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Robust Finite-time Synchronization of Non-Identical
Fractional-order Hyperchaotic Systems and its

Application in Secure Communication
Hadi Delavari and Milad Mohadeszadeh

Abstract—This paper proposes a novel adaptive sliding mod-
e control (SMC) method for synchronization of non-identical
fractional-order (FO) chaotic and hyper-chaotic systems. Under
the existence of system uncertainties and external disturbances,
finite-time synchronization between two FO chaotic and hyper-
chaotic systems is achieved by introducing a novel adaptive
sliding mode controller (ASMC). Here in this paper, a fractional
sliding surface is proposed. A stability criterion for FO nonlinear
dynamic systems is introduced. Sufficient conditions to guarantee
stable synchronization are given in the sense of the Lyapunov
stability theorem. To tackle the uncertainties and external dis-
turbances, appropriate adaptation laws are introduced. Particle
Swarm Optimization (PSO) is used for estimating the controller
parameters. Finally, finite-time synchronization of the FO chaotic
and hyper-chaotic systems is applied to secure communication.

Index Terms—Adaptive sliding mode control, chaos synchro-
nization, fractional order, hyper-chaotic system, Lyapunov theo-
rem, secure communication

I. INTRODUCTION

CHAOTIC behavior is a prevalent phenomenon appearing

in nonlinear systems. Chaotic systems have received

more attention in the literature during the last three decades.

A chaotic system is a nonlinear deterministic system that has

complex and unpredictable behavior.

Fractional calculus is a mathematical topic more than three

centuries old, but its application to physics and engineering

fields have attracted more attention only in recent years[1−3].

This happens because it has been recently found that sev-

eral physical phenomena can be more adequately described

by fractional differential equations rather than integer-order

models[4], and it has been found that many FO systems can

show complex dynamical behavior such as chaos. The advan-

tages of the FO systems are that there are more degrees of

freedom in the model. Also memory is included in FO systems.

Many systems in interdisciplinary fields, such as viscoelastic

materials[5] and micro-electromechanical systems[6] can be

described using fractional calculus methods.

Recently many researchers have recognized that many com-

plex systems, such as FO Lorenz system[7], FO Chen system[8]
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and FO Arnodo-Coullet system[9], can be described using

fractional integrals and derivatives.

Since Pecora and Carroll[10] established a chaos synchro-

nization scheme for two identical chaotic systems with dif-

ferent initial conditions, chaos synchronization has attracted

a great attention. The chaotic synchronization occurs when-

ever the state trajectories of the slave system track the state

trajectories of the master system in a given finite-time[11,12].

Chaos synchronization is a contemporary topic in nonlinear

science because of its broad and considerable applications in

secure communication, automatic control, neural networks and

etc.[13−15].

Due to the existence of chaos in real practical systems and

many applications in physics and engineering fields, control

and synchronization of FO chaotic systems have attracted

many researchers attention in the past few years[16−23]. In

[24], an active sliding mode approach for synchronization of

FO chaotic system is proposed. The FO Novel and Chen

hyper-chaotic systems are proposed for synchronization in

[25], where the states of the FO hyper-chaotic Novel system

are used to control the states of the FO hyper-chaotic Chen

system. Several methods have been proposed to achieve chaos

synchronization such as adaptive feedback control, adaptive

impulsive control, sliding mode control, active control, back-

stepping design and optimal control[26−36].

Most of the published papers focus on asymptotic stability

which leads to infinite-time synchronization, but in practical

applications, finite-time synchronization is more valuable than

infinite-time synchronization. Also, most of the researches

are related to synchronization between two chaotic systems

without uncertainty or two identical chaotic systems, but in a

real control system, due to the limitations of physical devices

and the effect of interference (such as noise, temperature, etc.),

uncertainties are unavoidable.

Motivated by the above discussion, a novel adaptive sliding

mode control approach for synchronization of a class of

new FO chaotic system and a FO hyper-chaotic system is

proposed. In our contribution we pursue five main research

aims. First, the proposed approach is very simple and easily

realized experimentally for secure communication. Second,

the proposed controller can be applied for a width range of

systems and is more suitable for engineering applications.

Third, finite-time convergence to zero and stability of the

proposed method are analytically proved, which contains new

ideas. Fourth, a fractional sliding surface is presented and

stability of the proposed surface is proved. Fifth, the upper
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bound of the system uncertainties and external disturbances

are estimated using Lyapunov stability theorem.

The rest of this paper is organized as follows. First, the

fractional calculus and the fractional systems stability theo-

ry are briefly introduced. Then, the system description and

problem statement are given. After that, the design strategy

of the proposed ASMC is presented. Then, the simulations

for synchronization of non-identical FO chaotic and hyper-

chaotic systems are done and the application of the proposed

synchronization scheme is studied in secure communication.

Finally, concluding remarks are addressed.

II. DERIVATIVE AND STABILITY THEOREM ON FO

SYSTEM

The Caputo fractional derivative of order α of m order

continuous function f(t) with respect to t is defined by

C
t0D

α
t f(t) = Im−αf (m)(t), α > 0 (1)

where m is the smallest integer number, larger than , and Iβ

is the Riemann-Liouville integral operator of order β which

is described as follows

t0I
β
t f(t) =

1

Γ(β)

∫ t

t0

f(τ)

(t− τ)1−β
dτ, β > 0 (2)

In (2), Γ(·) is the Gamma function which is given by

Γ(β) =

∫ ∞

0

tβ−1e−tdt (3)

The numerical simulation of a fractional differential equa-

tion is not as simple as that of an ordinary differential equation.

Recently, many approaches have been investigated for solving

nonlinear FO differential equations. Throughout this paper, we

choose the fractional Adams-Bashforth-Moulton method as a

representative numerical scheme[37,38]. In order to explain this

method, the following differential equation is considered{
Dα

t y(t) = r(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = y
(k)
0 , k = 0, 1, · · · ,m− 1.

(4)

The differential equation (4) is equivalent to Volterra inte-

gral equation which is as follows

y(t) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1r(s, y(s))ds. (5)

Now, set h = T/N , tn = nh, n = 0, 1, · · · , N . The integral

equation can be discretized as

yh(tn+1) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

hα

Γ(α+ 2)
r (tn+1, y

p
h(tn+1))

+
hα

Γ(α+ 2)

n∑
j=0

aj,n+1r(tj , yh(tj)) (6)

where

yph(tn+1) =

�α�−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ(α)

n∑
j=0

bj,n+1r(tj , yh(tj)) (7)

and

aj,n+1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nα+1 − (n− α)(n+ 1)α, j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1,

1 ≤ j ≤ n

1, j = n+ 1

(8)

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) (9)

The error of this approximation is described as follows

max
j=0,1,··· ,N

|y(tj)− yh(tj)| = O(hp)

where p = min(2, 1 + α).
In this paper, the operator Dα is generally called the

“Caputo differential operator of order α”.

Remark 1. In this paper, let us define ‖f(t)‖ =√
f1(t)2 + f2(t)2 + · · ·+ fn(t)2, and ‖f(t)‖1 = |f1(t)| +

|f2(t)|+· · ·+|fn(t)|, where f(t) = (f1(t), f2(t), · · · , fn(t))T
is a vector of continuous functions.

Property 1. For the Caputo derivative, we have[1,39]

C
t0D

1−α
t (Ct0D

α
t f(t)) =

C
t0 D1

t = ḟ(t) (10)

Property 2. For the Caputo derivative, the following equal-

ity holds[1,39]

C
t0D

α1
t (Ct0D

−α2
t f(t)) =C

t0 Dα1−α2
t f(t) (11)

where α1 ≥ α2 ≥ 0.

Property 3. For the Caputo derivative, if f(t) ∈ C1[0, T ]
for some T > 0, then we have[39]

C
t0D

α1
t

C
t0D

α2
t f(t) =C

t0 Dα2
t

C
t0D

α1
t f(t) =C

t0 Dα1+α2
t f(t),

t ∈ [0, T ] (12)

where α1, α2 ∈ R+ and α1 + α2 ≤ 1.

III. FO CHAOTIC SYSTEM DESCRIPTION

Consider a general form of nonlinear master and slave

systems as follows. The master system is

DαX = f(X) + Δf(X) + d(X) (13)

where α ∈ (0, 1] is the FO operator, X ∈ Rn is the state

vector of the master system, f(X) ∈ Rn is the continuous

nonlinear vector functions of the master system, Δf(X) ∈ Rn

and d(X) ∈ Rn are the system uncertainties and external

disturbances of the master system, respectively. And the slave

system is

DαY = g(Y ) + Δg(Y ) + d(Y ) + u(t) (14)

where Y ∈ Rn is the state vector of the slave system,

g(Y ) ∈ Rn is the continuous nonlinear vector functions of the

slave system, Δg(Y ) ∈ Rn and d(Y ) ∈ Rn are the system

uncertainties and external disturbances of the slave system,

respectively. Also, u(t) ∈ Rn is the vector of control inputs.

The tracking error can be defined as

e(t) = Y (t)−X(t) (15)
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By subtracting (13) from (14), the error dynamics are

obtained as

Dαe(t) =(g(Y ) + Δg(Y ) + d(Y ))− (f(X) + Δf(X)

+ d(X)) + u(t)

Then one can conclude that

Dαei(t) =(gi(Y ) + Δgi(Y ) + di(Y ))− (fi(X) + Δfi(X)

+ di(X)) + ui(t), i = 1, 2, · · · , n (16)

Chaos synchronization problem can be defined as follows;

Design an appropriate robust sliding mode controller for the

slave system (14) whose its state trajectories track the state

trajectories of the master system (13) in finite-time.

In this paper it will be proved that for any defined master

system (13) and slave system (14) with system uncertainties

and external disturbances, a suitable control input u(t) is

derived such that the finite-time stability of the resulting error

dynamics by (16) can be obtained in the sense of

lim
t→T

‖e(t)‖ = 0, ‖e(t)‖ = 0 for t > T (17)

Assumption 1. It is assumed that the system uncertainties

Δf(X), Δg(Y ) and external disturbances d(X), d(Y ) are

bounded by

‖Δf(X)‖1 ≤ τ1, ‖Δg(Y )‖1 ≤ τ2,
‖d(X)‖1 ≤ ϕ1, ‖d(Y )‖1 ≤ ϕ2,

(18)

Then one can conclude that

‖Δg(Y )−Δf(X)‖1 < γ, ‖d(Y )− d(X)‖1 < δ

Therefore we have

|(Δgi(Y )−Δfi(X))| < γi, i = 1, 2, · · · , n
|(di(Y )− di(X))| < δi, i = 1, 2, · · · , n (19)

where τ1, τ2, ϕ1, ϕ2, γ and δ are positive constants; then, γi,
i = 1, 2, · · · , n and δi, i = 1, 2, · · · , n are positive constants.

Also | · | is absolute value.

IV. ROBUST ADAPTIVE SLIDING MODE CONTROL

A. Design of FO Sliding Surface

Design of a sliding mode control law may be divided into

two phases: First, choosing an adequate FO sliding surface to

achieve the control objective. Second, designing a discontinu-

ous control law which forces the system trajectories to reach

the sliding surface in a finite-time. We used the following FO

sliding surface

σi(t) = aiD
α−1(ei(t)), i = 1, 2, · · · , n (20)

where ai is a positive constant. Then we have

Dασi(t) = aiD
2α−1(ei(t)) (21)

When the FO system (16) operates in the sliding mode, the

derivative of the sliding surface must satisfy σ̇i(t) = 0[40].
This step concerns the design of control scheme for steering

the system (16) in finite-time onto the sliding surface (20). The

task is not trivial due to, both, the presence of the unknown

disturbance and the FO nature of the system dynamics[41].

Taking the integer-order derivative of (20) yields

σ̇i(t) = aiD
α(ei(t)), i = 1, 2, · · · , n (22)

By substituting (16) into (22), we have

σ̇i(t) =ai

(
(gi(Y ) + Δgi(Y ) + di(Y ))− (fi(X) + Δfi(X)

+ di(X)) + ui(t)
)
, i = 1, 2, · · · , n (23)

The finite-time stability of system (23) with the control law

(25) is proven by Lyapunov analysis in Theorem 1.

B. Design of Robust Control Scheme

After establishing a suitable fractional sliding surface (20),

the sliding mode controller is designed in a way so that the

system trajectories drive onto the sliding mode σi(t) = 0, in

finite-time.

Using (23) and σ̇i(t) = 0, the equivalent control law can

be derived as follows

ueqi(t) = (fi(X)− gi(Y ))

In order to improve the robustness against uncertainties,

we design the reaching control law, which drives the system

trajectories onto the sliding surface σi(t) = 0.

uri(t) = −
(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(24)

where

sgn(σi(t)) =

⎧⎪⎨⎪⎩
+1, σi(t) > 0

0, σi(t) = 0

−1, σi(t) < 0

ki, ωi are positive switching gains.

Finally, the control input law can be obtained as follows

ui(t) =(fi(X)− gi(Y ))

−
(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(25)

C. Stability Analysis

In this section, Lyapunov theorem is used to analyze the

stability of the system. The basic philosophy of Lyapunovs

direct method is the mathematical extension of a principal

physical observation: If all of the energy of a mechanical (or

electrical) system is continuously reduced, then the system,

that may be linear or nonlinear, must move to an equilibrium

point at last. Thus, the stability of a system by examining the

variation of a single Lyapunov function can be analyzed[42].

Theorem 1. If the uncertain FO system (16) is controlled

by the control input (25), then the system trajectories will

converge to the sliding surface σi(t) = 0 in a finite-time ti.
Proof. Selecting a positive Lyapunov function candidate

vi(t) =
1
2σ

2
i (t) and taking its time derivative, results

v̇i(t) = σi(t)
(
aiD

α(ei(t))
)

(26)

Inserting (16) in (26), results

v̇i(t) =aiσi(t)
(
(gi(Y ) + Δgi(Y ) + di(Y ))
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− (fi(X) + Δfi(X) + di(X)) + ui(t)
)

(27)

By substituting (25) into (27) and using Assumption 1, then

v̇i(t) ≤aiσi(t)(|Δgi(Y )−Δfi(X)|+ |di(Y )− di(X)|)
− aiσi(t)

(
kiσi(t) + (ωi + γi + δi)sgn(σi(t))

)
(28)

Hence the above inequality can be written as

v̇i(t) ≤ −(2aikivi(t) +
√
2aiωivi(t)

0.5) (29)

Multiplying both sides of (29) by vi(t)
−0.5, results

vi(t)
−0.5v̇i(t) + 2aikivi(t)

0.5 ≤ −
√
2aiωi (30)

Multiplying (30) by (1/2)eaikit and then integrating at both

sides from zero to t, one obtains

vi(t)
0.5 ≤

(
(
√
2/2)(ωi/ki) + vi(0)

0.5
)
e−aikit

− (
√
2/2)(wi/ki) (31)

then one can get

t ≤ (1/aiki) ln
(
1 +

√
2(ki/ωi)vi(0)

0.5
)

(32)

Hence, the proof is achieved. i.e., according to the inequal-

ity (31), the state trajectories of the error system (16) will

converge to σi(t) = 0 in a finite-time

ti = (1/aiki) ln
(
1 + (ki/ωi)|σi(0)|

)
D. Adaptation Law Synthesis

In the previous sections, it has been shown knowing the

bounds of system uncertainties and external disturbances is

vital to guarantee the system stability. However, in practice

it is not convenient to determine these bounds precisely. In

what follows, we develop an adaptation laws to overcome

this problem. In order to estimate the unknown controller

parameters, appropriate update laws are derived as follow:

˙̂
ki = μiσi(t)

2, ˙̂ωi = ρi|σi(t)|, ˙̂γi = κi|σi(t)|, ˙̂δi = ξi|σi(t)|
(33)

Theorem 2. If the chaotic system of this paper is controlled

by the discontinuous control law (25) with the adaptation laws

(33), then the system trajectories will converge to the sliding

surface σi(t) = 0.

Proof. Consider the Lyapunov function candidate as

vi(t) =
1

2
σi(t)

2 +
1

2

(
μ−1
i k̃2i + ρ−1

i ω̃2
i

+ κ−1
i γ̃2

i + ξ−1
i δ̃2i

)
, i = 1, 2, · · · , n (34)

where k̃i = ki−k̂i, ω̃i = ωi−ω̂i, γ̃i = γi−γ̂i, and δ̃i = δi−δ̂i.
In this case, ki, ωi, γi, and δi are the actual values of k̂i, ω̂i,

γ̂i, and δ̂i, respectively. Also μi, ρi, κi and ξi are rates of

adaptation. Taking derivative of both sides of (34) with respect

to time, yields

v̇i(t) =σi(t)σ̇i(t)− μ−1
i k̃i(

˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)

− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (35)

Using Property 1 and then inserting (21) in (35), one obtains

v̇i(t) =σi(t)D
1−α

(
aiD

2α−1(ei(t))
)
− μ−1

i k̃i(
˙̂
ki)

− ρ−1
i ω̃i( ˙̂ωi)− κ−1

i γ̃i( ˙̂γi)− ξ−1
i δ̃i(

˙̂
δi) (36)

Using Properties 2 and 3, one gets

v̇i(t) =aiσi(t)D
α(ei(t))− μ−1

i k̃i(
˙̂
ki)

− ρ−1
i ω̃i( ˙̂ωi)− κ−1

i γ̃i( ˙̂γi)− ξ−1
i δ̃i(

˙̂
δi) (37)

Substituting (16) into (37) and using Assumption 1, we have

v̇i(t) ≤ (γi + δi)|σi(t)|+ σi(t)(gi(Y )− fi(X) + ui(t))

− μ−1
i k̃i(

˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (38)

By assuming that the parameters of the controller (25) are

unknown, then

v̇i(t) ≤ −k̂i|σi(t)|2 − ω̂i|σi(t)|+ (γ̃i + δ̃i)|σi(t)|
− μ−1

i k̃i(
˙̂
ki)− ρ−1

i ω̃i( ˙̂ωi)− κ−1
i γ̃i( ˙̂γi)− ξ−1

i δ̃i(
˙̂
δi) (39)

Introducing the adaptation laws (33) in (39), will lead to

v̇i(t) ≤ −ki|σi(t)|2 − ωi|σi(t)| (40)

Hence, the motion on the sliding surface is asymptotically

stable. Therefore, the output can track the desired reference.

E. Particle Swarm Optimization (PSO)

In this section, the parameters of the ASMC are estimated

using PSO algorithm. There are a lot of optimal techniques for

optimization. One of the simple approaches for optimization

is PSO. PSO was introduced by Kennedy and Eberhart[43],

and is useful for continuous space. PSO algorithm imitates

the behavior of birds and others like fishes for searching the

best solution in the space. PSO has been found to be robust

in solving problems featuring nonlinearity, multiple optima,

and high dimensionality through adaptation, which is derived

from the social-psychological theory. In this technique, every

particle can be illustrated by two vectors[44]. These vectors

are position vector and velocity vector that can be updated

with this algorithm to get the best parameters of the controller.

The PSO algorithm, at each time step, changes the speed of

each particle moving towards its pBest and gBest locations.

Speed is weighted by random terms, with separate random

numbers being generated for acceleration toward pBest and

gBest locations, respectively.

Our aim is to have low tracking error; hence the following

cost function (Mean Squared Error) is used

MSE =
1

N

N∑
i=0

(
ek(i)

)2

(41)

where, ek(i) is the kth error state variable. N is the length of

every error state variable.

The procedure for implementing PSO algorithm for estimat-

ing the controller parameters is given by the following steps:

i Initialize a (population) of particles with random posi-

tions and velocities in the n-dimensional problem space

using a uniform probability distribution function;
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ii For each particle in swarm, evaluate its fitness value;

iii Compare each particles fitness evaluation with the current

particles pBest. If current value is better than pBest, set

its pBest value to the current value and the pBest location

to the current location in n-dimensional space;

iv Compare the fitness evaluation with the populations over-

all previous best. If current value is better than gBest, then

reset gBest to the current particles array index and value;

v During this process, the position vector and velocity

vector of each particle are updated to tend the best

position as follows:

Vi(t+ 1) =wVi(t) + c1rand(0, 1)(pBesti(t)−Xi(t))

+ c2rand(0, 1)(gBesti(t)−Xi(t))

Xi(t+ 1) =Xi(t) + Vi(t+ 1) (42)

where i = 1, 2, · · · , n is the particles index, t is the time

(iteration or generation).

In this case, the position and speed vectors are with di-

mensions d. c1 and c2 are acceleration coefficients, w is the

inertia weight. In (42), pBesti is the position with the best

fitness found by the ith particle, and gBesti is the best fitness

position in neighborhood.

V. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, an illustrative example is presented to show

the feasibility and applicability of the proposed nonsingular

sliding mode approach and to confirm the theoretical results.

In this example, numerical simulation for two non-identical

FO chaotic and FO hyper-chaotic systems is presented. Fourth-

order Runge-Kutta method is used with a step time of 0.001
in order to solve the FO differentials.

A. Synchronization of Non-Identical FO Chaotic and FO
Hyper-chaotic Systems

In this section, numerical simulations are presented to

validate the robustness and effectiveness of the proposed

ASMC, when the controller parameters are estimated by PSO

algorithm. These values are obtained in order to minimize the

synchronization errors. The FO chaotic system[45] as master

system drives the FO hyper-chaotic system[46] as slave system.

The master system is⎡⎢⎢⎣
Dαx1

Dαx2

Dαx3

Dαx4

⎤⎥⎥⎦
︸ ︷︷ ︸

DαX

=

⎡⎢⎢⎣
5(x2 − x1) + x4

−x1x3

−90 + x1x2

−10x1

⎤⎥⎥⎦
︸ ︷︷ ︸

f(X)

+

⎡⎢⎢⎣
0.2 cos(x2)
0.3 cos(x1)
0.25 sin(x4)
0.35 sin(x3)

⎤⎥⎥⎦
︸ ︷︷ ︸

Δf(X)

+

⎡⎢⎢⎣
0.3 cos(t)
0.25 sin(t)
0.3 cos(t)
0.2 cos(t)

⎤⎥⎥⎦
︸ ︷︷ ︸

d(X)

(43)

and the slave system is⎡⎢⎢⎣
Dαy1
Dαy2
Dαy3
Dαy4

⎤⎥⎥⎦
︸ ︷︷ ︸

DαY

=

⎡⎢⎢⎣
10(y2 − y1)

40y1 + y1y3 + 2y4
−2y21 − 2y22 − 2.5y3

−5y2

⎤⎥⎥⎦
︸ ︷︷ ︸

g(Y )

+

⎡⎢⎢⎣
0.3 sin(y2)
0.25 cos(y3)
0.25 cos(y1)
0.2 sin(y2)

⎤⎥⎥⎦
︸ ︷︷ ︸

Δg(X)

+

⎡⎢⎢⎣
0.25 cos(t)
0.3 sin(t)
0.3 sin(t)
0.3 cos(t)

⎤⎥⎥⎦
︸ ︷︷ ︸

d(Y )

+

⎡⎢⎢⎣
u1(t)
u2(t)
u3(t)
u4(t)

⎤⎥⎥⎦
︸ ︷︷ ︸

u(t)

(44)

The FO operator (α) is set to 0.95 to ensure the

existence of chaos for the system. Assume, the ini-

tial states of the master and slave systems are selected

as (x1(0), x2(0), x3(0), x4(0))
T = (2.5, 0.5, 1, 0.5)T and

(y1(0), y2(0), y3(0), y4(0))
T = (4, 2.5, 3.5, 3)T, respectively.

μi, ρi, κi and ξi are rates of adaptation which are supposed to

be 5, 3, 5 and 2 for (i = 1, · · · , 4), respectively. The control

input suffers high chattering. In order to reduce this drawback

of the controller we have used the saturation function instead

of the sign function. The time responses of the synchronized

states are depicted in Fig. 1. Fig. 2 shows the synchronization

errors between two FO chaotic and hyper-chaotic systems.

The time response of k̂i and ω̂i for (i = 1, · · · , 4) are

depicted in Fig. 3. Besides, the time response of γ̂i and δ̂i for

(i = 1, · · · , 4) are depicted in Fig. 4. In Table. 1, the controller

parameters are depicted before optimization and after that.

PSO parameters are set as follow:

Population size= 20, Iterations= 40, c1 = 2.0, c2 = 2.0,

weighting factor= 1, Inertia weight= 0.999.
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Fig. 1. Time response of signals for master system and slave system.

VI. A SECURE COMMUNICATION SCHEME

A secure communication system involves the development

of a signal that contains the information which is to remain

undetectable by others within a carrier signal. In this section,

a popular application of chaotic synchronization in the area
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Fig. 2. Time response of the synchronization errors between two non-
identical FO chaotic and hyper-chaotic systems.
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Fig. 3. Time response of the controller parameters.
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Fig. 4. Time response of the controller parameters.

Fig. 5. The secure communication scheme based on the synchronization of
FO chaotic and hyper-chaotic systems.

TABLE I
CONTROLLER PARAMETERS BEFORE AND AFTER OPTIMIZATION AND

THE COST FUNCTION VALUES

a1 a2 a3 a4 Cost
Before optimization 5.0000 6.0000 3.5000 7.5000 8.8959
After optimization 3.5728 4.0087 9.7267 8.1469 7.7656

of secure communications is presented. The useful signal has

been modulated two times to improve the security of the

system, encrypted by secret key firstly and masked secondly

by the FO derivative of chaos variable. Fig. 5 depicts a sketch

designed for our communication scheme.

In the transmitter, two chaotic variables of the chaos os-

cillator are employed to construct a function F (X) which is

used to generate secret key k(t). The secret key k(t) is added

to the proposed useful signal m(t) in order to encrypt the

useful signal. The encrypted useful signal is masked by the

FO derivative of chaos variable xi. Then, the encrypted and

masked useful signal is transmitted to the receiver through

public channel. In the receiver, first the received signal is

unmasked by the FO derivative of hyperchaos variable yi.
Then, the unmasked signal is decrypted by the secret key

k∗(t). It is impossible to extract the useful signal m(t)
from the transmitted signal S(t) without the dynamics of X .

Therefore, when the control signal (25) is designed in the

receiver, then the synchronization between chaos oscillator and

hyper-chaos oscillator will be obtained and X will converge

to Y in finite-time.

The simulation results above are based on discrete useful

signal. In the transmitter, the nonlinear function F (X) =
(x2x4)

2 is transmitted through the saturation function to

generate the secret key. The FO of the chaos state variable x3 is

used to mask the encrypted message. Demodulation process is

inverse operation to modulation. So G(Y ) = (y2y4)
2 and the

FO of hyper-chaos variable y3 is used to unmask the received

signal. The notation Dq(·) denotes the FO derivative, where

the FO is selected as q = 0.5. Also, h is a small constant

which is supposed to be 3. By using a small constant h, the

security of the transmitted signal in a public channel can be

increased.

The useful signal m(t) is shown in Fig. 6-a; chaotic signal
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S(t) which is transmitted to the receiver is illustrated in Fig.

6-b; the comparison between demodulated useful signal m∗(t)
and sent useful signal m(t) is shown in Fig. 6-c. As a result

of the simulation, demodulated signal and useful signal can

quickly implement synchronization as a short transient. The

error between the demodulated signal and the useful signal is

depicted in Fig. 6-d.

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

Time (s)

m
(t)

(a)

0 1 2 3 4 5
−100

0

100

200

300

Time (s)

s(
t)

(b)

0 1 2 3 4 5
−5

0

5

Time (s)

(c)

m(t)
m*(t)

0 1 2 3 4 5
−10

−5

0

5

Time (s)

e(
t) 

= 
m

*(
t) 

− 
m

(t)

(d)

Fig. 6. Simulation results of the proposed secure communication scheme
using finite-time synchronization of FO chaotic and hyper-chaotic systems.

VII. CONCLUSION

In this paper, the proposed novel sliding mode controller is

shown to be robust against high uncertainties and variation of

the parameters. Suitable adaptive laws are proposed to tackle

the unknown parameters and PSO algorithm is used in this

paper for optimization of the controller parameters. Finally,

the proposed scheme is applied in secure communication. The

simulation results show that the synchronization time is very

short and the recovered signal is close to the useful signal

and it can realize secret communication successfully, having

strong security and practicability.
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