv(t)

dt , where
k means the value of capacitance. The formal verification
of Theorem 6 is based on Theorem 3. Theorem 7 deduces
that fractance element will behave as an ideal inductance if
v = −1. The connection between the flowing current and
voltage is expressed as i(t) = k

∫ t

0
v(τ)dτ , where k equals to

1
L and L is the value of inductance. Theorem 4 is utilized in
this proof.

The fractional differential circuit is a kind of fractance
circuit and it is composed of fractance element. It outputs
the fractional differential of input signal and its amplitude
frequency characteristic is a high pass filter. In terms of
fractional order controller, initial implementation of fractional
differential circuit[22] makes a foundation for the universal
application of fractional order controllers in the field of
information science[23]. Fig.2 is a fractional differential circuit
with power source Vi, resistance R and fractance element
F which is realized by fractional capacitance. Based on the
formalization of fractance element, the formal modeling and
verification of fractional differential circuit will be performed
next.

Fig. 2. Fractional Differential Circuit

The output voltage of fractional differential circuit in Fig.2
is the voltage across the resistance R and the input voltage
is the voltage of power source. The relationship between the
output voltage and the input voltage is inferred as:

vo(t) = RCDvvi(t) (v > 0) (7)

where vo(t) is the output voltage and Dvvi(t) returns the
vth order calculus of input voltage vi(t). The condition of
Formula(7) limits the operator Dvvi(t) as the expression of
fractional differential. The order v is the same as the order of
fractance element. The formalization of fractional differential
circuit in HOL4 is given in Definition 4.

Definition 4. Fractional Differential Circuit
∀R C vi t v t.vo D t R C vi t v t = R ∗ C ∗
frac c vi t v 0 t R C vi t v t.vo D t R C vi t v t =
R ∗ C ∗ frac c vi t v 0 t
where vo D t and vi t indicate the output voltage and the
input voltage of the circuit at moment t. vo D t and vi t are
both type of (real− > real) here. R, C, v and t represent
resistance, capacitance, differential order and the upper limit.

If the order v equals to 1, Definition 4 will represent a first
order differential circuit. For the first order differential circuit,
the output response just reflects the rate of input change. So
the output response of first order differential circuit is 0 if
a constant signal is applied at the input. This is because the
rate of change for constant signal is 0. The following is the
verification of this property in HOL4 using the already verified
definition and properties in Section 2.

(v = 1)∧(∃a t n l.frac c exists (λt.v 0 : real) v a t n l)
==> (vo D t R C (λt.v 0 : real) v t = 0)

The precondition (v = 1) guarantees that the order of
fractional differential circuit is 1. Under this condition, frac-
tional differential circuit will behave as first order differential
circuit of integer order calculus. The second precondition
(frac c exists (λx.v 0 : real) v a x n l) ensures the
existence of fractional calculus which is based on Caputo
definition for function v 0 . Under these two preconditions,
it can be gradually verified that the output response of this
fractional differential circuit is 0 when the constant signal v 0
is the input. The availability of already verified property of
fractional calculus in Section 2 let us to achieve the simple
sub-goal.

The fractional order differentiator has been formalized in
reference[12]. It formally verified the output response of
fractional order differentiator when unit step signal is applied
at the input and the order is between 0 and 1. A lot of work has
been done in [12], which is very significant and gives us much
inspiration. However, the formal verification of fractional order
differentiator did not take the order of integer 1 into account.
In other words, they have not considered the unification of
fractional differential and integer order differential. In this
paper, we take the differential order of integer 1 into account,
and use the Caputo definition to verify the output response
of the fractional differential circuit with constant signal v 0
as input. The fractional differential circuit will behave as first
order differential circuit if the order is integer 1. According
to the property of Riemann-Liouville definition of fractional
calculus, the output response of first order differential circuit
is RCv 0t−1 when constant signal v 0 is applied at the input.
This result is in contradiction with the result that the output
response of first order differential circuit only reflects the rate
of input change. As analyzed above, the result using Caputo
definition in this paper is consistent with the fact. The formal
result not only verifies the consistency of fractional first order
differential circuit and integer first order differential circuit,
which besides achieving uniformity in fractional differential
and integer order differential, but also correctly deduces the
output response of first order differential circuit with constant
signal as the input.

Due to the completeness of theorem proving, the results
are accurate and complete. Besides, the results in this paper
are consistent with the theoretical results, which illustrate the
correctness of the formalizations of fractional calculus, as
well as the validity of the analysis of fractance element using
theorem proving.
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IV. CONCLUSION

Theorem proving, as a formal method, formalizes the
specifications and designs of systems to the logic models.
The validation process is intuitional and rigorous. Besides,
its self-prove function can ensure the correctness of formal-
ization. Based on theorem proof tool HOL4, we completed
the formalized analysis of fractance element and fractional
differential circuit which is made up of fractance element.
Caputo definition of fractional calculus and some properties
of it are the theoretical bases of the formal analysis of
fractance element and fractional differential circuit. Therefore,
their formalization is a significant work presented in this
paper. These works factually lay good foundations for the
formal analysis of circuits fractional order behaviors. Mean-
while, the formal analysis of fractance elements and fractional
differential circuit also shows the effectiveness, practicality
and correctness of the formalizations of fractional calculus
theorems. The formalization of fractional calculus based on
Caputo definition in this paper, completes the definition of
fractional calculus in HOL4 and provides more choices for
the formal analysis of fractional order systems. In addition,
the formal analysis of fractance element not only enriches
the studies of fractance element, but also provides a way to
the analysis of fractance element. The next step will be taken
to verify the other properties of fractional calculus based on
Caputo definition, to lay a solid foundation for the complete
analysis of fractance element and fractional differential circuit.
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