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An Implementation of Haar Wavelet Based Method
for Numerical Treatment of Time-fractional

Schrödinger and Coupled Schrödinger Systems
Najeeb Alam Khan, Tooba Hameed

Abstract—The objective of this paper is to solve the time-
fractional Schrödinger and coupled Schrödinger differential
equations (TFSE) with appropriate initial conditions by using the
Haar wavelet approximation. For the most part, this endeavor
is made to enlarge the pertinence of the Haar wavelet method
to solve a coupled system of time-fractional partial differential
equations. As a general rule, piecewise constant approximation of
a function at different resolutions is presentational characteristic
of Haar wavelet method through which it converts the differential
equation into the Sylvester equation that can be further simplified
easily. Study of the (TFSE) is theoretical and experimental
research and it also helps in the development of automation
science, physics, and engineering as well. Illustratively, several
test problems are discussed to draw an effective conclusion,
supported by the graphical and tabulated results of included
examples, to reveal the proficiency and adaptability of the
method.

Index Terms—Fractional calculus, haar wavelets, operational
matrix, wavelets.

I. INTRODUCTION

IN recent decades, fractional calculus (calculus of integrals
and derivatives of any arbitrary real order) has attained

appreciable fame and importance due to its manifest uses in
apparently diverse and outspread fields of science. Certainly,
it provides potentially helpful tools for solving integral and
differential equations and many other problems of mathemati-
cal physics. The fractional differential equations have become
crucial research field essentially due to their immense range of
utilization in engineering, fluid mechanics, physics, chemistry,
biology, viscoelasticity etc. Numerous mathematicians and
physicists have been studying the properties of fractional cal-
culus [1], [2] and have established several methods for accurate
analytical and numerical solutions of fractional differential
equations, such as the variational iteration method [3], differ-
ential transform method [4], homotopy analysis method [5],
Jacobi spectral tau and collocation method [6]−[8], Laplace
transform method [9], homotopy perturbation method [10],
Adomian decomposition method [8], [9], high-order finite el-
ement methods [13] and many others [14], [19]. The scope
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and distinct aspects of fractional calculus have been written
by many authors in Refs [20]−[22].

In the past few years, there has been an extensive attraction
in employing the spectral method (see [23]−[25]) for numer-
ically solving the copious type of differential and integral
equations. The spectral methods have an exponential quota
of convergence and high level of efficiency. Spectral methods
are to express the approximate solution of the problem in term
of a finite sum of certain basis functions and then selection of
coefficients in order to reduce the difference between the exact
and approximate solutions as much as possible. The spectral
collocation method is a distinct type of spectral methods,
that is more relevant and extensively used to solve most of
differential equations [26].

For the reason of the distinctive attributes of wavelet theory
in representing continuous functions in the form of discontin-
uous functions [27], its applications as a mathematical tool is
widely expanding nowadays. Besides image processing and
signal decomposition it is also used to assess many other
mathematical problems, such as differential and integral equa-
tions. Wavelets comprise the incremental conception between
two consecutive levels of resolution, called multi-resolution.
The first component of multi-resolution analysis is vector
spaces. For each vector space, another vector space of higher
resolution is found and this continues until the final image or
signal is executed. The basis of each of these vector spaces
acts as the scaling function for the wavelets. Each vector space
having an orthogonal component and a basis function is said
to be the wavelet [28].

Up till now, a number of wavelet families have been
presented by different authors, but among all Haar wavelet
are considered to be the easiest wavelets family. Haar wavelet
was introduced in 1910 by Hungarian mathematician Alfred
Haar. These wavelets are obtained from Daubechies wavelets
of order 1, which consist of piecewise constant functions on
the real axis that can take only three values, −1, 0 and 1. Here
we are using collocation method, by increasing the level of
resolution, collocation points are also increasing and level of
accuracy too. Haar wavelet collocation method is extensively
used due to its constructive ability of being smooth, fast,
convenient and being computationally attractive [29]. In
addition, it has the competency to reduce the computations
for solving differential equations by converting them into
some system of algebraic equations. The main advantages of
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the proposed algorithm are, its simple application and no
residual or product operational matrix is required. The method
is well addressed in [22], [29]−[32].

The time-fractional Schrödinger equation (T-FSE) differs
from the standard Schrödinger equation. The first-order time
derivative is replaced by a fractional derivative, it makes
the problem overall in time. It describes, how the quantum
state (physical situation) of a quantum system changes with
time, soliton dispersion, deep water waves, molecular orbital
theory and the potential energy of a hydrogen-like atom
(fractional ‘Bohr atom’). The aim of this work is to explore
the numerical solutions of the time-fractional Schrödinger
equations by using Haar wavelet method. Due to the large
number of applications of the Schrödinger equation in different
aspects of quantum mechanics and engineering, many attempts
have been exercised on analytical and numerical methods to
calculate the approximate solution of (T-FSE). Some of them
are studied [6], [10], [18], [33]−[36], and enumerated here for
better perception of the presented analysis. Also, the existence
and uniqueness of solutions of fractional Schrödinger equation
have been proved by multiple authors [35], [37], [38].

II. PRELIMINARIES

In this section, some notations and properties of fractional
calculus, the basis of Haar function approximation for partial
differential equation and solution of Haar by multi-resolution
analysis are given that will help us in exploring the main theme
of the paper.

A. Riemann-Liouville Differential and Integral Operator

Assume ν > 0, m = dνe and f(x, t) ∈ Cm([0, 1] × [0, 1])
then the partial Caputo fractional derivative of f(x, t) with
respect to t is defined as

∂ν

∂tν
f(x, t) =

{
Im−ν
t

∂m

∂tm f(x, t)
∂m

∂tm f(x, t)
(1)

where Iν
t is the Riemann-Liouville fractional integral, given

as

Iν
t f(t) =

1
Γ(ν)

∫ t

0

(t− ϕ)ν−1f(ϕ)dϕ

I0
t f(t) = f(t) (2)

we use the notation Dν
t in replacement of ∂ν

∂tν for the Caputo
fractional derivative. The Caputo fractional derivative of order
ν > 0 for f(t) = tα is given as

Dν
t f(t) =

{
Γ(α+1)

Γ(α−ν+1) t
α−ν ,m > α ≥ m− 1,

0 if α ∈ {0, 1, 2, ..., m− 1} (3)

In the following, some main computational properties and
relations of fractional integral and differential operators are
defined as

i)Iα
t Iβ

t f(t) = Iα+β
t f(t) = Iβ

t Iα
t f(t)

ii)
∂β

∂tβ
Iα
t f(x, t) = Iα−β

t f(x, t)

iii)
∂α

∂tα
f(x, t) = f(x, t)−

n−1∑

k=0

tk

k!
∂kf(x, t) |t=0

∂tk

= f(x, t) +
n−1∑

k=0

ζk(x)tk (4)

where,ζk(x) = − 1
k!

∂kf(x,t)|t=0
∂tk . For more details see [1].

B. Haar wavelets and function approximation

Basis of Haar wavelets is obtained with a multi-resolution
of piecewise constant functions. Let the interval x ∈ [0, 1) be
divided into 2m subintervals of equal length, where m = 2j

and J is maximal level of resolution. Next, two parameters are
introduced, j = 0, 1, 2, . . . , J and k = 0, 1, 2, ldots,m − 1,
such that the wavelet number i satisfies the relation i =
k + m + 1. The ith Haar wavelet can be determined as

hi(x) =





1, x ∈ [ϑ1, ϑ2)
−1, x ∈ [ϑ2, ϑ3)
0, elsewhere

(5)

where ϑ1 = k
m , ϑ2 = k+0.5

m , ϑ3 = k+1
m

For the case i = 1, corresponding scaling function can be
defined as:

h1 =

{
1, x ∈ [ϑ1, ϑ3)
0, elsewhere

(6)

Here, we consider the wavelet-collocation method, therefore
collocation points are generated by using,

xl =
l − 0.5

2m
, l = 1, 2, 3, ldots, 2m (7)

The Haar system forms an orthonormal basis for the Hilbert
space f(t) ∈ L2(0, 1). We may consider the inner product
expansion of f(t) ∈ L2([0, 1)) in Haar series [31] as:

f(t) ≈ 〈f, ϕ〉ϕ(t) +
J−1∑

j=0

2j−1∑

i=0

〈f, hj,k〉hj,k(t) = CT H(t) (8)

where, C is 1 × 2J coefficient vector and H(t) =
[h0(t), h1(t), ldots, hm−1(t)]T . Also, a function of two vari-
ables can be expanded by Haar wavelets [32] as:

u(x, t) ≈
m−1∑

i=0

m−1∑

j=0

ui,jhi(x)hj(t) = HT (x).U.H(t) (9)

where, U is 2J × 2J coefficient matrix calculated by the
inner product ui,j = 〈hi(x), 〈u(x, t), hj〉〉 The operational
matrix of fractional integration of Haar function is needed to
solve PDE of fractional order. A more rigorous derivation for
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the generalized block pulse operational matrices is proposed
in [39]. The block pulse function forms a complete set of
orthogonal functions which is defined in interval [a, b) as

ψi(t) =

{
1, i−1

m b ≤ t < i
mb

0 elsewhere
(10)

for i = 1, 2, ldots, m It is known that any absolutely integrable
function f(t) on [a, b), can be expanded in block pulse
functions as

f(t) ∼= FT ψ(m)(t) (11)

so that the mean square error of approximation is mini-
mized. Here, FT = [f1, f2, f3, ldots, fm] and ψT

(m)(t) =
[ψ1(t), ψ2(t), ψ3(t), ldots, ψm(t)]. where,

fi =
m

b

∫ b

a

f(t)ψi(t)dt =
m

b

∫ (i/m)b

(i−1)b/m

f(t)ψi(t)dt (12)

The Riemann-Liouville fractional integral is simplified and
expanded in block pulse functions to yield the generalized
block pulse operational matrix F ν as

(Iνψm)(t) = F νψm(t) (13)

where

F ν = (
b

m
)ν 1

Γ(ν + 2)




1 ξ2 ξ3 . . . ξm

0 1 ξ2 . . . ξm−1

0 0 1 . . . ξm−2

...
...

...
. . .

...
0 0 0 0 1




with ξ1 = 1, ξp = pν+1 − 2(p − 1)ν+1 + (p − 2)ν+1

(p = 2, 3, 4, ldots,m − i + 1) For further details see refs.
[39]. The Haar functions are piecewise constant, so it may be
expanded into an m−term block pulse functions (BPF) as

Hm(t) = Hm×mψm(t) (14)

In [31] Haar wavelets operational matrix of fractional order
integration is derived by

(IνHm)(t) ≈ P νHm(t) (15)

where P ν is m ×m order Haar wavelets operational matrix
of fractional order integration. Substituting Eq.(2) in Eq.(14)
we get

(IνHm)(t) ≈ (IνHm×mψm)(t) = Hm×m(Iνψm)(t)
≈ Hm×mF νψm(t) (16)

From Eq.(15) and Eq.(16), it can be written as:

P νHm(t) = Hm×mF ν (17)

Therefore, P ν can be obtained as

P ν = H.F ν .H−1 (18)

C. Multi Resolution Analysis (MRA)

Any space V can be constructed using a basis function
h(2mt) as:

Vm = span{h(2mt− n)}n,m∈Z

h(t) is called scaling function, also known as ‘Father func-
tion’. The chain of subspaces ldotsV−2, V−1, V0, V1, V2ldots
with the following axioms is called multi-resolution analysis
(MRA) [28].

i){
⋃

Vm}m∈Z = L2(R)

ii){
⋂

Vm}m∈Z = {0}

iii)There exists h(t)such that,V0 = span{h(t− n)}n∈Z

iv){h(t− n)}n∈Z is an orthogonal set.

v)Iff(t) ∈ Vm then f(2−mt) ∈ V0, ∀ m ∈ Z)

vi)Iff(t) ∈ V0 then f(t− n) ∈ V0, ∀ n ∈ Z) (19)

Under the given axioms, there exists a ψ(.) ∈ L2(R), such
that {ψ(2mt− n)}m,n∈Z spans L2(R). The wavelet function
ψ(.) is also called ‘Mother wavelet’.

Convergence of the method

Let ∂3u(x,t)
∂t∂x2 and ∂3v(x,t)

∂t∂x2 are continuous and bounded functions
on (0, 1)× (0, 1), then ∃M1,M2 > 0,∀x, t ∈ (0, 1)× (0, 1)

|∂
3u(x, t)
∂t∂x2

| ≤ M1and |∂
3v(x, t)
∂t∂x2

| ≤ M2 (20)

Let um(x, t) and vm(x, t) are the following approximations
of u(x, t) and v(x, t),

um(x, t) ≈
m−1∑

i=0

m−1∑

j=0

uijhi(x)hj(t) and

vm(x, t) ≈
m−1∑

i=0

m−1∑

j=0

vijhi(x)hj(t) (21)

then we have

u(x, t)− um(x, t) =
∞∑

i=m

∞∑

j=m

uijhi(x)hj(t)

=
∞∑

i=2p+1

∞∑

j=2p+1

uijhi(x)hj(t) and

v(x, t)− vm(x, t) =
∞∑

i=m

∞∑

j=m

vijhi(x)hj(t)

=
∞∑

i=2p+1

∞∑

j=2p+1

vijhi(x)hj(t) (22)
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Theorem 1: Let the functions um(x, t) and vm(x, t) ob-
tained by using Haar wavelets are the approximation of u(x, t)
and v(x, t) then we have the errors bounded as following

‖u(x, t)− um(x, t)‖E ≤ M1√
3m3

and

‖v(x, t)− vm(x, t)‖E ≤ M2√
3m3

(23)

where

‖u(x, t)‖E = (
∫ 1

0

∫ 1

0

u2(x, t)dxdt)1/2 and

‖v(x, t)‖E = (
∫ 1

0

∫ 1

0

v2(x, t)dxdt)1/2 (24)

See proof in [32].

III. THE SCHRÖDINGER EQUATIONS

A. The time-fractional Schrödinger equation

The time-fractional Schrödinger equation (T-FSE) has the
following form

i
∂νφ(x, t)

∂tν
+ λ

∂2φ(x, t)
∂x2

+ η | φ |2 φ + µ(x)φ = q(x, t),

0 < x, t ≤ 1 (25)

with initial conditions φ(x, 0) = f(x), φ(0, t) = g(t),
φ
′
(0, t) = h(t)

where 0 < ν ≤ 1, λ and η are real constants, µ(x) is
the trapping potential and φ(x, t), f(x), g(t), h(t) and q(x, t)
are complex functions. We can express complex functions
φ(x, t), f(x), g(t), h(t) and q(x, t) into their respective real
and imaginary parts as

φ(x, t) = u(x, t) + iv(x, t)
µ(x) = µ1(x) + iµ2

f(x) = f1(x) + if2(x) (26)
g(t) = g1(t) + ig2(t)
h(t) = h1(t) + ih2(t)

q(x, t) = q1(x, t) + iq2(x, t)

Substituting Eq. (26) into Eq. (25) and collecting real and
imaginary parts, then Eq. (25) can be written as coupled time-
fractional nonlinear partial differential equations as:

−∂νv(x, t)
∂tν

+ λ
∂2u(x, t)

∂x2
+ η(u2 + v2)u + µ1(x)

u(x, t)− q1(x, t) = 0
∂νu(x, t)

∂tν
+ λ

∂2v(x, t)
∂x2

+ η(u2 + v2)v + µ2(x)

v(x, t)− q2(x, t) = 0 (27)

with initial conditions

u(x, 0) = f1(x), v(x, 0) = f2(x), u(0, t) = g1(t),

v(0, t) = g2(t), u
′
(0, t) = h1(t), v

′
(0, t) = h2(t) (28)

B. The time-fractional coupled Schrödinger system

The time-fractional coupled Schrödinger system (T-FCSS)
has the following form

i
∂νφ(x, t)

∂tν
+ i

∂2φ(x, t)
∂x2

+
∂2φ(x, t)

∂x2
+ λ1(| φ |2 + | ψ |2)

φ(x, t) + α1(x)φ(x, t) + β1ψ(x, t)− f1(x, t) = 0

i
∂νψ(x, t)

∂tν
+ i

∂2ψ(x, t)
∂x2

+
∂2ψ(x, t)

∂x2
+ λ2(| φ |2 + | ψ |2)

ψ(x, t) + α2(x)φ(x, t) + β2ψ(x, t)− f2(x, t) = 0
(29)

with initial conditions

φ(x, 0) = f3(x), φ(0, t) = g3(t), φ
′
(0, t) = h3(t),

ψ(x, 0) = f4(x), ψ(0, t) = g4(t), ψ
′
(0, t) = h4(t) (30)

where 0 < ν ≤ 1, λ1, λ2, α1, α2, β1 andβ2 are real constants
and φ(x, t), ψ(x, t), f3(x), f4(t), g3(t), g4(t), h3(t), h4(t),
q1(x, t) and q2(x, t) are complex functions. We can express
complex functions into their respective real and imaginary
parts as

φ(x, t) = u(x, t) + iv(x, t), ψ(x, t) = r(x, t) + is(x, t)
f3(x) = f5(x) + if6(x), f4(x) = f7(x) + if8(x)

g3(t) = g5(t) + ig6(t), g4(t) = g7(t) + ig8(t)
h3(t) = h5(t) + ih6(t), h4(t) = h7(t) + ih8(t)

q3(x, t) = q5(x, t)+iq6(x, t), q4(x, t) = q7(x, t)+iq8(x, t)
(31)

Substituting Eq. (31) into Eq. (29) and equating real and
imaginary parts we get the system of two coupled time-
fractional nonlinear partial differential equations.

− ∂νv(x, t)
∂tν

− ∂v(x, t)
∂x

+
∂2u(x, t)

∂x2
+λ1(u2 +v2 +r2 +s2)

u(x, t) + α1u(x, t) + β1r(x, t)− q3(x, t) = 0
∂νu(x, t)

∂tν
+

∂u(x, t)
∂x

+
∂2v(x, t)

∂x2
+ λ1(u2 + v2 + r2 + s2)

v(x, t) + α1v(x, t) + β1s(x, t)− q4(x, t) = 0

− ∂νs(x, t)
∂tν

+
∂s(x, t)

∂x
+

∂2r(x, t)
∂x2

+ λ2(u2 + v2 + r2 + s2)

r(x, t) + α2u(x, t) + β2r(x, t)− q5(x, t) = 0
∂νr(x, t)

∂tν
− ∂r(x, t)

∂x
+

∂2s(x, t)
∂x2

+ λ2(u2 + v2 + r2 + s2)

s(x, t) + α2v(x, t) + β2s(x, t)− q6(x, t) = 0 (32)

IV. THE PROPOSED METHOD

A. For time-fractional Schrödinger equation

Any arbitrary function u(x, t) ∈ L2([0, 1) × [0, 1)) and
v(x, t) ∈ L2([0, 1)× [0, 1)), can be expanded into Haar series
[32] as:

u̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

uijhi(x)hj(t)

v̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

vijhi(x)hj(t) (33)
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where 2M×2M Haar coefficient matrix of uij and vij in Eq.
(33) can be written as:

U̇
′′

= HT (x).U.H(t)

V̇
′′

= HT (x).V.H(t) (34)

Let dots and primes in Eq. (33) represent differentiation with
respect to t and x, respectively. By integrating Eq. (34) with
respect to t from 0 to t, we get

U
′′

= HT (x).U.P 1.H(t) + u
′′
(x, 0)

V
′′

= HT (x).V.P 1.H(t) + v
′′
(x, 0) (35)

on integrating Eq. (35) twice with respect to x from 0 to x,
then we get

U
′
= HT (x).[P 1]T .U.P 1.H(t) + u

′
(x, 0)− u

′
(0, 0) +

u
′
(0, t)

V
′
= HT (x).[P 1]T .V.P 1.H(t) + v

′
(x, 0)− v

′
(0, 0) +

v
′
(0, t) (36)

and then

U = HT (x).[P 2]T .U.P 1.H(t) + u(x, 0)− u(0, 0)−
xu

′
(0, 0) + xu

′
(0, t) + u(0, t)

V = HT (x).[P 2]T .V.P 1.H(t) + v(x, 0)− v(0, 0)−
xv

′
(0, 0) + xv

′
(0, t) + v(0, t) (37)

Applying differential operator Dν
t on both sides of Eq. (37)

and using property (ii) of Eq. (4)

Dν
t U = HT (x).[P 2]T .U.P 1−ν .H(t) + xDν

t u
′
(0, t) +

Dν
t u(0, t)

Dν
t V = HT (x).[P 2]T .V.P 1−ν .H(t) + xDν

t v
′
(0, t) +

Dν
t v(0, t) (38)

Substitution of Eqs. (35), (37) and (38) into Eq. (27)
may lead to coupled system of time-fractional differential
equations. This system will have some unknown functions
u
′′
(x, 0), u

′
(x, 0), u

′
(0, 0), u(0, 0), Dν

t u
′
(0, t), Dν

t u(0, t),
v
′′
(x, 0), v

′
(x, 0), v

′
(0, 0), v(0, 0), Dν

t v
′
(0, t), and Dν

t v(0, t)
. With the help of initial conditions all these functions are
calculated. We solve Eq. (27) for unknown Haar coefficients
by using collocation method. Finally, for Haar solution of
T-FSE, we substitute values of Haar coefficients in Eq. (37).

B. For time-fractional coupled Schrödinger system
Now, we approximate u(x, t), v(x, t), r(x, t) and s(x, t), by

the Haar series [32] as:

u̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

uijhi(x)hj(t)

v̇
′′
(x, t) =

2m∑

i=1

2m∑

j=1

vijhi(x)hj(t)

ṙ
′′
(x, t) =

2m∑

i=1

2m∑

j=1

rijhi(x)hj(t)

ṡ
′′
(x, t) =

2m∑

i=1

2m∑

j=1

sijhi(x)hj(t) (39)

Matrix form of Eq. (39) can be written as:

U̇
′′

= HT (x).U.H(t)

V̇
′′

= HT (x).V.H(t)

Ṙ
′′

= HT (x).R.H(t)

Ṡ
′′

= HT (x).S.H(t) (40)

Let dots and primes in Eq. (40) represent differentiation with
respect to t and x, respectively. By integrating Eq. (40) with
respect to t from 0 to t, we get

U
′′

= HT (x).U.P 1.H(t) + u
′′
(x, 0)

V
′′

= HT (x).V.P 1.H(t) + v
′′
(x, 0)

R
′′

= HT (x).R.P 1.H(t) + r
′′
(x, 0)

S
′′

= HT (x).S.P 1.H(t) + s
′′
(x, 0) (41)

on integrating Eq. (41) twice with respect to x from 0 to x,
once we get

U
′
= HT (x).[P 1]T .U.P 1.H(t) + u

′
(x, 0)− u

′
(0, 0) +

u
′
(0, t)

V
′
= HT (x).[P 1]T .V.P 1.H(t) + v

′
(x, 0)− v

′
(0, 0) +

v
′
(0, t)

R
′
= HT (x).[P 1]T .R.P 1.H(t) + r

′
(x, 0)− r

′
(0, 0) +

r
′
(0, t)

S
′
= HT (x).[P 1]T .S.P 1.H(t) + s

′
(x, 0)− s

′
(0, 0) +

s
′
(0, t) (42)

and

U = HT (x).[P 2]T .U.P 1.H(t) + u(x, 0)− u(0, 0)−
xu

′
(0, 0) + xu

′
(0, t) + u(0, t)

V = HT (x).[P 2]T .V.P 1.H(t) + v(x, 0)− v(0, 0)−
xv

′
(0, 0) + xv

′
(0, t) + v(0, t)

R = HT (x).[P 2]T .R.P 1.H(t) + r(x, 0)− r(0, 0)−
xr

′
(0, 0) + xr

′
(0, t) + r(0, t)

S = HT (x).[P 2]T .S.P 1.H(t) + s(x, 0)− s(0, 0)−
xs

′
(0, 0) + xs

′
(0, t) + s(0, t) (43)

Applying differential operator Dν
t on both sides of Eq. (43)

and using property (ii) of Eq. (4)

Dν
t U = HT (x).[P 2]T .U.P 1−ν .H(t) + xDν

t u
′
(0, t) +

Dν
t u(0, t)

Dν
t V = HT (x).[P 2]T .V.P 1−ν .H(t) + xDν

t v
′
(0, t) +

Dν
t v(0, t)

Dν
t R = HT (x).[P 2]T .R.P 1−ν .H(t) + xDν

t r
′
(0, t) +

Dν
t r(0, t)

Dν
t S = HT (x).[P 2]T .S.P 1−ν .H(t) + xDν

t s
′
(0, t) +

Dν
t s(0, t) (44)

Substitution of Eqs. (41), (42), (43) and (44) into Eq. (32) may
lead to the two coupled systems of time-fractional differential
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equations. This system has some unknown functions. With
the help of initial conditions all these functions are calculated.
We solve system of Eq. (32) for unknown Haar coefficients by
using collocation method. Finally, for Haar solution of time-
fractional coupled Schrödinger system (T-FCSS), we substitute
values of Haar coefficients in Eq. (43).

V. NUMERICAL PROBLEMS

In this section, four test problems are taken to test the
efficiency and accuracy of the proposed scheme. The com-
putations associated with the problems were executed using
Mathematica 10.

Problem 1: Consider the linear T-FSE which is also found
in [6] with

λ = 1, η = 0, µ(x) = 0 and q(x, t) = (
2it2−ν

Γ(3− ν)
− t2)eix (45)

Subjected to initial conditions

φ(x, 0) = 0, φ(0, t) = t2, φ
′
(0, t) = it2 (46)

the exact solution for ν = 1 is

φ(x, t) = t2eix (47)

Substitute Eq. (45) in Eq. (25) the determined coupled system
of equations is

−∂νv(x, t)
∂tν

+
∂2u(x, t)

∂x2
− (t2 cos x +

2t2−ν sinx

Γ(3− ν)
) = 0

∂νu(x, t)
∂tν

+
∂2v(x, t)

∂x2
− (t2 sinx− 2t2−ν cos x

Γ(3− ν)
) = 0 (48)

By using the method given in Section IV A, Eq. (48) can be
written as

−HT (x).[P 2]T .V.P 1−ν .H(t) + HT (x).U.P 1.H(t) +
Γ(ν + 1)xt2−ν

Γ(2− ν + 1)
− (t2 cos x +

2t2−ν sinx

Γ(3− ν)
) = 0

HT (x).[P 2]T .U.P 1−ν .H(t) + HT (x).V.P 1.H(t) +
Γ(ν + 1)t2−ν

Γ(2− ν + 1)
− t2 sinx +

2t2−ν cos x

Γ(3− ν)
) = 0 (49)

Towards the approximate solution, we first collocate Eq. (49)
at points

xi =
i− 0.5

2m
, tj =

j − 0.5
2m

(50)

Eq. (49) ⇒
−HT (xi).[P 2]T .V.P 1−ν .H(tj) + HT (xi).U.P 1.H(tj) +

Γ(ν + 1)xit
2−ν
j

Γ(2− ν + 1)
− (t2j cos xi +

2t2−ν
j sinxi

Γ(3− ν)
) = 0

HT (xi).[P 2]T .U.P 1−ν .H(tj) + HT (xi).V.P 1.H(tj) +
Γ(ν + 1)t2−ν

j

Γ(2− ν + 1)
− t2j sinxi +

2t2−ν
j cos xi

Γ(3− ν)
) = 0 (51)

Eq. (51) generates two systems of 2M algebraic equations of
Haar coefficients. The values of Haar coefficients are obtained
from system of Eq. (51) by using Newton’s iterative method.
With the help of these coefficients, Haar solutions are attained

from Eq. (37). Comparison of the Haar solutions by Homotopy
analysis method in [5] is shown in Table I with different values
of ν.

TABLE I
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 1

t x
ν = 0.1 ν = 0.3 ν = 0.5

HWCM HAM[5] HWCM HAM[5] HWCM HAM[5]

0.125

0.125 0.015584 0.015729 0.015588 0.018166 0.015602 0.032192
0.375 0.140258 0.140320 0.140277 0.126725 0.140322 0.18097
0.625 0.389603 0.391911 0.389639 0.331403 0.389698 0.417840
0.875 0.763621 0.773331 0.763678 0.642092 0.763759 0.735157

0.375

0.125 0.015639 0.014928 0.015909 0.015876 0.016599 0.029901
0.375 0.140697 0.137242 0.142257 0.117591 0.144873 0.171424
0.625 0.390743 0.387923 0.394153 0.321101 0.398660 0.407056
0.875 0.765763 0.770778 0.771532 0.639027 0.778130 0.736778

0.625

0.125 0.015881 0.014367 0.017251 0.013413 0.020637 0.026391
0.375 0.142657 0.135328 0.150692 0.110280 0.164111 0.159805
0.625 0.395831 0.385461 0.413348 0.315020 0.436643 0.396412
0.875 0.775363 0.768819 0.805018 0.639973 0.839202 0.740576

0.875

0.125 0.016431 0.014212 0.020145 0.011454 0.028487 0.022180
0.375 0.147236 0.135101 0.169643 0.107096 0.205320 0.148820
0.625 0.407697 0.385159 0.456638 0.314912 0.519962 0.388621
0.875 0.797810 0.767939 0.880970 0.644682 0.974802 0.745598

Fig. 1. Haar solutions of Problem 1 at ν = 0.1, 0.3, 0.5

Problem 2: Consider a nonlinear cubic form of T-FSE [6]
with

λ = 1, η = 1, µ(x) = 0 and

q(x, t) = (− 2t2−ν

Γ(3− ν)
+ (−4π2t2 + t6)i)e−2πix (52)

and initial conditions

φ(x, 0) = 0, φ(0, t) = it2, φ
′
(0, t) = 2πt2 (53)

with exact solution for ν = 1 is

φ(x, t) = t2ie−2πix (54)
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Substitute Eq. (52) in Eq. (25) the determine coupled system
of equations is

−∂νv(x, t)
∂tν

+
∂2u(x, t)

∂x2
+ (u2 + v2)u− ((t6 − 4π2t2) sin 2π

x− 2t3−ν

Γ(3− ν)
cos 2πx) = 0 (55)

∂νu(x, t)
∂tν

+
∂2v(x, t)

∂x2
+ (u2 + v2)v − ((t6 − 4π2t2) cos 2π

x +
2t3−ν

Γ(3− ν)
sin 2πx) = 0 (56)

On following the method described in Section IV A, we have

−HT (x).[P 2]T .V.P 1−ν .H(t) + HT (x).U.P 1.H(t)+

((HT (x).[P 2]T .U.P 1.H(t) + 2πt2x)2+

(HT (x).[P 2]T .V.P 1.H(t)+t2)2).(HT (x).[P 2]T .U.P 1.H(t)+

2πt2x) +
Γ(3)

Γ(3− ν)
t2−ν − ((t6 − 4π2t2) sin 2πx−

2t3−ν

Γ(3− ν)
cos 2πx) = 0,

HT (x).[P 2]T .U.P 1−ν .H(t) + HT (x).V.P 1.H(t)+

((HT (x).[P 2]T .U.P 1.H(t) + 2πt2x)2+

(HT (x).[P 2]T .V.P 1.H(t)+t2)2).(HT (x).[P 2]T .V.P 1.H(t)+

t2) +
2πΓ(3)

Γ(3− ν)
xt2−ν − ((t6 − 4π2t2) cos 2πx+

2t3−ν

Γ(3− ν)
sin 2πx) = 0 (57)

For approximate solution of Eq. (56), putting collocation
points of Eq. (50) in above equations generates two systems of
2M non linear algebraic equations of Haar coefficients. The
values of Haar coefficients are obtained by using Newton’s
iterative method and then with the help of these coefficients
Haar solutions are attained from Eq. (37). The Haar solutions
comparisone with the method in [5] for the different values of
ν is shown in Table II.

Problem 3: Consider T-FSE with trapping potential [6] for

λ = 1, η = 1, µ(x) = cos2 x and

q(x, t) = (i
6t3−ν

Γ(4− ν)
− 1

4
t3 + t9 + t3 cos2 x)e

ix
2 (58)

Subjected to initial conditions

φ(x, 0) = 0, φ(0, t) = t, φ
′
(0, t) = i

t3

2
(59)

with exact solution for ν = 1 is

φ(x, t) = t3e
ix
2 (60)

TABLE II
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 2

t x
ν = 0.1 ν = 0.5 ν = 0.9

HWCM HAM[5] HWCM HAM[5] HWCM HAM[5]

0.125

0.125 0.013539 0.013276 0.013578 0.006316 0.013768 0.002593
0.375 0.121912 0.132538 0.121985 0.097840 0.122023 0.062856
0.625 0.339272 0.385008 0.339565 0.347687 0.340151 0.276693
0.875 0.668433 0.770812 0.668861 0.793325 0.669170 0.730876

0.375

0.125 0.010136 0.013277 0.012634 0.006316 0.020531 0.002593
0.375 0.087449 0.132538 0.091611 0.097839 0.097166 0.062855
0.625 0.235941 0.385008 0.240394 0.347687 0.248868 0.276693
0.875 0.450485 0.770812 0.449529 0.793327 0.445334 0.730872

0.625

0.125 0.016209 0.013277 0.018019 0.006316 0.037906 0.002600
0.375 0.144228 0.132538 0.142259 0.097840 0.133228 0.062856
0.625 0.391331 0.385008 0.383766 0.347687 0.379218 0.276693
0.875 0.723229 0.770812 0.709533 0.793325 0.681230 0.730876

0.875

0.125 0.016724 0.013276 0.011634 0.006316 0.064282 0.002600
0.375 0.161766 0.132538 0.166036 0.097840 0.180905 0.062856
0.625 0.448134 0.385008 0.430220 0.347687 0.413375 0.276693
0.875 0.856867 0.770812 0.860240 0.793327 0.847833 0.730872

Determine the coupled system of equations by substituting
Eq. (57) in Eq. (25). Next, following the method illustrated
in Section IV A, by following same steps of problem 1
Haar solutions are attained. The obtained Haar solutions are
compared with the Homotopy analysis method [5] and at
different values of ν are shown in Table III.

TABLE III
COMPARISON BETWEEN HAAR SOLUTIONS (J = 1, m = 4) AND

HAM [5] OF PROBLEM 3

t x
ν = 0.1 ν = 0.3 ν = 0.5

HWCM HAM[5] HWCM HAM[5] HWCM HAM [5]

0.125

0.125 0.002666 0.001164 0.005127 0.001923 0.009737 0.003186
0.375 0.064478 0.032624 0.099565 0.043939 0.151781 0.100635
0.625 0.283647 0.155864 0.395466 0.219652 0.544319 0.438394
0.875 0.752604 0.482083 0.981003 0.706422 1.262370 1.267630

0.375

0.125 0.002335 0.001064 0.004453 0.001859 0.008360 0.002993
0.375 0.056487 0.029282 0.086504 0.040986 0.130392 0.082892
0.625 0.248554 0.138363 0.343701 0.159805 0.467832 0.388469
0.875 0.660306 0.425678 0.853338 0.297603 1.085680 1.080400

0.625

0.125 0.001737 0.000940 0.003234 0.001782 0.005880 0.002751
0.375 0.042093 0.025192 0.062894 0.046640 0.091797 0.073477
0.625 0.185563 0.117006 0.250376 0.240900 0.330180 0.329875
0.875 0.498019 0.355007 0.625716 0.854561 0.769576 0.869481

0.875

0.125 0.000973 0.000833 0.001714 0.001823 0.002981 0.002530
0.375 0.023635 0.021729 0.033100 0.051878 0.045350 0.065040
0.625 0.105052 0.098823 0.131553 0.315074 0.158672 0.279519
0.875 0.299206 0.291128 0.337855 0.257690 0.368943 0.300179

Problem 4: Take into consideration non-linear T-FCSS [35]
for
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λ1 = 2, λ2 = 4, α1 = α2 = 1, β1 = 1 and β2 = −1

q1(x, t) = − 2t2−ν

Γ(3− ν)
sinx + 4t6 cos x + i(

2t2−ν

Γ(3− ν)
cos x+

4t6 sinx) andq2(x, t) = − 2t2−ν

Γ(3− ν)
sinx + 8t6 cos x+

i(
2t2−ν

Γ(3− ν)
cos x + 8t6 sinx) (61)

with initial conditions

φ(x, 0) = ψ(x, 0) = 0,

φ(0, t) = ψ(0, t) = t,

φ
′
(0, t) = ψ

′
(0, t) = it2 (62)

and with exact solution for these values of λ, α, β and ν = 1
is

φ(x, t) = ψ(x, t) = t2eix, (63)

Fig. 2. Haar solutions of Problem 3 at ν = 0.1, 0.3, 0.5

Determine the coupled system of two equations by substituting
Eq. (60) in Eq. (29) as

− ∂νv(x, t)
∂tν

− ∂v(x, t)
∂x

+
∂2u(x, t)

∂x2
+2(u2 + v2 + r2 + s2)

u(x, t) + u(x, t) + r(x, t) +
2t2−ν

Γ(3− ν)
sinx + 4t6 cos x = 0,

∂νu(x, t)
∂tν

+
∂u(x, t)

∂x
+

∂2v(x, t)
∂x2

+ 2(u2 + v2 + r2 + s2)

v(x, t) + v(x, t) + s(x, t)− (
2t2−ν

Γ(3− ν)
cos x + 4t6 sinx) = 0,

− ∂νs(x, t)
∂tν

+
∂s(x, t)

∂x
+

∂2r(x, t)
∂x2

+ 2(u2 + v2 + r2 + s2)

r(x, t) + u(x, t)− r(x, t) +
2t2−ν

Γ(3− ν)
sinx + 8t6 cos x = 0,

∂νr(x, t)
∂tν

− ∂r(x, t)
∂x

+
∂2s(x, t)

∂x2
+ 2(u2 + v2 + r2 + s2)

s(x, t)+v(x, t)−s(x, t)− (
2t2−ν

Γ(3− ν)
cos x+8t6 sinx) = 0

(64)

Next, following the method illustrated in Section IV B, we
have

− (HT (x).[P 2]T .V.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)−

HT (x).[P 1]T .V.P 1.H(t) + HT (x).U.P 1.H(t) + U+

2(U2 + V2 + R2 + S2)U + R +
2t2−ν

Γ(3− ν)
sinx+

4t6 cos x = 0, (65)

HT (x).[P 2]T .U.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν+

HT (x).[P 1]T .U.P 1.H(t) + HT (x).V.P 1.H(t) + V+

2(U2 + V2 + R2 + S2)V + S− (
2t2−ν

Γ(3− ν)
cos x+

4t6 sinx) = 0,

− (HT (x).[P 2]T .S.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)+

HT (x).[P 1]T .S.P 1.H(t) + HT (x).R.P 1.H(t) + U+

4(U2 + V2 + R2 + S2)R− R +
2t2−ν

Γ(3− ν)
sinx+

8t6 cos x = 0,

(HT (x).[P 2]T .R.P 1−ν .H(t) +
Γ(ν + 1)

Γ(2− ν + 1)
xt2−ν)−

HT (x).[P 1]T .R.P 1.H(t) + HT (x).S.P 1.H(t) + V+

4(U2+V2+R2+S2)S−S−(
2t2−ν

Γ(3− ν)
cos x+8t6 sinx) = 0

(66)

where U = HT (x).[P 2]T .U.P 1.H(t) + t2,
V = HT (x).[P 2]T .V.P 1.H(t) + xt2,
R = HT (x).[P 2]T .R.P 1.H(t) + t2 and
S = HT (x).[P 2]T .S.P 1.H(t) + xt2

TABLE IV
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.1) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015383 0.014440 0.0153167 0.004286
0.375 0.138501 0.128015 0.137928 0.038537
0.625 0.385851 0.365216 0.384604 0.143183
0.875 0.763499 0.949120 0.763355 0.811326

0.375

0.125 0.013949 0.014439 0.013495 0.004286
0.375 0.125927 0.128015 0.121958 0.038536
0.625 0.357238 0.365216 0.348492 0.143183
0.875 0.747914 0.949120 0.746334 0.811326

0.625

0.125 0.011086 0.014440 0.009704 0.004285
0.375 0.100695 0.128015 0.088716 0.038536
0.625 0.297240 0.365216 0.272767 0.143183
0.875 0.697857 0.949120 0.706649 0.811326

0.875

0.125 0.008487 0.014440 0.004160 0.004286
0.375 0.077508 0.128015 0.040194 0.038537
0.625 0.236292 0.365216 0.163674 0.143183
0.875 0.634398 0.949120 0.664360 0.811326

Using Eq. (50), the values of Haar coefficients are obtained
and finally with the help of these coefficients Haar solutions
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are attained from Eq. (43). The Haar solutions are compared
with the method in [5] with ν = 0.1 and results are shown in
Table IV, and for ν = 0.5 and ν = 0.9 in Table V and Table
VI, respectively.

TABLE V
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.5) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015386 0.015609 0.015323 0.008203
0.375 0.138522 0.139708 0.137974 0.074131
0.625 0.385897 0.376762 0.384668 0.225031
0.875 0.763618 0.919085 0.763415 0.811099

0.375

0.125 0.013951 0.015608 0.013522 0.008203
0.375 0.125873 0.139708 0.122165 0.074132
0.625 0.357309 0.376762 0.348789 0.225031
0.875 0.748433 0.919085 0.746600 0.811099

0.625

0.125 0.011025 0.015609 0.009723 0.008203
0.375 0.100259 0.139708 0.088875 0.074132
0.625 0.296585 0.376762 0.272878 0.225031
0.875 0.696443 0.919085 0.705993 0.811099

0.875

0.125 0.008579 0.015609 0.004118 0.008202
0.375 0.079810 0.139708 0.040065 0.074131
0.625 0.235819 0.376762 0.162549 0.225031
0.875 0.623663 0.919085 0.660364 0.811099

TABLE VI
COMPARISON BETWEEN HAAR SOLUTIONS

(J = 1, m = 4, ν = 0.9) AND HAM [5] OF PROBLEM 4

t x
| φ(x, t) | | ψ(x, t) |

HWCM HAM [5] HWCM HAM [5]

0.125

0.125 0.015395 0.013101 0.015357 0.013101
0.375 0.138552 0.117724 0.138256 0.118102
0.625 0.385995 0.322206 0.384873 0.336649
0.875 0.763808 0.631637 0.763550 0.834047

0.375

0.125 0.013964 0.013101 0.013688 0.013101
0.375 0.125649 0.117724 0.123396 0.118102
0.625 0.357809 0.322206 0.349879 0.336649
0.875 0.749377 0.631637 0.747267 0.834047

0.625

0.125 0.010878 0.013101 0.009803 0.013101
0.375 0.099177 0.117725 0.089536 0.118102
0.625 0.296418 0.322206 0.273663 0.336649
0.875 0.694211 0.631637 0.701977 0.834047

0.875

0.125 0.008446 0.013101 0.003678 0.013101
0.375 0.085571 0.117725 0.040710 0.118102
0.625 0.231591 0.322206 0.157683 0.336649
0.875 0.604013 0.631637 0.640823 0.834047

VI. CONCLUSION

In this paper, we extended the capability of the Haar
wavelet collocation method (HWCM) for the solution of time-
fractional coupled system of partial differential equations.
The main advantage of HWCM is the ability to achieve

a good solution and rapid convergence with small number
of collocation points. The presence of maximum zeros in
the Haar matrices reduces the number of unknown wavelet
coefficients that is to be determined, which as a result dimin-
ishes the computation time as well. The scheme is tested on
some examples of time fractional Schrödinger equations. The
presented procedure may very well be extended to solve two
dimensional Schrödinger equation and other similar nonlinear
problems of partial differential equations of fractional order.
The problem discussed here is just for showing the appli-
cability of the proposed computational technique to handle
the complex system of differential equation in fractional-
order problems in a straight forward way. Also, the Haar
wavelet method proves to be capable to efficiently handle
the nonlinearity of partial differential equations of fractional
order. The main advantages of the proposed algorithm are, its
simple application and no requirement of residual or product
operational matrix. Numerical solutions for different order
of fractional time derivative by Haar wavelet are shown in
Tables and Figures. The increasing values of ν show that the
solutions are valuable in understanding their respective exact
solutions for ν = 1. Comparisons between our approximate
solutions of the problems with their actual solutions and with
the approximate solutions achieved by a homotopy analysis
method [5] confirm the validity and accuracy of our scheme.
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