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Decentralized Adaptive Strategies for
Synchronization of Fractional-Order Complex

Networks
Quan Xu, Shengxian Zhuang, Yingfeng Zeng, and Jian Xiao

Abstract—This paper focuses on synchronization of fractional-
order complex dynamical networks with decentralized adaptive
coupling. Based on local information among neighboring nodes,
two fractional-order decentralized adaptive strategies are de-
signed to tune all or only a small fraction of the coupling gains
respectively. By constructing quadratic Lyapunov functions and
utilizing fractional inequality techniques, Mittag-Leffler function,
and Laplace transform, two sufficient conditions are derived for
reaching network synchronization by using the proposed adaptive
laws. Finally, two numerical examples are given to verify the
theoretical results.

Index Terms—Decentralized adaptive control, synchronization,
fractional-order complex networks, quadratic Lyapunov func-
tions.

I. INTRODUCTION

IT is well known that numerous natural and man-made sys-

tems can be modeled as complex dynamical networks. Ex-

amples include social networks, food webs, epidemic spread-

ing networks, biological networks, scientific citation networks,

Internet networks, World Wide Web, electric power grids,

and so on[1−3]. In recent years, extensive efforts have been

made to understand and study the topology and dynamics

of complex networks. Specifically, as a typical collective

behavior of complex networks, synchronization has received

increasing attention due to its potential applications in many

real scenarios[4−5]. So far, many systematic results on different

synchronization patterns, such as complete synchronization,

lag synchronization, generalized synchronization, cluster syn-

chronization, etc., have been obtained for many kinds of

complex networks, see [6-16] and relevant references therein.

To our best knowledge, the results on synchronization

mainly concentrated on integer-order complex networks. N-

evertheless, it has been recognized that the real objects are
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generally fractional and fractional calculus allows us to de-

scribe and model a real object more accurately than the

classical integer-order methods. Not surprisingly, dynamics

and control of fractional-order systems has attracted increasing

attention from various fields[17−23]. Particularly, synchroniza-

tion in fractional-order complex networks[24−26] has currently

become an interesting and open problem. From a control

perspective, the aim here is to find some appropriate con-

trollers such that the controlled fractional-order network is

synchronized.

Among them, adaptive control technique has been widely

used to synchronize complex networks. In [27-29], many

kinds of adaptive strategies were designed to adjust the gains

of feedback controllers. Note that, in diffusively coupled

networks, nodes are coupled with states difference xi−xj . This

means that a state feedback controller is added to every node.

Thus, a network could be synchronized by designing suitable

coupling gains among the network nodes. Mathematically,

these coupling gains are described by the non-null elements of

the weighted time-varying adjacency matrix G(t). Recently,

some decentralized adaptive strategies have been used to

tune the coupling gains so as to achieve synchronization

in complex networks, see [30-34]. Moreover, decentralized

adaptive strategies are introduced only to a small fraction

of coupling gains[35]. Compared with the centralized adaptive

strategies developed in [36,37], the coupling gains are adapted

based on local information exchanged among neighboring

nodes. However, the synchronization of fractional-order com-

plex networks with decentralized adaptive coupling has never

been investigated elsewhere. Therefore, it is important and

interesting to study the synchronization of fractional-order

complex networks by using the fractional-order decentralized

adaptive strategies.

As is known to all, Lyapunov direct method is a standard

tool to derive the synchronization criteria for integer-order

complex networks. Despite much effort, the Lyapunov-based

results about synchronization of integer-order complex net-

works cannot be directly extended to the fractional-order cases.

The main difficulty lies in calculating the fractional derivative

of a composite Lyapunov function. For more details about

this, one can refer the existing literatures [38,39], in which

there were several issues regarding calculation of the fractional

derivative of a composite Lyapunov function.

Quite recently, Aguila-Camacho et al[40] and Duarte-

Mermoud et al[41] introduce two lemmas for estimating the

Caputo fractional derivative of a quadratic function. Thus,
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one can analyze the stability for fractional-order uncoupled

systems and coupled networks by using quadratic Lyapunov

functions like classic Lyapunov direct method. But the condi-

tions of fractional Lyapunov direct method[42,43] are relatively

conservative and rigorous. As the extensions of Lyapunov di-

rect method, LaSalle’s invariance principle, Barbalat’s Lemma

and other mathematical techniques can be used to solve the

adaptive stability problem of integer-order nonlinear systems.

However, these tools cannot be directly used in the fractional

order case. Thus, additional tools need to be developed, in

order to prove the errors convergence in the fractional order

case. In this paper, by utilizing Lyapunov functional method

combined with fractional inequality techniques, Mittag-Leffler

function, and Laplace transform, we study the decentralized

adaptive synchronization in fractional-order networks with

diffusive coupling.

The remaining of this paper is organized as follows. In

Section II, some necessary preliminaries and the model of

fractional-order complex networks are given. The main results

of this paper are given in Section III. In Section IV, two

numerical examples are provided to validate the theoretical

results. Finally, some conclusions are presented in Section V.

II. MODEL DESCRIPTION AND PRELIMINARIES

A. Fractional Calculus and Properties

Definition 1. The Riemann-Liouville fractional integral with

0 < α < 1 is given by

Iαt f(t) =
1

Γ(α)

∫ t

t0

(t− τ)
α−1

f(τ)dτ , (1)

where t ≥ t0, f(t) is an arbitrary integrable function Iαt is

the fractional integral operator, Γ(·) is the gamma function

Γ(α) =
∫∞
0

tα−1exp(−t)dt, and exp(·) is exponential func-

tion.

In this paper, we consider the Caputo definition for fraction-

al derivative, which is most popular in engineering applications

because of its advantages[17].

Definition 2. The Caputo fractional derivative with

fractional-order 0 < α < 1 can be expressed as

Dα
t f(t) =

1

Γ(1− α)

∫ t

t0

(t− τ)
−α

ḟ(τ)dτ , (2)

where t ≥ t0, Dα
t is the Caputo fractional derivative operator.

In the following, unless otherwise stated, we consider α ∈
(0, 1).

Moreover, the Laplace transform of Caputo fractional

derivative is

L{Dα
t f(t)} = sαF (s)− sα−1f(t0), (3)

where α ∈ (0, 1), s denotes the variable in Laplace domain,

L{·} is the Laplace transform operator, F (s) is the Laplace

transform of f(t) and f(t0) is the initial value.

Let us pay attention to the following properties of the

fractional derivatives[17], which are most commonly used in

applications.

Property 1.

Dα
t (ax(t) + by(t)) = aDα

t x(t) + bDα
t y(t). (4)

Property 2.

Iαt D
α
t f(t) = f(t)− f(t0), ∀ t ≥ t0, 0 < α < 1. (5)

Property 3. The Caputo fractional derivative of a constant

function is always zero.

Definition 3[42,43]. The Mittag-Leffler function with one

parameter and two parameters can be defined as

Eα(z) =

∞∑
n=0

zn

Γ(nα+ 1)
,

Eα,β(z) =
∞∑

n=0

zn

Γ(nα+ β)
,

(6)

where z ∈ C, α > 0, β > 0. Note that Eα,1(z) = Eα(z),
E1,1(z) = expz .

The Laplace transform of Mittag-Leffler function with two

parameters can be written as

L{
tβ−1Eα,β(−ktα)

}
=

sα−β

sα + k
, �(s) >| k | 1

α , (7)

where t ≥ 0, �(s) is the real part of s, k ∈ R.

A new property for Caputo derivative can be stated in Lem-

ma 1, which can facilitate estimating the fractional derivative

of a common quadratic Lyapunov function.

Lemma 1[41]. Let x(t) ∈ R
n be a vector of derivable

functions. Then, the following inequality holds

Dα
t (x

T(t)Px(t)) ≤ 2xT(t)PDα
t x(t), (8)

where α ∈ (0, 1], t ≥ t0 and P ∈ R
n×n is a constant,

symmetric and positive definite matrix.

B. Network model

Consider a fractional-order complex dynamical network

consisting of N identical nodes, which is described by

Dα
t xi(t) = f(t, xi(t))+c

N∑
j=1

Gij(t)Axj(t),

i = 1, 2, · · · , N, (9)

where 0 < α < 1, xi = (xi1, xi2, ..., xin) ∈ R
n is the

pseudo-state vector of node i, f : R
+ × R

n → R
n is

a nonlinear vector field, c > 0 is the coupling strength,

A = diag(ρ1, ρ2, · · · , ρn) ∈ R
n×n is a positive definite inner

coupling matrix, G(t) = (Gij(t))N×N is the time-varying

diffusive coupling matrix representing the topological structure

of an undirected network. If there is an edge between node

i and j at time t, then Gij(t) = Gji(t) > 0 ; otherwise

Gij(t) = Gji(t) = 0 (i �= j), and the diagonal elements of

G(t) are defined by

Gii = −
N∑

j=1,j �=i

Gij , i = 1, 2, · · · , N.

Throughout this paper, only connected networks are consid-

ered, and Gij(t), i, j ∈ {1, 2, · · · , N} has the same meaning.
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Definition 4. The complex network (9) is said to achieve

synchronization in the sense that

lim
t→∞

∥∥∥∥∥∥xi(t)− 1

N

N∑
j=1

xj(t)

∥∥∥∥∥∥
2

= 0, i = 1, 2, · · · , N, (10)

Let x̄ = 1
N

∑N
j=1 xj . Then, we get

Dα
t x̄(t) =

1

N

N∑
j=1

Dα
t xj(t)

=
1

N

N∑
j=1

[
f(t, xj(t)) + c

N∑
k=1

Gjk(t)Axk(t)

]

=
1

N

N∑
j=1

f(t, xj(t)) +
c

N

N∑
i=1

N∑
j=1

Gij(t)Axj(t)

=
1

N

N∑
j=1

f(t, xj(t)). (11)

Note that c
N

∑N
i=1

∑N
j=1 Gij(t)Axj(t) = 0 can be obtained

from Gij = Gji, Gii = −∑N
j=1,j �=i Gij .

Definingei(t) = xi(t) − x̄(t), then the error dynamical

network is described as follows:

Dα
t ei(t) =f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

+ c
N∑
j=1

Gij(t)Aej(t), i = 1, 2, · · · , N. (12)

Assumption 1. The nonlinear function f(t, x) is said to be

Lipschitz if there exists a nonnegative constant ε such that

(x− y)T(f(t, x)− f(t, y)) ≤ ε(x− y)T(x− y).
Lemma 2[31]. Let G = (Gij)N×N is a real symmetric and

irreducible matrix with

Gij = Gji ≥ 0(i �= j), Gii = −
N∑

j=1,j �=i

Gij

Then,

(1) The eigenvalues of G satisfy

0 = λ1(G) > λ2(G) ≥ · · · ≥ λN (G),

λ2(G) = max
xT1N=0,x �=0

xTGx

xTx
.

(2) For any η = (η1, η2, · · · , ηN )T ∈ R
N

ηTGη = −1

2

N∑
i=1

N∑
j=1

Gij(ηi − ηj)
2.

III. MAIN RESULTS

In this section, two fractional-order decentralized adaptive

laws to tune the coupling gains among network nodes are

proposed. By utilizing the proposed adaptive strategies, two

sufficient conditions are derived to synchronize the proposed

fractional-order complex networks.

A. Fractional-order decentralized adaptive strategy for the
synchronization

Theorem 1. Suppose that Assumption 1 holds. Then, the

network (9) is synchronized under the following fractional-

order decentralized adaptive strategy:

Dα
t Gij(t) = γij(xi(t)− xj(t))

TA(xi(t)− xj(t)),

Gij(0) = Gji(0) > 0, (13)

(i, j) ∈ E, where E is the set of undirected edges, γij = γji
are positive constants.

Proof. Construct the Lyapunov functional candidate for

system (12) as

V1(t) =
1

2

N∑
i=1

eTi (t)ei(t) +
N∑
i=1

N∑
j∈Ni

c

4γij
(Gij(t)− hij)

2,

(14)

where hij = hji(i �= j) are nonnegative constants, and hij =
0 if and only if Gij(t) = 0.

Applying Lemma 1, the fractional derivative of V1 along

the trajectories of system (12) gives

Dα
t V1 ≤

N∑
i=1

eTi (t)D
αei(t)

+
N∑
i=1

N∑
j∈Ni

c

2γij
(Gij(t)− hij)D

α(Gij(t)− hij)

=
N∑
i=1

eTi (t)

⎡
⎣f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2γij
(Gij(t)− hij)D

αGij(t)

=
N∑
i=1

eTi (t)

⎡
⎣f(t, xi(t))− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c

N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2
(Gij(t)− hij)(xi − xj)

TA(xi − xj)

=
N∑
i=1

eTi (t) [f(t, xi(t))− f(t, x̄)]

+
N∑
i=1

eTi (t)

⎡
⎣f(t, x̄)− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦

+ c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

+
N∑
i=1

N∑
j∈Ni

c

2
(Gij(t)− hij)(ei − ej)

TA(ei − ej), (15)
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Since
∑N

i=1 e
T
i (t) = 0, we have

N∑
i=1

eTi (t)

⎡
⎣f(t, x̄)− 1

N

N∑
j=1

f(t, xj(t))

⎤
⎦ = 0. (16)

According to Assumption 1, we can obtain

N∑
i=1

eTi (t) [f(t, xi(t))− f(t, x̄)] ≤ ε
N∑
i=1

eTi (t)ei(t). (17)

Let H = (hij)N×N , where hii = −∑N
j=1,j �=i hij . From

Lemma 2, we can easily obtain

N∑
i=1

N∑
j∈Ni

(Gij(t)− hij)(ei(t)− ej(t))
TA(ei(t)− ej(t))

= −2

N∑
i=1

N∑
j=1

(Gij(t)− hij)e
T
i (t)Aej(t). (18)

Combining (15), (16), (17) and (18), we have

Dα
t V1 ≤ε

N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

eTi (t)Gij(t)Aej(t)

− c
N∑
i=1

N∑
j=1

(Gij(t)− hij)e
T
i (t)Aej(t)

≤ε
N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

hije
T
i (t)Aej(t)

=eT(t) [ε(IN ⊗ In) + c(H ⊗A)] e(t), (19)

where e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T ∈ RnN .

Let Λ = diag(λ1(H), λ2(H), · · · , λN (H)) be the diagonal

matrix associated with H , that is, there exists a unitary

matrix Φ = (φ1, φ2, · · · , φN ) such that ΦTHΦ = Λ. Let

y(t) = (yT1 , y
T
2 , · · · , yTN )T = (ΦT ⊗ In)e(t). Since φ1 =

1√
N
(1, 1, · · · , 1)T, one has y1(t) = (φT

1 ⊗ In)e(t) = 0. Then,

it follows from (19) that

Dα
t V1 ≤ εeT(t)(IN ⊗ In)e(t)

+ ceT(t)(Φ⊗ In)(Λ⊗A)(ΦT ⊗ In)e(t)

= eT(t) [ε(IN ⊗ In)] e(t) + cyT(t)(Λ⊗A)y(t). (20)

According to the definition of matrix H , one can easily verify

that matrix H satisfies the conditions of Lemma 2. Then, by

Lemma 2 and since A is positive, we get

yT(t)(Λ⊗A)y(t) ≤ λ2(H)yT(t)(IN ⊗A)y(t). (21)

From (20) and (21), it follows that

Dα
t V1 ≤εeT(t)(IN ⊗ In)e(t)

+ cλ2(H)yT(t)(IN ⊗A)y(t)

=εeT(t)(IN ⊗ In)e(t)

+ cλ2(H)eT(t)(Φ⊗ In)(IN ⊗A)(ΦT ⊗ In)e(t)

=eT(t) [ε(IN ⊗ In) + cλ2(H)(IN ⊗A)] e(t). (22)

Thus, for a given overall coupling strength c, one can choose

hij sufficiently large such that

ε(IN ⊗ In) + cλ2(H)(IN ⊗A) + 1 < 0. (23)

Then, it follows from (22) and (23) that

Dα
t V1(t) ≤ −eT(t)e(t). (24)

There exists a function m(t) ≥ 0 such that

Dα
t V1(t) +m(t) = −eT(t)e(t). (25)

Applying Laplace transform operator L{·} to (25), we have

sαV1(s)− sα−1V1(0) +M(s) = −E(s), (26)

where the nonnegative constant V1(0) is the initial value of

V1(t), V1(s), M(s), and E(s) are the Laplace transforms of

V1(t), m(t), and eT(t)e(t) respectively.

Since V1(t) ≥ 1
2

∑N
i=1 e

T
i (t)ei(t) = 1

2e
T(t)e(t), there

exists a function n(t) ≥ 0 such that

V1(t) =
1

2
eT(t)e(t) + n(t). (27)

Applying Laplace transform operator L{·} to (27), we have

V1(s) =
1

2
E(s) +N(s), (28)

where N(s) is the Laplace transform of n(t).
Combining (26) and (28), we can easily obtain

E(s) =
2sα−1

sα + 2
V1(0)− 2sα

sα + 2
N(s)

− 2

sα + 2
M(s), (29)

Taking the Laplace inverse transform of (29), it gives

eT(t)e(t) =2V1(0)Eα(−2tα)− 2n(t) ∗ t−1Eα,0(−2tα)

− 2m(t) ∗ tα−1Eα,α(−2tα). (30)

where ∗ stands the convolution operator.

Since t−1, tα−1, Eα,0(−2tα), and Eα,α(−2tα) are nonneg-

ative functions, it follows from (30) that

eT(t)e(t) ≤ 2V1(0)Eα(−2tα). (31)

Moreover, we should also note the fact that, for 0 < α < 1
and k > 0, Eα(−ktα) is completely monotonic and de-

creases much faster than the exponential function exp−kt(see

[42]). Therefore, we can conclude from inequality (31) that

limt→+∞ eT(t)e(t) = 0, that is, limt→+∞ ‖e(t)‖2 = 0.

It means that the network (9) is synchronized under the

adaptive law (13). The convergence of error vector implies,

from (13) and from the fact that A is positive definite,

lim
t→+∞Dα

t Gij(t) = 0. According to Property 3, one can

conclude that Gij(t)((i, j) ∈ E) converges to a finite constant.

The proof is completed. �
Remark 1. In recent years, many kinds of adaptive strate-

gies were designed to adjust the gains of feedback controllers,

see [27-29] and relevant references therein. Actually, a dif-

fusively coupled network could be synchronized by designing

suitable coupling gains among the network nodes. As a natural

extension of the existing network models and control methods,

a new fractional-order complex dynamical network with time-

varying diffusive coupling is proposed, and then the fractional-

order decentralized adaptive strategy to tune the coupling gains

between the network nodes is designed based on the local
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mismatch between neighboring nodes. To our knowledge, this

is the first paper to consider the synchronization of fractional-

order complex dynamical networks with adaptive coupling.

Fortunately, this challenging problem has been solved by

fractional Lyapunov functional method combined with Mittag-

Leffler function, Laplace transform, and fractional inequality

techniques.
Remark 2. From (13), we have Dα

t Gij(t) ≥ 0. Howev-

er, one cannot conclude that Gij(t) is monotonously non-

decreasing for 0 < α < 1. To state the reason, we assume

x(t) ∈ C1[t0,+∞) and satisfies

Dα
t x(t) = f(t, x) ≥ 0, 0 < α < 1. (32)

∀t0 ≤ t2 < t1 < +∞, integrating both sides of (32) from t0
to t1 and t0 to t2 respectively, it follows from Definition 1

and Property 2 that

x(t1)− x(t0) =
1

Γ(α)

∫ t1

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ. (33)

x(t2)− x(t0) =
1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ. (34)

Subtracting (34) from (33), we have

x(t1)− x(t2) =
1

Γ(α)

∫ t1

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ

− 1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ

=
1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t1 − τ)
1−α dτ +

1

Γ(α)

∫ t1

t2

f(τ, x(τ))

(t1 − τ)
1−α dτ

− 1

Γ(α)

∫ t2

t0

f(τ, x(τ))

(t2 − τ)
1−α dτ

=
1

Γ(α)

∫ t2

t0

[
f(τ, x(τ))

(t1 − τ)
1−α − f(τ, x(τ))

(t2 − τ)
1−α

]
dτ

+
1

Γ(α)

∫ t1

t2

f(τ, x(τ))

(t1 − τ)
1−α dτ, (35)

where 1
(t1−τ)1−α − 1

(t2−τ)1−α < 0 for 0 < α < 1. Thus,

as can be seen from (35), one cannot establish the sign of

x(t1) − x(t2), which is closely related to α. Obviously, this

analysis result is not consistent with that of integer-order case.

It should be noted that our numerical results for coupling gains

can be theoretically interpreted by the analysis result in this

remark.

B. Fractional-order decentralized adaptive pinning strategy
for the synchronization

In Theorem 1, all the coupling gains are adjusted according

to the adaptive law (13). Here, only a small fraction of the

coupling gains is updated to reach synchronization.
Let Ẽ be a subset of E. Assume that network (9) is

connected through the pinning edges Ẽ.
Here, we define

Lij =

⎧⎪⎨
⎪⎩
Gij(0), if (i, j) ∈ E − Ẽ

−∑N
j=1,j �=i Gij(0), if i = j

0, otherwise

(36)

Theorem 2. Suppose that Assumption 1 holds. Then, the

network (9) is synchronized under the following fractional-

order decentralized adaptive pinning strategy:

Dα
t Gij(t) = γij(xi(t)− xj(t))

TA(xi(t)− xj(t)),

Gij(0) = Gji(0) > 0, (i, j) ∈ Ẽ, (37)

where γij = γji are positive constants.

Proof. Consider the following Lyapunov functional candi-

date for system (12)

V2(t) =
1

2

N∑
i=1

eTi (t)ei(t) +

N∑
i=1

∑
(i,j)∈Ẽ

c

4γij
(Gij(t)− h̃ij)

2,

(38)

where h̃ij is defined as

h̃ij = h̃ji > 0, if (i, j) ∈ Ẽ,

h̃ij = 0(i �= j), otherwise.
(39)

Let H̃ = (h̃ij)N×N , h̃ii = −∑N
j=1,j �=i h̃ij . Now, we

calculate the fractional derivative of V2 along the trajectories

of system (12)

Dα
t V2 ≤

N∑
i=1

∑
(i,j)∈Ẽ

c

2γij

(
Gij(t)− h̃ij

)
Dα

(
Gij(t)− h̃ij

)

+
N∑
i=1

eTi (t)D
αei(t)

=
N∑
i=1

eTi (t)

[
f(t, xi(t))− f(t, x̄) + f(t, x̄)

− 1

N

N∑
j=1

f(t, xj(t)) +c
N∑
j=1

Gij(t)Aej(t)

⎤
⎦

+
N∑
i=1

∑
(i,j)∈Ẽ

c

2
(Gij(t)− h̃ij)(ei(t)− ej(t))

T

×A(ei(t)− ej(t))

≤ ε
N∑
i=1

eTi (t)ei(t) + c
N∑
i=1

N∑
j=1

Lije
T
i (t)Aej(t)

+ c
N∑
i=1

N∑
j=1

h̃ije
T
i (t)Aej(t)

=eT(t)
[
ε(IN ⊗ In) + c(L⊗A) + c(H̃ ⊗A)

]
e(t), (40)

where e(t) = (eT1 (t), e
T
2 (t), · · · , eTN (t))T, L = (Lij)N×N ,

H̃ = (H̃ij)N×N . Then, following similar steps as in the proof

of Theorem 1, we can complete the proof. �

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are given to validate

the above obtained theoretical results. Here, the predictor-

corrector method studied in [44] is utilized to solve the

differential equations of the fractional-order systems. In the

following examples, the simulation step-size is chosen as

h=0.01.
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Example 1. Consider a diffusively coupled scale-free[1]

network with 50 nodes, where each node is a fractional-order

non-autonomous parametrically excited Duffing oscillator de-

scribed by

Dα
t x1 = x2,

Dα
t x2 = (1 + μ sin(ωt))x1 − γx2 − x3

1.
(41)

When μ = 0.5, ω = 1, γ = 0.2, α = 0.975, system (41)

has a chaotic attractor as shown in Fig.1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

x
2
(t

)

x1(t)

Fig. 1. (color online) Chaotic attractor of system (41) with μ = 0.5, ω = 1,
γ = 0.2, α = 0.975 and (x1(0), x2(0)) = (1.0, 2.1)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x
i
(t

)

Time (s)

xi2(t)
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Fig. 2. (color online) Time evolutions of xi = (xi1, xi2)
T, i = 1, 2, · · · , 50

For simplicity and without losing generality, we take c = 1,

A = diag(1, 1, 1). For connected nodes i and j, Gij(0) =
Gji(0) are chosen randomly in (0, 1) and γij = γji = 1,

∀(i, j) ∈ E. The initial states xi are chosen randomly in

(0, 3). Therefore, all the conditions of Theorem 1 are satisfied,

and the network synchronization is asymptotically achieved.

As shown in Figs.2 and 3, the simulation results agree well

with the theoretical analysis.

Example 2. Consider a diffusively coupled complex net-

work with 10 nodes, where each node is a fractional-order

Arneodo’s system described by

Dα
t x1 = x2,

Dα
t x2 = x3

Dα
t x3 = β1x1 − β2x2 − β3x3 + β4x

3
1.

(42)

When β1 = 5.5, β2 = 3.5, β3 = 0.4, β4 = −1,

and α = 0.9, system (42) is chaotic[45]. We take c = 1,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

G
i
j
(t

)

Time (s)

Fig. 3. (color online) Adaptive coupling gains Gij(t), (i, j) ∈ E

A = diag(1, 1, 1). The initial coupling matrix is chosen as

G(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.8 0.8 0.6 0.3 0
0.8 −2.5 0.2 0 0.4
0.6 0.2 −1.8 0.4 0
0.3 0 0.4 −0.8 0.1
0 0.4 0 0.1 −0.6

0.3 0 0.5 0 0
0.6 0 0.1 0 0
0.7 0.2 0 0 0
0.5 0.2 0 0 0
0 0.7 0 0 0.1

0.3 0.6 0.7 0.5 0
0 0 0.2 0.2 0.7

0.5 0.1 0 0 0
0 0 0 0 0
0 0 0 0 0.1

−1.1 0.3 0 0 0
0.3 −1.2 0 0.2 0
0 0 −0.9 0 0
0 0.2 0 −0.9 0
0 0 0 0 −0.8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Here, we select a fraction of coupling gains in the network.

Choose γ12 = γ21 = 0.5, γ13 = γ31 = 0.6, γ17 = γ71 =
0.7, γ18 = γ81 = 0.8, γ19 = γ91 = 0.9, γ25 = γ52 = 0.5,

γ2,10 = γ10,2 = 0.6, γ36 = γ63 = 0.7, γ34 = γ43 = 0.8. The

initial states xi are chosen randomly in (0, 2). According

to Theorem 2, the network synchronization is asymptotically

achieved. The simulation results depicted in Figs.4 and 5 agree

well with the theoretical analysis. As can be seen from Figs.3

and 5, the adaptive coupling gains are not monotonously non-

decreasing, which further validates our theoretical analysis in

Remark 2.

V. CONCLUSIONS

In this paper, two fractional-order decentralized adaptive

strategies have been proposed to tune the coupling gains

between network nodes. Based on the proposed adaptive

coupling strategies, two sufficient conditions have been derived

for synchronization of fractional-order complex networks. In

the proofs of the theorems, an inequality has been used to es-

timate the fractional-order derivative of a quadratic Lyapunov

function. Thus, we can investigate the synchronization for
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Fig. 4. (color online) Time evolutions of xi = (xi1, xi2, xi3)
T, i =

1, 2, · · · , 10.
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Fig. 5. (color online) Adaptive coupling gains Gij(t), (i, j) ∈ Ẽ.

fractional-order complex networks like integer-order complex

networks. Numerical examples have been given to validate

the theoretical results. The obtained results show that the

adaptive coupling gains are not monotonously non-decreasing

even though Dα
t Gij(t) ≥ 0. This counter-intuitive conclusion

also implies that the fractional-order system has additional

attractive feature over the integer-order system.
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