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Fractional-Order Control for a Novel Chaotic
System without Equilibrium

Shu-Yi Shao and Mou Chen Member, IEEE,

Abstract—The control problem is discussed for a chaotic sys-
tem without equilibrium in this paper. On the basis of the linear
mathematical model of the two-wheeled self-balancing robot, a
novel chaotic system which has no equilibrium is proposed. The
basic dynamical properties of this new system are studied via
Lyapunov exponents and Poincaré map. To further demonstrate
the physical realizability of the presented novel chaotic system, a
chaotic circuit is designed. By using fractional-order operators,
a controller is designed based on the state-feedback method.
According to the Gronwall inequality, Laplace transform and
Mittag-Leffler function, a new control scheme is explored for the
whole closed-loop system. Under the developed control scheme,
the state variables of the closed-loop system are controlled to
stabilize them to zero. Finally, the numerical simulation results
of the chaotic system with equilibrium and without equilibrium
illustrate the effectiveness of the proposed control scheme.

Index Terms—Chaotic system, Circuit implementation,
Fractional-order, Stabilization.

I. INTRODUCTION

FROM From the simplified equation of convection roll-
s in the equations of the atmosphere, the first three-

dimensional chaotic system was derived by Lorenz in 1963[1].
With the development and applying of chaos theory, a number
of chaotic systems, hyperchaotic systems, fractional-order
chaotic systems and fractional-order hyperchaotic systems
have been proposed, such as Rössler chaotic system[2], Liu
chaotic system[3], hyperchaotic Chen system[4], hyperchaotic
Lü system[5], fractional-order financial system[6], fractional-
order Lotka-Volterra equation[7], fractional-order hyperchaos
Lorenz system[8], a modified four-dimensional fractional order
hyperchaotic system[9] and so on. The above mentioned chaot-
ic systems have equilibrium. In addition, there are a number of
chaotic systems without equilibrium which have been studied
by [10-13]. As a result, chaos control became one of the
important issues for chaotic systems. Due to great potential
application in electrical engineering, information processing
and secure communication, it is important to investigate new
control methods for chaotic systems.

Over the past few decades, chaos control and chaos syn-
chronization have received much attention and many im-
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portant results have been reported. In the early 1990s, the
synchronization of chaotic systems was achieved by Pecora
and Carroll[14,15], which was a trailblazing result, and the
result promoted the development of chaos control and chaos
synchronization[16,17]. In recent years, different chaos control
and chaos synchronization strategies have been developed
for chaotic systems. The sliding mode control method was
applied to chaos control[18,19] and chaos synchronization[20].
In [21], the feedback control method and the adaptive control
method were used to realize chaos control for the energy
resource chaotic system. The chaos control problems were
investigated for Lorenz system, Chen system and Lü system
based on backstepping design method in [22]. By using
adaptive control method, the problems of chaos control[23,24]

and chaotic synchronization[25] were studied for chaotic sys-
tems. The neural adaptive control method was developed for
a class of chaotic systems with uncertain dynamics, input
and output constraints in [26]. In [27], on the basis of
impulsive control method, the problems of the stabilization
and synchronization were explored for Lorenz systems. The
synchronization problem was resolved for a class of chaotic
systems by using a fractional-order observer-based method and
the synchronization was applied to secure communication in
[28]. In [29], the synchronization was studied for fractional-
order systems based on the output feedback sliding mode
control method. A new synchronization strategy was presented
for two fractional-order systems and the synchronization was
applied in image encryption in [30]. The above literature works
focused on chaos control and chaos synchronization in prac-
tical chaotic systems with equilibrium points. However, the
control of chaotic systems without equilibrium has rarely been
investigated[13]. Meanwhile, for most of the above mentioned
works, fractional-order controllers have rarely been used to
realize the chaos control of integer-order chaotic systems,
although some important results on the fractional-order con-
trollers have been proposed for various systems[31−33]. In [31],
a well-known fractional-order controller was presented. In
[32], the concept of a fractional-order PIλDµ controller was
proposed and the fractional-order controller included fractional
order integrator and fractional-order differentiator. In [33], on
the basis of the Lyapunov stability theory, a novel fractional-
order controller was given, and fractional-order chaotic and hy-
perchaotic systems were controlled by the proposed fractional-
order controller. The fractional-order controllers are effective
to control systems, which have been proved in the mentioned
works. Therefore, it is valuable to further explore the chaos
control of integer-order chaotic systems without equilibrium
by using fractional-order controllers.

Inspired by the above discussions, the objective of this paper
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is to design an efficient fractional-order controller and the
stability is realized for the closed-loop system. A novel chaotic
system without equilibrium is proposed based on the model of
two-wheeled self-balancing robot. Meanwhile, the presented
new system is used to verify the effectiveness of the proposed
control scheme.

The organization of the paper is as follows. Section II
details the problem formulation. A novel chaotic system is
proposed and the chaotic system circuit is designed in Section
III. Section IV presents the fractional-order controller based on
the state-feedback method. The numerical simulation studies
are presented to demonstrate the effectiveness of the developed
control method in Section V, followed by some concluding
remarks in Section VI.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper, a novel chaotic system will be proposed by
only considering the straight line position xr and the pitch
angle θp of the two-wheeled self-balancing robot of Googol
Technology as shown in Fig. 1. A mathematical model related
to the two-wheeled self-balancing robot of Googol Technology
was established in [34]. The linear mathematical model for
xr and θp of the two-wheeled self-balancing robot of Googol
Technology is described in the form

ẋr

ẍr

θ̇p
θ̈p

 =


0 1 0 0
0 0 −23.6701 0
0 0 0 1
0 0 124.5128 0




xr

ẋr

θp
θ̇p



+


0

4.5974
0

−19.0414

Cθ (1)

where Cθ denotes the pitch torque.

Fig. 1. Two-wheeled self-balancing robot of Googol Technology.

In order to transform the linear mathematical model in-
to a chaotic system, we consider Cθ as a nonlinear term
Φ(xr, ẋr, θ̇p, θ̈p), which will be given in next section.

Considering the nonlinear function Φ(xr, ẋr, θ̇p, θ̈p) and the

control input u, (1) can be described as
ẋr

ẍr

θ̇p
θ̈p

 =


0 1 0 0
0 0 −23.6701 0
0 0 0 1
0 0 124.5128 0




xr

ẋr

θp
θ̇p



+


0

4.5974
0

−19.0414

Φ(xr, ẋr, θ̇p, θ̈p) + u (2)

where the control input u = [u1, u2, u3, u4]
T.

This paper aims at constructing a novel chaotic system
without equilibrium and developing a fractional-order control
scheme, so that the stabilization of the whole closed-loop sys-
tem is realized based on the designed control strategy. Under
designed fractional-order controller, the state variables of the
closed-loop system will be asymptotically stable. To develop
the fractional-order control scheme, we firstly introduce the
following definitions and lemmas:

Definition 1[35]. The Caputo fractional derivative operator,
which is one of the most widely used fractional derivative
operators, is defined for the function f(t) as follows :

Dαf(t) =
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)
α−m+1 dτ, (3)

where α is the fractional order and m − 1 < α < m, m =
[α] + 1, [α] denotes the integer part of α, and Γ(·) is gamma
function, which is defined as Γ(m− α) =

∫∞
0

tm−α−1e−tdt.
The main advantage of (3) is that Caputo derivative of a
constant is equal to zero. Particularly, when 0 < α ≤ 1,
we have L{Dαf(t)} = sαF (s) − sα−1f(0). The Laplace
transform of fractional integral at t0 = 0 has the following
form:

L
{
D−αf(t)

}
= s−αL{f(t)} = s−αF (s), (α > 0), (4)

where t and s are the variables in the time domain and Laplace
domain, respectively. F (s) = L(f(t)) and L(·) stands for the
Laplace transform.

In this paper, the fractional-order controller will be de-
scribed by using Caputo definition with lower limit of integral
t0 = 0 and the order 1 < α < 2. Furthermore, there have
been some important control schemes proposed for fractional-
order systems by using different fractional calculus. In [36-
38], Mittag-Leffler stability theorems have been proposed for
fractional-order systems. The stability theorem was develope-
d for fractional differential system with Riemann-Liouville
derivative in [39-41].

Definition 2[42]. The Mittag-Leffler function with two
parameters is defined as

Eα1,β1(z) =

∞∑
k=0

zk

Γ(kα1 + β1)
, (5)

where α1 > 0, β1 > 0, z denotes the set of complex numbers.
When β1 = 1, the Mittag-Leffler function can be written as

Eα1,1(z) = Eα1(z) =
∞∑
k=0

zk

Γ(kα1 + 1)
, (6)
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The Laplace transform of Mittag-Leffler function is given by{
L
{
tβ1−1Eα1,β1(−λtα1)

}
= sα1−β1

sα1+λ ,ℜ(s) > |λ|
1

α1 ,

L{Eα1,1(−λtα1)}= sα1

s(sα1+λ) .
(7)

where ℜ(s) stands for the real part of s and λ ∈ R.
Lemma 1[43]. For the the Mittag-Leffler function

Eα3,β3(A0t
α3), if 1 < α3 < 2, then, for β3 = 1, 2 or α3,

one has

∥Eα3,β3(A0t
α3)∥ ≤

∥∥∥eA0t
α3
∥∥∥ , t ≥ 0. (8)

Moreover, if A0 is a stable matrix, we have∥∥∥eA0t
α3
∥∥∥ ≤ Me−ηt, t ≥ 0, (9)

where M ≥ 1, −η(η > 0) is the largest eigenvalue of the
matrix A0, ∥·∥ denotes any vector or induced matrix norm.

Lemma 2[44,45](Gronwall-Bellman lemma). Assume that
the function h(t) satisfies

h(t) ≤
∫ t

0

p(τ)h(τ)dτ + b(t), (10)

with p(τ) and b(t) being known real functions. Then, we
obtain

h(t) ≤
∫ t

0

p(τ)h(τ)e
∫ t
τ
p(υ)dυdτ + b(t). (11)

If b(t) is differentiable, we have

h(t) ≤ b(0)e
∫ t
0
p(τ)dτ +

∫ t

0

ḃ(τ)e
∫ t
τ
p(υ)dυdτ . (12)

In particular, if b(t) is a constant, one has

h(t) ≤ b(0)e
∫ t
0
p(τ)dτ . (13)

III. DESIGN OF CHAOTIC SYSTEM AND CIRCUIT
IMPLEMENTATION

In this section, a novel chaotic system without equilibrium
is constructed based on the linear mathematical model (1)
of the two-wheeled self-balancing robot. For this case, the
proposed novel chaotic system can be regarded as an open-
loop system of the system (2). Furthermore, the chaotic circuit
is designed to show the physical realizability of the proposed
chaotic system.

A. A Novel Chaotic System

From (2), the novel chaotic system is described as follows:

ẋ1 = x2

ẋ2 = −23.6701x3 + 4.5974Φ(x)

ẋ3 = x4

ẋ4 = 124.5128x3 − 19.0414Φ(x) (14)

where x = [x1, x2, x3, x4]
T is the state vector of the nonlinear

system with x1 = xr, x2 = ẋr, x3 = θp and x4 = θ̇p. The
nonlinear function Φ(x) is given by

Φ(x) = κ1(x2 + x4 + x1x3) + κ2 (15)

where κ1 and κ2 are constants. When κ1 = 10 and κ2 = 0.5,
we obtain the Lyapunov exponents λL1 = 0.0177, λL2 = 0,
λL3 = −0.0148 and λL4 = −143.8384 by using the initial
conditions x10 = x20 = x30 = x40 = 0.1 based on the
numerical method of [46]. Obviously, the system (14) is a
chaotic system because λL1 > 0, λL2 = 0, λL3 < 0 and
λL4

< 0. On the basis of the system (14) and the mentioned
parameter values, some simulation results are further presented
as shown in Fig. 2. In addition, to further reflect the properties
of chaos, a Poincaré map is shown in Fig. 3.

In order to solve the equilibrium of system (14), we have
ẋ1 = 0, ẋ2 = 0, ẋ3 = 0 and ẋ4 = 0, that is

x2 = 0

−23.6701x3 + 4.5974Φ(x) = 0

x4 = 0

124.5128x3 − 19.0414Φ(x) = 0 (16)
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Fig. 2. Chaotic behaviors of the novel chaotic system (a) x1 − x2

plane, (b) x1 − x3 plane, (c) x1 − x4 plane, (c) x3 − x1 − x4 space.
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Fig. 3. Poincaré map in the x2 − x3 plane.

According to (16), we obtain that there is no equilibrium in
system (14). Furthermore, we ensure that the system (14) is
dissipative with the following exponential contraction rate:

dV

dt
= e−144.44t (17)

with

∇V =
∂ẋ1

∂x1
+

∂ẋ2

∂x2
+

∂ẋ3

∂x3
+

∂ẋ4

∂x4

= −144.44 < 0 (18)

B. Circuit Implementation

To further illustrate the physical realizability of the proposed
novel chaotic system (14), the system circuit is designed.
By using the resistors, the capacitors and the operational
amplifiers TL082, the designed circuit of the chaotic system
is shown in Fig. 4. According to Fig. 4, the circuit system of
the chaotic system is described as

ẋ1 =
R12

C1R11R13
x2

ẋ2 = − 1

C2R28
x3 +

R22

C2R23R21
x2 +

R26

C2R25R27
x1x3

+
R210

C2R29R211
x4 + V1

1

C2R24

ẋ3 =
R32

C3R31R33
x4

ẋ4 =
R42

C4R41R44
x3 −

1

C4R46
x2 −

1

C4R45
x1x3

− 1

C4R47
x4 − V2

1

C4R43
(19)

By comparing (14) with (19), all resistance values R11,
R12, R21, R22, R25, R26, R29, R210, R31, R32, R41 and
R42 are 10KΩ, R13 and R33 are 1MΩ, R23, R27 and R211

are 21.7514KΩ, R45, R46 and R47 are 5.251715KΩ, R28

is 42.2474KΩ, R44 is 8.031303KΩ, R24 is 435.02849KΩ
and R43 is 105.0343KΩ. The voltage values V1 = 1V and
V2 = −1V . In order to speed up the circuit response time, we
make a time scale transformation by multiplying a factor of
100 on the right hand side of (14), the capacitance values C1,
C2, C3 and C4 are 10nF . In Fig. 4, UAi(i = 1, 2, · · · , 10)
are operational amplifiers, A is a unity gain multiplier.

From the designed circuit of chaotic system (14), the
circuit experimental phase portraits are presented in Fig. 5.
Comparing Fig. 2 and Fig. 5, we observe that there exists
consistency between numerical simulations and circuit exper-
imental simulations, the circuit simulation results prove the
physical realizability of the proposed novel chaotic system
(14).
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Fig. 3. Circuit of the novel chaotic system (14).
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(b)

(c)

Fig. 5. Chaotic behaviors of the chaotic circuit (a) x1 − x2 plane,
(b) x1 − x3 plane, (c) x1 − x4 plane.

IV. DESIGN OF FRACTIONAL-ORDER CONTROLLER AND
STABILITY ANALYSIS

In this section, the control scheme will be proposed for the
whole closed-loop system including the constructed chaotic
system (14) and the designed fractional-order controller. The
goal is to guarantee the stabilization of the closed-loop system
under the proposed fractional-order controller.

From (14), the chaotic system can be rewritten as

ẋ = Ax+ q(x) + q̄ (20)

where x = [x1, x2, x3, x4]
T is the state vector,

A =


0 1 0 0
0 45.974 −23.6701 45.974
0 0 0 1
0 −190.414 124.5128 −190.414



q(x) =


0

45.974x1x3

0
−190.414x1x3



q̄ =


0

2.2987
0

−9.5207

 .

According to the chaotic system (14) and considering the
control input u, the corresponding system has the following
form:

ẋ = Ax+ q(x) + q̄ + u (21)

where u = [u1, u2, u3, u4]
T is the designed fractional-order

control input.

Based on the state-feedback control method, the controller
u is defined as

u = −Ax− q̄ +KD1−αx. (22)

where K = diag(k1, k2, · · · , kn) is a design control gain
matrix and the fractional order satisfies 1 < α < 2.

According to (21) and (22), one has

ẋ = q(x) +KD1−αx. (23)

To render the stabilization of the system (21) under the
proposed controller (22), the following assumption is required:

Assumption 1. Nonlinear function q(x) satisfies q(0) = 0
and lim∥x∥→0∥q(x)∥/∥x∥ = 0.

The fractional-order controller based control scheme for the
closed-loop system (23) can be summarized in the following
theorem.

Theorem 1. For the closed-loop system (23), the fractional-
order controller is designed based on (22). Then, the state
variables of the closed-loop system (23) are asymptotically
stabilized to zero when the zero is a stable equilibrium
point of the closed-loop system (23), under the conditions of
lim∥x∥→0∥q(x)∥/∥x∥ = 0, the fractional order α: 1 < α < 2,
and the design matrix K satisfies η = −max {Reλ(K)} > 1,
where λ(K) denotes the eigenvalues of K and M ≥ 1.

Proof. By taking the Laplace transform on system (23), we
have

sX(s)− x(0) = L(q(x(t))) +Ks1−αX(s), (24)

where X(s) is the Laplace transform of x(t), x(0) is the initial
condition of (17) and 1 < α < 2.

Let us multiply both sides of (24) by sα, it yields

sα+1X(s)− sαx(0) = sαL(q(x(t))) +KsX(s). (25)

From (25), one has

X(s) = sα−1(Isα −K)−1(x(0) + L(q(x(t)))), (26)

where I denotes the 4× 4 identity matrix.
Taking the Laplace inverse transform on (26), one obtains

x(t) = Eα,1(Ktα)x(0)

+

∫ t

0

Eα,1(K(t− φ)
α
)q(x(φ))dφ. (27)

On the basis of Lemma 1, since K is a stable matrix, −η =
max(Reλ(K))(η > 0), M ≥ 1 and 1 < α < 2, (27) can be
written as

∥x(t)∥ ≤ Me−ηt ∥x(0)∥+
∫ t

0

Me−η(t−φ) ∥q(x(φ))∥dφ. (28)

Multiplying by eηt on both sides of (28), it yields

eηt ∥x(t)∥ ≤ M ∥x(0)∥+
∫ t

0

Meηφ ∥q(x(φ))∥dφ. (29)

According to Assumption 1 and the properties of
lim∥x∥→0∥q(x)∥/∥x∥ = 0[43,47], there exists a constant δ > 0,
such that

∥q(x)∥ ≤ 1

M
∥x∥ as ∥x∥ < δ. (30)
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Substituting (30) into (29), one has

eηt ∥x(t)∥ ≤ M ∥x(0)∥+
∫ t

0

eηφ ∥x(φ)∥dφ. (31)

Based on Lemma 2, b(t) = M ∥x(0)∥, p(φ) = 1 and h(t) =
eηt ∥x(t)∥, we have

eηt ∥x(t)∥ ≤ M ∥x(0)∥ et. (32)

Inequality (32) is equivalent to

∥x(t)∥ ≤ M ∥x(0)∥
e(η−1)t

. (33)

When η = −max {Reλ(K)} > 1, t → ∞, ∥x(t)∥ asymp-
totically tends to zero, which implies the closed-loop system
(23) is asymptotically stable if zero is a stable equilibrium
point. This concludes the proof.

V. NUMERICAL SIMULATION

In this section, in order to illustrate and verify the effective-
ness of the proposed control scheme, the closed-loop system
(23) is analyzed. Furthermore, we use the proposed control
scheme to stabilize the chaotic systems with equilibrium such
as Chen system[48], Genesio’s system[49], and hyperchaotic
Lorenz system[50].

A. Novel chaotic system

Combining the novel chaotic system (14) and the designed
controller (22), we have

ẋ1 = k1D
1−αx1

ẋ2 = 45.974x1x3 + k2D
1−αx2

ẋ3 = k3D
1−αx3

ẋ4 = −190.414x1x3 + k4D
1−αx4 (34)

The equilibrium of system (34) is obtained by solving ẋ1 =
0, ẋ2 = 0, ẋ3 = 0 and ẋ4 = 0, that is

k1D
1−αx1 = 0

45.974x1x3 + k2D
1−αx2 = 0

k3D
1−αx3 = 0

−190.414x1x3 + k4D
1−αx4 = 0 (35)

According to (35), we obtain that O = (0, 0, 0, 0) is the
equilibrium of the system (34). Furthermore, when the design
parameters k1, k2, k3 and k4 satisfy k1 < 0, k2 < 0,
k3 < 0 and k4 < 0, we can guarantee that the equilibrium
O = (0, 0, 0, 0) is a stable equilibrium based on the stability
analysis method of the equilibrium[51].

From (34), we have

lim
∥x∥→0

∥q(x)∥
∥x∥

= lim
∥x∥→0

√
38371x2

1x
2
3√

x2
1 + x2

2 + x2
3 + x2

4

≤ lim
∥x∥→0

√
38371x2

1x
2
3√

x2
3

= lim
∥x∥→0

195.8854 |x1| = 0 (36)

which implies that q(x) satisfies Assumption 1. On the basis of
Theorem 1 and pole placement technique, the feedback control
gain matrix and the order α are chosen as

K = diag(−10,−10,−10,−10), α = 1.6 (37)

From the above discussion, we have
∥∥eKtα

∥∥ ≤ e−10t, M = 1
and η = −max {Reλ(K)} = 10 > 1, which satisfy Theorem
1. The simulation results are shown in Fig. 6 and Fig. 7.
According to the numerical simulation results, the closed-loop
system (34) is asymptotically stable, which implies that the
proposed control scheme works effectively.

Time(s)

0.0 2.0 4.0 6.0 8.0

-0.2

-0.1

0.0

0.1

0.2

x
1

x
2

x
3

x
4

Fig. 6. Numerical simulation results of the system (34).
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Fig. 7. Control inputs.

B. Chaotic systems with equilibrium

In order to further illustrate the effectiveness of the devel-
oped control scheme in this paper, we use the proposed control
scheme (22) to control Chen system[48], Genesio’s system[49],
and hyperchaotic Lorenz system[50]. We firstly analyze the
following dynamical model of Chen system[48]:

ẋ1 = 35(x2 − x1)

ẋ2 = −7x1 − x1x3 + 28x2

ẋ3 = x1x2 − 3x3 (38)

From (22), the control input u is designed for the Chen
system as follows:

u1 = −35(x2 − x1) + k1D
1−αx1

u2 = 7x1 − 28x2 + k2D
1−αx2

u3 = 3x3 + k3D
1−αx3 (39)
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Invoking (38), we have

lim
∥x∥→0

√
x2
1x

2
2 + x2

1x
2
3√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

|x1| = 0 (40)

where x = [x1, x2, x3]
T.

According to (40), the nonlinear function in (38) can satisfy
the Assumption 1. Therefore, the Chen system (38) can be
stabilized to zero by choosing appropriate parameters k1, k2
and k3.

The Genesio’s system is written by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −6x1 − 2.92x2 − 1.2x3 + x2
1 (41)

To control the Genesio’s system (41), the control input u
can be designed based on (22) as

u1 = −x2 + k1D
1−αx1

u2 = −x3 + k2D
1−αx2

u3 = 6x1 + 2.92x2 + 1.2x3 + k3D
1−αx3 (42)

From (41), we obtain

lim
∥x∥→0

√
x4
1√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

|x1| = 0 (43)

where x = [x1, x2, x3]
T.

The nonlinear function in (41) can satisfy the Assumption
1 based on (43). Thus, the Genesio’s system (41) can be
stabilized to zero under the appropriate parameters k1, k2 and
k3.

The hyperchaotic Lorenz system is given as follows:

ẋ1 = 10(x2 − x1)

ẋ2 = 28x1 − x1x3 − x2

ẋ3 = x1x2 −
8

3
x3

ẋ4 = −x1x3 + 1.2x4 (44)

Combining the hyperchaotic Lorenz system (44) and the
control scheme (22), the control input u is written as

u1 = −10(x2 − x1) + k1D
1−αx1

u2 = −28x1 + x2 + k2D
1−αx2

u3 =
8

3
x3 + k3D

1−αx3

u4 = −1.2x4 + k4D
1−αx4 (45)

According to (44), we have

lim
∥x∥→0

√
2x2

1x
2
3 + x2

1x
2
2√

x2
1 + x2

2 + x2
3

≤ lim
∥x∥→0

√
2x2

2 + x2
3 = 0 (46)

where x = [x1, x2, x3, x4]
T.

On the basis of (46), the Assumption 1 is satisfied for the
nonlinear function in (44). By designing appropriate param-
eters k1, k2, k3 and k4, the stabilization of the hyperchaotic
Lorenz system (44) can be realized.

According to the above discussion and analysis, we obtain
that the Chen system (38), the Genesio’s system (41) and the

hyperchaotic Lorenz system (44) can be controlled by using
the designed control scheme in this paper. For the numerical
simulation of the Chen system (38), we choose the control
parameters k1 = −10, k2 = −10 and k3 = −10, the initial
conditions x0 = (3, 2, 3)T and the fractional order α = 1.6.
For the numerical simulation of the Genesio’s system (41),
we set the control parameters as k1 = −10, k2 = −10 and
k3 = −10, the initial conditions as x0 = (−1,−1, 0)T and the
fractional order α = 1.6. The control parameters are designed
as k1 = −10, k2 = −10, k3 = −10 and k4 = −10, the
initial conditions are assumed as x0 = (0.1, 0.1, 0.1, 0.1)T

and the fractional order is chosen as α = 1.6 in the numerical
simulation of the hyperchaotic Lorenz system (44).
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Fig. 8. Stabilization of Chen system (38).
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Fig. 9. Control inputs of Chen system (38).

On the basis of the above given simulation conditions, the
numerical results are presented in Fig. 8-Fig. 13 for the Chen
system (38), the Genesio’s system (41), and the hyperchaotic
Lorenz system (44). The control result of the Chen system
(38) is shown in Fig. 8. It is illustrated that good control
performance is obtained under the designed controller (39).
Fig. 9 presents the control input (39). The numerical results
of the Genesio’s system (41) are given in Fig. 10 and Fig. 11.
Fig. 10 and Fig. 11 show that the controller (42) can stabilize
the Genesio’s system (41) well. Finally, Fig. 12 and Fig. 13
show that the fractional-order controller (45) can control all
state variables of the hyperchaotic Lorenz system (44) to the
origin point. Therefore, all the simulation results show that
the fractional-order controller also can control the chaotic and
hyperchaotic systems with equilibrium.
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Fig. 10. Stabilization of Genesio’s system (41).
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Fig. 11. Control inputs for Genesio’s system (41).
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Fig. 12. Stabilization of hyperchaotic Lorenz system (44).
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Fig. 13. Control inputs for hyperchaotic Lorenz system (44).

VI. CONCLUSION

In this paper, a novel chaotic system without equilibrium has
been proposed. The Lyapunov exponents and Poincaré map of
the proposed chaotic system have been given. Meanwhile, the
dissipativeness of the new chaotic system has been illustrated.
The chaotic circuit has been designed to demonstrate the
physical realizability of the novel chaotic system. In addition,
on the basis of the Gronwall inequality, the Laplace transform,
the Mittag-Leffler function and the state-feedback method, a
stability theorem for a class of closed-loop systems has been
given. The designed controller has been developed to realize
the stabilization of the closed-loop system. Furthermore, the
proposed control scheme has been developed to control the
chaotic and hyperchaotic systems with equilibrium, i.e. Chen
system, Genesio’s system and hyperchaotic Lorenz system.
Finally, the numerical simulation results further illustrate the
effectiveness of the developed control scheme.
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