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Discrete Fractional Order Chaotic Systems
Synchronization Based on the Variable Structure

Control with a New Discrete Reaching-law
Lilian Huang, Longlong Wang, and Donghai Shi

.

Abstract—In this paper, we directly derive a new discrete state
space expression of the fractional order chaotic system based
on the fractional order Grnwald-Letnikow(G-L) definition and
design a variable structure controller with a new faster reaching-
law. The new reaching-law has the advantages of weakening the
high frequency shake. Firstly, the condition of the discrete sliding
mode surface is demonstrated. Then a multi-parametric function
for sliding mode surface is constructed for weakening the high
frequency shake through improving the Gao discrete reaching-
law. Finally, the newly designed variable structure controller
is applied to realize the synchronization of two different order
discrete fractional chaotic systems. The simulation results show
that the designed controller in this paper is effective, as it
can achieve the synchronization of the discrete fractional order
chaotic systems with external disturbances. Theoretical analysis
and simulation results prove the effectiveness and robustness of
this control method.

Index Terms—Discrete fractional order chaotic system, Differ-
ent order system, Sliding mode control, Discrete reaching-law,
Chaos synchronization.

I. INTRODUCTION

RECENTLY the fractional calculus is applied widely
in image processing neural network, signal processing,

robust control and so on[1], because it can more accurately
describe the actual dynamic characteristics of the physical
system. Through researching on fractional calculus, many
researchers generally accepted that fractional order calculus
is a generalization of the integer calculus[2], and they also
believed that the fractional calculus had many new character-
istics of the systematic memory, the dynamic system and so
on. The fractional calculus’ relationship with the chaos and
the fractal theory deeply attracted researchers because new
chaotic phenomenon was found in fractional order nonlinear
systems[3].

The chaotic synchronization has a great potential of appli-
cation in the subject field[4−5] of communication, information
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science, medicine, biological engineering and so on. There
are many methods about chaotic synchronization, for example
linear feedback control[6], coupled synchronization[7], adap-
tive synchronization, sliding mode control[8]. The research
on chaotic synchronization is usually aiming for the same
structure systems[9] with different initial values or known
parameters[10] or fractional order hyper chaos system[11]. As
far as the synchronization of discrete fractional order chaotic
systems[12], many researchers had developed some methods.
Liao et al[13] realized the synchronization of Henon map by
using sliding-mode control. Hu[14] proposed tracking control
and predicted synchronization control on discrete chaotic
system. Majidabad et al[15] designed the algorithm of fast
synchronization and zero steady-steady error fast synchroniza-
tion and so on. On the other side, A.Dzielinski[16] proposed
the expression of the discrete fractional order state space
system. D. Sierociuk[17] obtained some results including the
controllability of discrete fractional order state space system
and adaptive feedback control. J. A. Tenreiro[18] designed a
discrete fractional order controller which could be applied to
the linear and nonlinear systems in the time domain. Yao[19]

put forward another form of discrete fractional order chaotic
system and realized synchronous control, and Gong[20] came
up with a different form of expression on discrete fractional
order chaotic systems. In all the above, the form of discrete
fractional order chaotic systems is obtained indirectly by dif-
ferent discrete methods. In this paper, we derive directly a new
discrete state space expression of the fractional order chaotic
system based on the fractional order Grünwald-Letnikow[21]

definition. We can obtain the scope of the order using bifur-
cation diagram when the system is chaotic. Then based on
the state space analysis method, the synchronization control
problem is researched for different structural discrete fractional
order chaotic systems by sliding mode control theory.

Based on the fractional order definition of Grünwald-
Letnikow, the paper directly derives a new discrete state space
expression of the fractional order chaotic system Then the
paper designed a new kind of discrete sliding mode controller
through improving the Gao’s discrete reaching-law. The struc-
ture of controller designed is simple and easy to select. For two
different structures of discrete fractional order chaotic systems
with different dimensions, we can achieve synchronization
using the new controller. Simulation results show that two
fractional order chaotic systems with different dimensions
can still realize synchronization when the driven system has



2 IEEE/CAA JOURNAL OF AUTOMATICA SINICA

disturbance, which proved the controller’s effectiveness and
feasibility.

II. DISCRETE FRACTIONAL GRÜNWALD-LETNIKOW (G-L)
DEFINITION

The discrete fractional order G-L expression is as following:

∇αx(k) =
k∑

j=0

(−1)j

(
α
j

)
x(k − j)

(
α
j

)
=





1, j = 0
α(α− 1) · · · (α− j + 1)

j!
j > 0

(1)

where
(

α
j

)
is binomial coefficient, α is the order of discrete

equations, α ∈ R.
Considering the general nonlinear discrete systems, the

expression for general nonlinear discrete systems is

x(k + 1) = f(x(k)) (2)

Consider the first order integer discrete difference equation as
below:

∇1 = x(k + 1)− x(k) = f(x(k))− x(k) (3)

We generalize the above align toαorder differential align as
follows:

∇α(x(k + 1)) = f(x(k))− x(k) (4)

From the expression (1), we can get

∇αx(k + 1) =

x(k + 1)− αx(k) +
k+1∑

j=2

(−1)j

(
α
β

)
x(k − j + 1) (5)

For formula (5), introducing a new parameter m and let m =
j − 1, so j = m + 1, and obtaining another formula:

∇αx(k + 1) = x(k + 1)− αx(k)

+
k∑

m=1

(−1)m+1

(
α

m + 1

)
x(k −m)

= x(k + 1)− αx(k) +
k∑

m=1

Mmx(k −m) (6)

where Mm = (−1)m+1

(
α

m + 1

)
m ∈ N .

The general form of discrete fractional order aligns could
be obtained from (4) and (6):

x(k + 1) = f(x(k)) + (α− 1)x(k) +
k∑

m=1

Mmx(k −m)

(7)

where
k∑

m=1
Mmx(k−m) is the memory term for align, and it

indicates that the value of a certain point is not only related to
the function of the point, but also with the previous function
value And the farther away from the point, the less influence

on that point value The memory term can be replaced by
truncation function that is, the above form (7) can be written
as follows.

x(k + 1) = f(x(k)) + (α− 1)x(k) +
L∑

m=1

Mmx(k −m)

(8)

where L is the length of the memory, usually L = 20
For general discrete proportional fractional order system,

the state space expression can be written:



∇αx1(k + 1)
∇αx2(k + 1)

...
∇αxn(k + 1)


 =




f1(x(k))− x1(k)
f2(x(k))− x2(k)

...
fn(x(k))− xn(k)


 (9)

where ∇α represents fractional differential factor of system,
α is the order of the fraction. The ∇α can be rewritten based
on the discrete fractional G-L definition:



x1(k + 1)
x2(k + 1)

...
xn(k + 1)


 =




f1(x(k)) + (α− 1)x1(k) +
L∑

m=1
Mmx1(k −m)

f2(x(k)) + (α− 1)x2(k) +
L∑

m=1
Mmx2(k −m)

...

fn(x(k)) + (α− 1)xn(k) +
L∑

m=1
Mmxn(k −m)




(10)

III. THE SYNCHRONIZATION OF DISCRETE FRACTIONAL
ORDER CHAOTIC SYSTEMS BASED ON SLIDING MODE

VARIABLE STRUCTURE CONTROL

A. The design of the new discrete sliding mode reaching law

Selecting the following and regarding as the sliding-mode
surface.

s(k) = Be(k) (11)

where B is an invertible matrix. When the system is in sliding
mode, it needs to satisfy the following conditions:

si(k) → 0 (12)

The basic principles of discrete and continuous sliding modes
are nearly same, and they have two stages from the initial state
to the stable state, also called two modes. The first stage is
a reaching process and the second stage is sliding state, but
they also have some differences. Based on the discrete sliding
mode variable structure, in order to get the better of discrete
sliding mode, firstly select a discrete sliding surface, so that
the system has good dynamic characteristics. Secondly, for
satisfying reaching condition, design a controller based on the
reaching law. So the controller can make the system converge
to the discrete sliding mode surface from any point in finite
time.
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The classic Gao’s discrete reaching law is as following:

s(k + 1)− s(k) = −εs(k)− βsgn(s(k)) (13)

where ε is the reaching speed, β indicates the reaching speed
index. The reaching condition of Gao′s reaching law is that the
dynamics of system once moves across the switching surface,
the subsequent movements are from the other side of the
switching surface and then the dynamics keeps on it. This
can ensure strong robustness of sliding mode control, but it
also leads to the phenomenon of high frequency chattering. In
order to weaken the high frequency chattering, we propose a
new reaching-law by considering the two aspects.

The improved discrete reaching-law is shown below.

s(k + 1)− s(k) = −β(s(k))sgn(s(k)) (14)

where β is a function that can be designed as following:
β(s(k)) = β + γ |s(k)| + γ |s(k)| sgn(|s(k)| − δ) where

0 < β < δ, 0 < γ < 1/2
According to the existing conditions for the discrete sliding

surface, we illustrate the rationality of the new reaching law
from two aspects as follows.

1) Since s(k + 1)− s(k) = −β(s(k))sgn(s(k))
Then (s(k + 1) − s(k))sgn(s(k)) = −β(s(k)) sgn2(s(k))

= −β(s(k))
And β(s(k)) = β + γ |s(k)|+ γ |s(k)| sgn(|s(k)| − δ), 0 <

β < δ, 0 < γ < 1/2
So β(s(k)) > 0, therefore (s(k + 1)− s(k))sgn(s(k)) < 0
2) Since s(k + 1)− s(k) + 2s(k) = −β(s(k))sgn(s(k)) +

2s(k)

(s(k + 1) + s(k))sgn(s(k))
= −β(s(k))sgn2(s(k)) + 2s(k)sgn(s(k))
= −β(s(k))sgn2(s(k)) + 2 |s(k)|
= −β(s(k)) + 2 |s(k)|

Now compare β(s(k))max and 2 |s(k)|. When |s(k)| > δ,
β(s(k))is the max value β(s(k))max = β + 2γ |s(k)|, so
β < δ < |s(k)| that is β + 2γ |s(k)| < |s(k)| + 2γ |s(k)|.
Because γ < 1/2 then β(s(k))max < 2 |s(k)| so (s(k + 1) +
s(k))sgn(s(k)) > 0.

From (1) and (2), we can get:

(s(k + 1)− s(k))sgn(s(k)) < 0
(s(k + 1) + s(k))sgn(s(k)) > 0

That is |s(k + 1)| < |s(k)|. So the discrete sliding mode
surface exists under the control of new reaching-law.

In the new reaching-law, β is the function of s(k). By
setting the expression of β, it contains the parameters of the
reaching-law speed and reaching speed index. In the process
of approaching the discrete sliding surface, the parameter
δ determines the reaching rate. After reaching the sliding
surface, the system will be stable in the neighborhood of
sliding surface, at this time β determines reaching speed index.

B. The synchronization of discrete fractional order chaotic
systems

Consider the following two discrete fractional order chaotic
systems, as the drive system and response system, respectively:

∇αX(k + 1) = f(X(k))−X(k) (15)
∇αY (k + 1) = g(Y (k))− Y (k) + U(k) (16)

where ∇α is fractional order differential factor, α ∈ R. Based
on the discrete fractional G-L definition, the differential factor
is expanded as follows.

X(k + 1) = f(X(k)) + (α− 1)X(k) +
L∑

m=1

MmX(k −m)

= Rf (X(k)) + (α− 1)X(k) (17)
Y (k + 1) = g(Y (k)) + (α− 1)Y (k)

+
L∑

m=1

MmY (k −m) + U(k)

= Rg(Y (k)) + (α− 1)Y (k) + U(k) (18)

where Rf (X(k)) is the function of f(X(k))

and
L∑

m=1
MmX(k − m), also the same as

Rg(Y (k))
L∑

m=1
MmX(k − m) and

L∑
m=1

MmY (k − m)

are the memory terms for drive system and response system.
X(k) ∈ Rm and Y (k) ∈ Rn are the state variables of drive
system and response system, respectively. α is the order
value of systems. U(k) is the controller for the response
system to be designed.

The purpose of designing controller U(k) is to guarantee
the synchronization of the drive-response system and to have
strong robustness, i.e. lim

k→∞
‖e(k)‖ = 0 wheree(k) is the

generalized synchronization state error, and e(k) = Y (k) −
CX(k), e(k) = (e1(k), e2(k), ...en(k))T, C ∈ Rn×m, so the
state error dynamic system can be written:

e(k + 1) = Y (k + 1)− CX(k + 1)
= Rg(Y (k))− CRf (X(k)) + U(k) (19)

C. Controller design

Theorem: To achieve the synchronization of system (17)
and (18), the following controller is designed.

U(k) = U0 + CRf (X(k))−Rg(Y (k)) + Y (k)− CX(k)

where U0 = [u1, u2, · · · , un], ui = −
n∑

j=0

aij(β(si(k))

sgn(si(k))), A = B−1β(si(k)) = β + γ |si(k)| +

γ |si(k)| sgn(|si(k)| − δ), si(k) =
n∑

j=1

bijej(k), |B| 6= 0.
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Proof: Choosing Lyapunov function as follows:

v(k) = (s(k))Ts(k)
∆v(k) = v(k + 1)− v(k)

= (s(k + 1))Ts(k + 1)− s(k)Ts(k)

= (−β(s(k))sgn(s(k)) + s(k))T(−β(s(k))sgn(s(k))

+ s(k))− (s(k))Ts(k)

= (−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k)))

+ (−β(s(k))sgn(s(k)))Ts(k)

+ s(k)T(−β(s(k))sgn(s(k)))

+ (s(k))Ts(k)− (s(k))Ts(k)

Since −β(s(k))sgn(s(k)) and s(k) are all column vectors.
So (−β(s(k))sgn(s(k)))Ts(k) = s(k)T(−β(s(k))·

sgn(s(k))) is constant. Then

∆v(k) =(−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k)))

+ 2(−β(s(k))sgn(s(k)))Ts(k)

=(−β(s(k))sgn(s(k)))T(−β(s(k))sgn(s(k))+2s(k))

Now assuming that β(s(k))sgn(s(k)) = (m1,m2, · · · ,mn)T ,
2s(k) = (n1, n2, · · · , nn)T

So

∆v(k)=(m1,m2, · · ·,mn)(m1−n1,m2−n2, · · ·,mn−nn)T

=(m2
1−m1n1)+(m2

2−m2n2) + · · ·+ (m2
n−mnnn)

Otherwise β(s(k))max < 2 |s(k)|,
So β(s(k))sgn(s(k)) < 2 |s(k)| sgn(s(k)) = 2s(k) that is

mi < ni, i = 1, 2, · · · , n
it is easy to obtain:

∆v(k) < 0

According to Lyapunov stability theory, the original Lyapunov
function is positive definite v(k) > 0 and its first derivative
is negative definite ∆v(k) < 0 then the error system e(k)
converges to zero. So the expression (17) and (18) achieve
synchronization finally.

IV. SIMULATION

A. Case 1: The dimension of drive system is bigger than that
of the response system

The generalized discrete Henon chaotic system as drive
system is,





x1(k + 1) = ax3(k)
x2(k + 1) = bx1(k) + ax3(k)
x3(k + 1) = 1 + x2(k)− cx2

3(k)
(20)

According to the above, the fractional order of this system is:



∇αx1(k + 1) = ax3(k)− x1(k)
∇αx2(k + 1) = bx1(k) + ax3(k)− x2(k)
∇αx3(k + 1) = 1 + x2(k)− cx2

3(k)− x3(k)
(21)

From the above the equation, every differential align contains
fractional differential factor ∇α and α is the order, which
would be set to make the system be chaotic. By using the

definition of G-L, the ∇α can be expanded to get the driving
system as follows:




x1(k + 1) = ax3(k) + (α− 1)x1(k) +
L∑

m=1
Mmx1(k −m)

= f1(x(k)) + ∆f(x(k))
x2(k + 1) = bx1(k) + ax3(k) + (α− 1)x2(k)

+
L∑

m=1
Mmx2(k −m)

= f2(x(k))
x3(k + 1) = 1 + x2(k)− cx2

3(k) + (α− 1)x3(k)

+
L∑

m=1
Mmx3(k −m)

= f3(x(k))
(22)

where a, b, c are the parameters of drive system, ∆f(x(k))
indicates external disturbance. The bifurcation diagram of
the system can be obtained when selecting the parameter
a = 0.358, b = 1.3, c = 1.07 and the initial value is
(0.45, 0.3, 0.4).

Fig. 1. Bifurcation diagram of generalized discrete fractional Henon
chaotic system

From the Fig.(1), the drive system is chaotic when 0.534 <
α < 1.55. In this simulation we choose α = 0.8.

Selecting the discrete map Ikeda [22] as the response system
is,{

y1(k + 1) = a′ + b′(y1(k) cos(θ)− y2(k) sin(θ))
y2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ)) (23)

where θ = y2
1(k) + y2

2(k), a′, b′ are the parameters of the
system. We can obtain its fractional order expression from
above.{∇αy1(k + 1)=a′ + b′(y1(k) cos(θ)−y2(k) sin(θ))−y1(k)
∇αy2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ))− y2(k)

(24)

By using the definition of G-L, the ∇α can be simplified. Then
the above expression can be rewritten as following:




y1(k + 1) = a′ + b′(y1(k) cos(θ)− y2(k) sin(θ))

+(α− 1)y1(k) +
L∑

m=1
Mmy1(k −m) + u1(k)

= g1(y(k)) + u1(k)
y2(k + 1) = b′(y1(k) sin(θ)− y2(k) cos(θ))

+(α− 1)y2(k) +
L∑

m=1
Mmy2(k −m) + u2(k)

= g2(y(k)) + u2(k)
(25)
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u1(k), u2(k) are the controllers for response system. Selecting

transfer matrix C =
[

1 0 0
0 1 1

]
the state error dynamic

system e(k) = y(k)− Cx(k) can be rewritten:{
e1(k) = y1(k)− x1(k)
e2(k) = y2(k)− (x2(k) + x3(k)) (26)

From the details in subsection (3.3) U(k) can be designed as
following:

U(k) =




u01(k) + f1(x(k))− g1(y(k)) + y1(k)− x1(k)
u02(k) + f2(x(k)) + f3(x(k))− g2(y(k))
+y2(k)− (x2(k) + x3(k))




(27)

where u0i(k), i = 1, 2 is{
u01(k)=−a11β(s1(k))sgn(s1(k))−a12β(s2(k))sgn(s2(k))
u02(k)=−a21β(s1(k))sgn(s1(k))−a22β(s2(k))sgn(s2(k))

(28)

where β(si(k)) = β + γ |si(k)| + γ |si(k)| sgn(|si(k)| − δ),
the sliding surface is chosen as below:{

s1(k) = b11e1(k) + b12(e1(k) + e2(k))
s2(k) = b21e1(k) + b22(e1(k) + e2(k)) (29)

The matrix A and B meet the conditions of A = B−1

based on the Theorem. The parameters of the drive system
are a = 0.358, b = 1.3, c = 1.07, α = 0.8 and its initial value
is (0.45, 0.3, 0.4). The parameters of the response system are
a′ = 1.5, b′ = 0.2, α = 0.8 and its initial value is (0.9, 0.2).
The parameters of the sliding surface are (0.7, 2.4)(0.2, 3.6)
Selecting the controller’s parameters β = 0.04, γ = 0.4,
δ = 0.8. Assuming that the external disturbance ∆f(x(k)) =
0.01 sin(0.04kπ). The result of simulation is shown in Fig.(2).

Fig. 2. Synchronization error curves

B. Case 2: The dimension of the drive system is smaller than
that of the response system

Selecting the discrete Henon map as drive system is,{
x1(k + 1) = 1− ax2

1(k) + x2(k) + ∆f(x(k))
x2(k + 1) = bx1(k) (30)

where ∆f(x(k)) is an external disturbing perturbations. The
fractional order of drive system is below:



x1(k + 1) = 1− ax2
1(k) + x2(k) + (α− 1)x1(k)

+
L∑

m=1
Mmx1(k −m)

= f1(x(k)) + ∆f(x(k))

x2(k + 1) = bx1(k) + (α− 1)x2(k) +
L∑

m=1
Mmx2(k −m)

= f2(x(k))
(31)

Selecting the parameters of system a = 1.4, b = 0.3 and its
initial value is (0.5, 0.2). The Bifurcation diagram of drive
system can be obtained without the external disturbance.

Fig. 3. Bifurcation diagram of discrete fractional Henon chaotic
system

The drive system is chaotic when 0.54 < α < 2.08 from
the Fig.(3). The generalized discrete Henon chaotic system as
response system is:





y1(k + 1) = a′y3(k) + (α− 1)y1(k)

+
L∑

m=1
Mmy1(k −m) + u1(k)

= g1(y(k)) + u1(k)
y2(k + 1) = b′y1(k) + a′y3(k) + (α− 1)y2(k)

+
L∑

m=1
Mmy2(k −m) + u2(k)

= g2(y(k)) + u2(k)
y3(k + 1) = 1 + y2(k)− c′y2

3(k) + (α− 1)y3(k)

+
L∑

m=1
Mmy3(k −m) + u3(k)

= g3(y(k)) + u3(k)

(32)

From the content of (4.1), the response system is chaotic when

0.534 < α < 1.55. Selecting transfer matrix C =




1 0
0 1
1 1


,

so the state error dynamic system e(k) = y(k) − Cx(k) can
be rewritten:





e1(k) = y1(k)− x1(k)
e2(k) = y2(k)− x2(k)
e3(k) = y3(k)− (x1(k) + x2(k))

(33)

The controller of U(k) is designed as following:

U(k) =




u01(k) + f1(x(k))− g1(y(k)) + y1(k)− x1(k)
u02(k) + f2(x(k))− g2(y(k)) + y2(k)− x2(k)
u03(k) + f2(x(k)) + f1(x(k))− g2(y(k))

+y2(k)− (x1(k) + x2(k))




(34)

The u0i(k), i = 1, 2, 3 is,




u01(k) = a11β(s1(k)) + a12β(s2(k)) + a13β(s3(k))
u02(k) = a21β(s2(k)) + a22β(s2(k)) + a23β(s3(k))
u03(k) = a31β(s1(k)) + a32β(s2(k)) + a33β(s3(k))

(35)
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where β(si(k)) = β +γ |si(k)|+γ |si(k)| sgn(|si(k)|−δ) the
sliding surface is chosen as below:





s1(k) = b11e1(k) + b12e2(k) + b13e3(k)
s2(k) = b21e1(k) + b22e2(k) + b23e3(k)
s3(k) = b31e1(k) + b32e2(k) + b33e3(k)

(36)

The matrix A and B meet the conditions of A = B−1 based on
the Theorem and selecting the parameters of the drive system
a = 1.5, b = 0.2, α = 0.8, and its initial value is (1.2, 0.8).
The parameters of response system are a′ = 0.358b′ = 1.3,
c′ = 1.07, α = 0.8, and its initial value is (0.1, 0.2, 0.1).
The parameters of the sliding surface will be (0.2, 1.1, 2.4),
(0.8, 0.3, 3.6), (0.1, 0.8, 3.9). The length of the memory L =
20. Setting the parameters of controllerβ = 0.02, δ = 0.8,γ =
0.3 Assuming that the drive system of external disturbance
is ∆f(x(k)) = 0.05 sin(0.4kπ). The result of simulation is
shown in Fig.(4).

Fig. 4. Synchronization error curves

The simulation results show that the synchronization state
error converges to the origin asymptotically in finite time and
stabilize the origin eventually with external disturbance. The
results demonstrate that the different dimensional structure
discrete fractional order chaotic systems achieved synchroniza-
tion under the action of designed controller.

V. CONCLUSIONS

In this paper, a new general state space expression of
discrete fractional order chaotic system is obtained based
on the fractional order definition of Grünwald-Letnikow. A
new discrete sliding mode reaching-law control strategy which
has the advantage of weakening the high frequency chatting
is proposed by improving the Gao’s discrete reaching-law.
Based on a novel strategy, a new controller is designed, which
would guarantee the different dimensional structure discrete
fractional order chaotic systems achieving synchronization.
When the systems are with external disturbances, they can
still achieve the synchronization of the discrete fractional order
chaotic systems. Simulation results verify the effectiveness of
the proposed methods and demonstrate the rationality of the
designed controller.
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