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Optimal Nonlinear System Identification Using
Fractional Delay Second-Order Volterra System
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Abstract—The aim of this work is to design a fractional delay
second order Volterra filter that takes a discrete time sequence
as input and its output is as close as possible to the output of a
given nonlinear unknown system which may have higher degree
nonlinearities in the least square sense. The basic reason for
such a design is that rather than including higher than second
degree nonlinearities in the designed system, we use the fractional
delay degrees of freedom to approximate the given system. The
advantage is in terms of obtaining a better approximation of the
given nonlinear system than is possible by using only integer
delays (since we are giving more degrees of freedom via the
fractional delays) and simultaneously it does not require to
incorporate higher degree nonlinearities than two. This work
hinges around the fact that if the input signal is a decimated
version of another signal by a factor of M , then fractional delays
can be regarded as delays by integers less than M . Using the
well known formula for calculating the discrete time Fourier
transform (DTFT) of a decimated signal, we then arrive at an
expression for the DTFT of the output of a fractional delay
system in terms of the unknown first and second order Volterra
system coefficients and the fractional delays. The final energy
function to be minimized is the norm square of the difference
between the DTFT of the given output and the DTFT of the
output of the fractional delay system. Minimization over the
filter coefficients is a linear problem and thus the final problem
is to minimize a highly nonlinear function of the fractional
delays which is accomplished using search techniques like the
gradient-search and nature inspired optimization algorithms. The
effectiveness of the proposed method is demonstrated using two
nonlinear benchmark systems tested with five different input
signals. The accuracy of the stated models using the globally
convergent metaheuristic, cuckoo-search algorithm (CSA) are
observed to be superior when compared with other techniques
such as real-coded genetic algorithm (RGA), particle swarm
optimization (PSO) and gradient-search (GS) methods. Finally,
statistical analysis affirms the potential of the proposed designs
for its successful implementation.

Index Terms—Fractional delay, second-order Volterra sys-
tem, gradient-search method, stochastic search algorithm, mean
square error

I. INTRODUCTION

THE modeling of unknown systems is of significant im-

portance in different fields of engineering[1]. Various

linear systems have been utilized owing to the simplicity in
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solving the system identification problems and in developing

different signal processing techniques[2−8]. Such linear sys-

tems have been extensively applied with the comprehensive

mathematical analysis and simplified simulations. However,

most of the practical systems exhibit nonlinear behaviour due

to which the estimation using linear systems is not accurate.

To state some, in estimating the saturation-type nonlinear

systems[9], development of nonlinear behaviour due to brake

sequel conditions in automotive industry[10], identification of

nonlinear dynamical structures[11], using linear models can

often give corrupt results. The application of nonlinear systems

have been extensively researched by practitioners in various

science and engineering fields such as in communication

engineering, signal processing, biomedical engineering and

system identification[12]. Some typical applications[13] in com-

munication systems include amplifier nonlinearities, nonlinear

satellite channel, compensation of nonlinearities, equalization

of nonlinear channels, blind identification, nonlinearities in

orthogonal frequency division multiplexing systems and digital

magnetic recording. In speech and image processing, the

nonlinear systems are employed for the compensation of loud-

speaker nonlinearities, in adaptive quadratic filters, nonlinear

echoes cancelation and many more.

In the past, much research has been carried out for esti-

mating practical systems using a variety of nonlinear systems

based on different models. These nonlinear models and func-

tions include Volterra and Wiener series[14,15], Hammerstein

model[16], Walsh functions[17], Kautz models[18], Laguerre

transform[19], Uryson model[20] and neural networks[21] etc.

The aforementioned models have been substantially imple-

mented in nonlinear system identification problems. Conven-

tionally, the modeling of unknown systems was practiced using

the gradient based search methods. Based on the successful

implementation of metaheuristic algorithms in the system

identification problems, the trend has been shifted towards the

use of these algorithms. In [14], Chang efficiently utilized the

improved particle swarm optimization algorithm for the differ-

ent memory size Volterra filter models of nonlinear discrete-

time systems. The implementation of the gravitational search

algorithm for the nonlinear and linear system identification

problem was proposed by Rashedi et al. in [22]. Gotmare et

al. applied the CSA for the improvement of nonlinear system

identification of adaptive Hammerstein model[16].

The above referred techniques implemented the concept of

integer delays to obtain a nonlinear system with significantly

accurate estimations. In this paper, we propose to model a

highly nonlinear system with quadratic, cubic and even higher

order nonlinearities in the presence of noise using a fractional
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delay second order Volterra nonlinear system. The input-output

equation for such an approximating system is the usual relation

for a system involving an FIR linear system and an FIR

second order Volterra system but with fractional delays. Both

the continuous time and the discrete time models have been

addressed. The fractional delay Volterra system is an LIP

(Linear in parameters) model as far as the filter coefficients

are concerned, but it is an NLIP (nonlinear in the parameters)

model as far as the fractional delays are concerned. Thus,

using the standard least squares algorithm, the first and second

order filter coefficient estimates from input-output data can be

obtained using standard orthogonal projection theory, but with

the orthogonal projection being a highly nonlinear function

of the fractional delays. By substituting this expression for

the filter coefficient estimation into the original least squares

energy function, we obtain an energy function that is a

nonlinear function of the time delays but not involving the

filter coefficients. Then, a search algorithm is used to minimize

this energy function w.r.t. the fractional delays and hence

obtain good estimates for the latter. The computation has

been carried out entirely in the frequency domain because

time delays appear as exponentials which multiplies with the

Fourier transform of the signals. These exponentials can be

represented as steering vectors which depend on the fractional

time delays and elegant expressions for the energy function in

terms of these steering vectors can be derived. If however,

we work in the time domain, then the fractional delays

appear inside the time argument of the signals involved and

hence optimization algorithms are impossible to carry out. For

practical implementation using MATLAB the signals must be

discrete time and we have formulated this discrete time version

by representing the input signal as a decimated version of the

original input by an integer factor of M > 1 and the fractional

delays by integers in the range 0, 1, . . . ,M−1. The simulation

results show that it is possible to approximate complicated

nonlinear systems like the ratio of two nonlinear Volterra

systems using this second order system involving fractional

delays. The advantage of the proposed approach is that no

extra filter coefficient energy is required. Indeed, fractional

delays do not change the signal energy, they merely shift

the signal and superpose. Here, we identify the parameters

of a fractional delay second-order Volterra system from input

data. This model gives a more accurate system identification

with fewer filter coefficients, especially for nonlinear systems

like multipath systems with interaction between the different

paths shown in Fig. 1. Further, the gradient-search (GS)

and stochastic-search approaches are employed to obtain a

close approximation of the unknown nonlinear systems. The

optimization algorithms utilized are, real-coded genetic algo-

rithm (RGA), particle swarm optimization (PSO) and cuckoo-

search algorithm (CSA). The results and analysis presented,

demonstrate high accuracy using the proposed design methods.

The paper is organized in 6 sections. Following the lit-

erature survey in Section I, the nonlinear system identifica-

tion problem is modeled as a second order Volterra system

using fractional delays in Section II. Section III presents

the gradient-search optimization technique articulated for the

Volterra system identification problem. A brief overview of
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Fig. 1. Multipath system with interaction between the different paths.

stochastic algorithms for the formulated problem is discussed

in Section IV. In Section V, two design examples are illustrated

and analyzed for different input signals. Finally, Section VI

concludes the paper.

II. VOLTERRA SYSTEM MODELING USING FRACTIONAL

DELAY

Suppose yd(t) is the desired nonlinear system output and it
is well approximated using a third order Volterra system with
p integer delays, given by

y(t) =

p∑

k=0

h(k)x(t− kΔ)

+

p∑

k,m=0

g(k,m)x(t− kΔ)x(t−mΔ)

+

p∑

k,m,r=0

f(k,m, r)x(t− kΔ)x(t−mΔ)x(t− rΔ) (1)

where, x(t), y(t) are the input and corresponding output of the

Volterra system, {h(k)} are the first order kernels of the linear

system response with integer delays, kΔ and {g(k,m)} are

the second order kernels associated with the nonlinear system

response with integer delays, kΔ,mΔ and {f(k,m, r)} are

the third order kernels associated with the nonlinear system

response with integer delays, kΔ,mΔ and rΔ.
To implement this filter, we require O(p3) multiplications

and further, the right hand side of the above expression is
modeled as

M0

p∑

k=0

|h(k)|+M2
0

p∑

k,m=0

|g(k,m)|+M3
0

p∑

k,m,r=0

|f(k,m, r)|

(2)

where, M0 = max
t

|x(t)|.
In this system identification problem, the aim is to esti-

mate the filter coefficients of a second order Volterra system

modeled using the fractional delays, such that it matches the

response of an unknown system with higher order nonlin-

earities. In Fig. 2, this concept is demonstrated by applying

the gradient-search and stochastic optimization algorithms.

The Volterra system mathematically models the linear and

nonlinear combinations of its input signal using the infinite
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Volterra series expansion in the form of convolution integrals.

The second order Volterra system can be expressed as [23]

y(t) = h(0) +

p∑
k=1

h(k)x(t− τk)

+

p∑
k,m=0

g(k,m)x(t− τk)x(t− τm) (3)

where, h(0) is the constant kernel, {h(k)} are the first order

kernels of the linear system response with fractional delays,

τk and {g(k,m)} are the second order kernels associated with

the nonlinear system response with fractional delays, τm.

Here, τk is varied in addition to the {h(k)} and {g(k,m)},

to get an equally good output match, with O(p2) multiplica-

tions. The right hand side of eq. (3) is modeled as

M0

p∑
k=0

|h(k)|+M2
0

p∑
k,m=0

|g(k,m)| (4)

which is likely to be much smaller than eq. (2). Thus, by

spending less energy and fewer multiplications, we are able to

obtain nearly the same output error.
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Fig. 2. Volterra System Modeling of nonlinear system using gradient search,
RGA, PSO and CSA.

The objective is to optimize the parameters, {τk}, {h(k)}
and {g(k,m)}, such that τk ∈ [kΔ, (k+1)Δ), 0 ≤ k, m ≤ p
and

ξ(h,g, τ) =

∫ T

0

(
yd(t)− y(t)

)2
dt

=

∫ T

0

(
yd(t)−

p∑
k=1

h(k)x(t− τk)

−
p∑

k,m=0

g(k,m)x(t− τk)x(t− τm)

)2

dt (5)

is minimum. Here, yd(t) is the desired output. Let τ =
{τk}pk=0, h = {h(k)}pk=0, g = vec(g(k,m)) and

ζ(t, τ) =

⎡
⎢⎢⎢⎣

x(t− τ1)
x(t− τ2)

...

x(t− τp)

⎤
⎥⎥⎥⎦ (6)

then,

ξ(h,g, τ) =

∫ T

0

(y(t)− hTζ(t, τ)

− gT(ζ(t, τ)⊗ ζ(t, τ)))2dt (7)

where ζ(t, τ)⊗ζ(t, τ) = vec(x(t− τα)x(t− τβ)), 1 ≤ α, β ≤
p. The optimal equations are

∂ξ

∂h
= 0,

∂ξ

∂g
= 0,

∂ξ

∂τ
= 0 (8)

Calculating the first two terms, we get∫ T

0

ζ(t, τ)y(t)dt =

(∫ T

0

ζ(t, τ)ζ(t, τ)Tdt

)
h

+

(∫ T

0

ζ(t, τ)(ζ(t, τ)⊗ ζ(t, τ))dt

)
g (9)

Calculating the third term, we obtain∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))y(t)dt

=

(∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ))Tdt

)
h

+

(∫ T

0

(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ)⊗ ζ(t, τ))Tdt

)
g (10)

Defining the nonlinear filter vector

k =

[
h
g

]
∈ Rp+p2

(11)

and the (p+ p2)× (p+ p2) matrix is given by eq. (12). Also

define

b(τ) =

[ ∫ T

0
ζ(t, τ)y(t)dt∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))y(t)dt

]
∈ Rp+p2

(13)

Then, the optimal equations for k = [hT,gT]T are solved as

k̂(τ) = A(τ)
−1

b(τ) =

[
ĥ(τ)
ĝ(τ)

]
(14)

Further, τ is extended as

τ̂ = argmin
τ

ξ(ĥ(τ), ĝ(τ), τ) (15)

= argmin
τ

ξ(k̂(τ), τ) (16)

Now

ξ(k̂(τ), τ) =

[∫ T

0

y2d(t)dt− k̂(τ)
T
b(τ)

]
(17)

= [σ2
y − b(τ)

T
A(τ)b(τ)] (18)

So the optimal fractional delays are

τ̂ = argmin
τ

b(τ)
T
A(τ)b(τ) (19)

The proposed method can be applied to better equalization of

nonlinear channels with random delays, for better forecasting

of system and better system identification. Less power loss

is there since loss depends on the number of coefficients and
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A(τ) =

[ ∫ T

0
ζ(t, τ)ζ(t, τ)Tdt

∫ T

0
ζ(t, τ)(ζ(t, τ)⊗ ζ(t, τ))dt∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ))Tdt

∫ T

0
(ζ(t, τ)⊗ ζ(t, τ))(ζ(t, τ)⊗ ζ(t, τ))Tdt

]
(12)

not on the delay given to each one. Moreover, the Volterra

fractional delay system can be made adaptive, resulting in

better adaptive noise cancelation, when the noise is generated

from nonlinearities with delays like hysteresis. The optimal

values of these fractional delays and Volterra kernels of first

and second order are computed using the gradient-search and

metaheuristic algorithms, described in the following section.

III. GRADIENT SEARCH METHOD

This section focusses on the implementation of the gradient-

search method to approximate the response of the unknown

nonlinear system. This optimization is carried out using a

gradient descent approach explained as follows.

ζ(t, τ) =

(∫
R

X(ω)ejω(t−τk)dω

)p

k=1

(20)

where, X(ω) is the DTFT of input signal x(t) and R ∈ (0, T ).
Now,

ζ(t, τ)⊗ ζ(t, τ)

=vec

(∫
R

X(ω1)X(ω2)

× ej(ω1+ω2)tej(ω1τk+ω2τm)dω1dω2

)p

k,m=0

(21)

Substituting eqs. (20) and (21) in eq. (13), we get (22) at the

top of next page. The derivative of b(τ) in eq. (22) w.r.t. the

fractional delays, τk is expressed as (23) at the top of next

page, where

ek =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

0

1(kthrow)
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

and
∂A(τ)
∂τk

can be calculated using eq. (20), we get

∂ζ(t, τ)

∂τk
=

∂

∂τk

(∫
X(ω)ejω(t−τm)dω

)p

m=0

=

(
−j

∫
ωX(ω)ejω(t−τk)dω

)
ek (25)

∂A(τ)

∂τk
=

[
a11 a12
a21 a22

]
(26)

where

a11 =

∫ T

0

(
∂ζ(t, τ)

∂τk
ζ(t, τ)T) + ζ(t, τ)

(
∂ζ(t, τ)

∂τk

)T
)
dt

a12 =

∫ T

0

(
∂ζ(t, τ)

∂τk

(
ζ(t, τ)⊗ ζ(t, τ)

)T

+ ζ(t, τ)

(
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)T

+ ζ(t, τ)

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)T)
dt

a21 =

∫ T

0

((
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)(
ζ(t, τ)

)T

+

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)(
ζ(t, τ)

)T

+

(
ζ(t, τ)⊗ ζ(t, τ)

)(
∂ζ(t, τ)

∂τk

)T)
dt

a22 =

∫ T

0

((
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)
(ζ(t, τ)⊗ ζ(t, τ))T

+

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)
(ζ(t, τ)⊗ ζ(t, τ))T

+ (ζ(t, τ)⊗ ζ(t, τ))

(
∂ζ(t, τ)

∂τk
⊗ ζ(t, τ)

)T

+ (ζ(t, τ)⊗ ζ(t, τ))

(
ζ(t, τ)⊗ ∂ζ(t, τ)

∂τk

)T)
dt

Now,

F (τ) = b(τ)TA(τ)−1b(τ) (27)

The designed system can be formulated using the above

equations with

τk[m+ 1] = τk[m]− μ
∂

∂τk[m]

(
b(τ [m])TA(τ [m])−1b(τ [m])

)
(28)

Eq. (28) updates the gradient-search algorithm for the frac-

tional delay values.

IV. STOCHASTIC SEARCH ALGORITHMS

The stochastic search algorithms are proven to produce

optimal solutions to the complex problems in a reasonably

practical time. These algorithms are characterized as heuris-

tic, adaptive and learning with which they produce effective

optimizations. Genetic algorithm, particle swarm optimization

and cuckoo-search algorithm are population based, since they

use a set of strings, particles and host nest, respectively to

obtain the solution which are globally optimal. Further, these

algorithms are briefly reviewed in this section.
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b(τ) =

⎡
⎣

(∫
X(ω)Y (ω)e−jωτkdω

)p

k=0

vec
(∫

X(ω1)X(ω2)Y (ω1 + ω2)e
−j(ω1τk+ω2τm)dω1dω2

)p

k,m=0

⎤
⎦ (22)

∂b(τ)

∂τk
=

⎡
⎢⎢⎢⎣

(
−j

∫
ωX(ω)Y (ω)e−jωτkdω

)
ek(

−j
∫
ω2X(ω1)X(ω2)Y (ω1 + ω2)e

−j(ω1τm)dω1dω2

)p

m=0
⊗ ek

+ek ⊗
(
−j

∫
ω2X(ω1)X(ω2)Y (ω1 + ω2)e

−j(ω1τm)dω1dω2

)p

m=0

⎤
⎥⎥⎥⎦ (23)

A. Real-Coded Genetic Algorithm

The basic concept of GA was introduced by Holland in

1975[24] and it is an adaptive population based optimization

method. This bio-inspired technique is based on the evolu-

tionary ideas of natural selection and genetics, wherein a

set of coefficient chromosomes is selected and encoded as

binary strings. To avoid the precision problems, the final

local tuning potential of a binary coded GA is improved with

the use of RGA. Using real values, the natural form of the

strings is maintained, thus, avoiding the coding and decoding

processes. A considerable increase in the speed of operation,

efficiency and precision in the results can be observed. RGA is

universally employed to obtain the set of optimal solutions[25].

The algorithm undergoes three main processes after random-

ly generating the initial population. The selection process

chooses better individual genotype chromosome depending on

computing the fitness of each individual and produce a new

generation of offspring chromosomes. The use of tournament

operator allows a competition amongst the chromosomes on

the grounds of their fitness values, where winners are selected

with better fitness values. The crossover process is responsible

for combining two chromosomes to produce new generations

in search of a better fitness. A heuristic crossover operator aims

towards determining the direction towards a better solution.

Finally, the mutation process makes random changes to incor-

porate diversity in the results for achieving the global solution.

The adaptive feasible mutation generates random variations

adaptively with respect to the last successful or unsuccessful

generation. The implementation steps of GA for the nonlinear

system modeling using second order Volterra system model

are adopted from [26].

B. Particle-Swarm Optimization

The social behavior of certain animals within a team

such as fish schooling, insect swarming and bird flocking is

transformed into an artificial swarm and is mathematically

modeled as the PSO algorithm. It is a robust, population-

based stochastic search technique which is suitable for non-

differentiable and multiple objective functions. It was devel-

oped in 1995[27], and is successfully being applied to many

engineering applications. In this algorithm, each particle acts

as agent and is a potential solution. It is characterized by

its position in the solution space and velocity with which

it moves towards the optimal solution evaluated by the best

fitness value. At every iteration, each particle is attracted

towards the position of the current global best location. The

velocity of the ith particle in the current iteration (let l),
is adapted by evaluating the sum of three terms: the global

best position vector, gbest, its personal best value, pbest and

the particle’s present velocity, vl. This new velocity vector is

determined by the following formula considering the initial

velocity, vl=0
i = 0.

vl+1
i =W ∗ vli + αC1[gbest

l − xl
i]

+ βC2[pbest
l
i − xl

i] (29)

where W is the inertia weight parameter that controls the

tradeoff between gbest and pbest of the swarm. Its value

is set less than one. C1, C2 are the learning parameters that

indicates the relative attraction towards gbest and pbest and

α, β are random numbers ranging between [0, 1]. Also, the

new position, xl+1
i of the ith particle is updated by using

xl+1
i = xl

i + vl+1
i (30)

vi can be bounded with the range [vmin, vmax]. On calculation

of the new position, the particle flies to that location and ulti-

mately at the final iteration, the global best solution becomes

the optimal solution searched by PSO. The implementation

steps of PSO for the nonlinear system modeling using second

order Volterra system model are adopted from [28].

C. Cuckoo-Search Algorithm

CSA is a mathematical conceptualization which simulates

the breeding strategy of the cuckoo birds. It was developed in

2009 by Yang and Deb[29]. It is based on the unique parasitic

behaviour of some cuckoo bird species in combination with the

Lévy flight. These bird species reproduce and lay their eggs in

the nests of other birds. The host birds sometimes belligerently

throw away the foreign eggs to increase the probability of

hatching their own eggs. Whereas, some host birds simply

abandon their nests and build a new nest at a new location.

In CSA, each cuckoo egg in the host’s nest symbolizes to

a potential solution of the design problem. Each solution is

characterized by its fitness value. The objective of CSA is to

exchange a low fitness value solution with a better solution.

In the process of generating a new solution, the concept of

random walk performed by Lévy flights is applied. In this, the

next step of the random walk is based on the current location

(solution) and the transition probability to the next location.
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In order to simplify the algorithm, it is governed by three

guiding rules[29]. (i) Each bird is allowed to lay only one egg

at once, which is randomly placed among the host bird’s nests.

(ii) The nest with the high quality eggs (solutions with high

fitness values) will be imparted over to the next generation.

(iii) A predetermined number of host nests are available, in

which the probability of identification of alien eggs by host

birds is also fixed (Pa ∈ [0, 1]). In instance of discovery, the

host bird can either throw the alien egg or abandon the nest.
While generating a new solution, the Lévy flight is per-

formed, represented in eq. (31). It is a Markov chain in which

the next step depends on the current location and the transition

probability.

al+1 = al + δ ⊕ Lévy(λ) (31)

where al is the solution vector which is the location of current

solution at iteration, l, δ (δ > 0) is the step size that determines

the distance of the random walk. If δ is too big, then al+1 will

be too far away from al. Similarly, if δ is too small, then al+1

will be very close to al to be of any importance. Lévy(λ) is

adopted from the Lévy distribution with an infinite variance

and infinite mean[29].
The steps involved in the optimization algorithm utilizing

the strategy of cuckoo birds for the process of evolving their

generations along with their parasitic behavior are as follows.

Step 1: Initialize the maximum number of iterations (N ) and

randomly generate an initial population of nc host nests, al.
Step 2: Compute the fitness value, say El, of randomly

generated host nest, al.
Step 3: Generate a new nest using the Lévy flights given in

eq. (31) and compute the fitness value, say El+1, of the new

nests.

Step 4: Compare the two fitness values. For a minimization

problem, if El > El+1, the initial host nests al are replaced

by new nests, al+1, generated by Lévy flights.

Step 5: Abandon a fraction of worst nests depending on the

probability parameter pa and build new nests, an using the

random flights.

Step 6: Calculate the fitness of all the new nests and update

the best nest, ab of the generation until the current iteration.

Compare it with the fitness value of the nest of next iteration

and update the best nest.

Step 7: Repeat Steps 2-6 till the maximum number of iter-

ations has reached. The best solution, ab gives the optimal

solution to the problem.

V. SIMULATION AND ANALYSIS

In this section, the discrete time nonlinear system identifi-

cation problem is formulated and the simulated results have

been presented. In order to implement the above formulated

continuous time Volterra system using MATLAB, the discrete

time signals are incorporated, by decimating the original input

with integer factor of M > 1 and the fractional delays by

integers in the range 0, 1, · · · ,M − 1.

A. Fractional delay system in discrete time
Given an input signal x[n] = z[Mn]. It is delayed by a

fraction of r/M , where r is an integer in 0, 1, · · · ,M−1, given

by x[n−r/M ] = z[Mn−r]. Let rk be an integer of the form

(Mk+ sk) where sk ∈ 0, 1, · · · ,M − 1, k = 1, 2, · · · , p. The

output generated by passing the input signal x[n] through a

second order Volterra filter with fractional delays of r1, · · · , rp
is given by

y[n] = h[0] +

p∑
k=1

h[k]x[n− rk/M ]

+

p∑
k,m=0

g[k,m]x[n− rk/M ]x[n− rm/M ]

= h[0] +
∑
k

h[k]z[Mn− rk]

+
∑
k,m

g[k,m]z[Mn− rk]z[Mn− rm] (32)

Considering a noisy signal, eq. (32) is an approximate relation.

Now, the aim is to determine the coefficients h[k], g[k,m] and

the integers r1, · · · , rp such that the difference between the left

hand side and right hand side of eq. (32) has minimum error

energy. The Fourier transform (DTFT) of z[Mn− r] is given

by

DTFT{z[Mn− r]} =

M−1
M−1∑
l=0

e(−jr(ω−2πl)/M)Z

(
ω − 2πl

M

)
(33)

The Fourier transform of y1[n] =
∑

k h[k]z[Mn − rk] in eq.

(32) is

Y1(ω) = M−1
∑
k,l

h[k]e(−j(ω−2πl)rk/M)Z

(
ω − 2πl

M

)
(34)

where, k ranges over 1, 2, · · · , p and l ranges over

0, 1, · · · ,M − 1. The Fourier transform of y2[n] =∑
k,m g[k,m]z[Mn− rk]z[Mn− rm] in eq. (32) is given by

Y2(ω) = M−1
∑
k,m,l

g[k,m]

∫ π

−π

e(−j(ω1rk+((ω−2πl)/M−ω1)rm))

× Z(ω1)Z

(
ω − ω1 − 2lπ

M

)
dω1 (35)

Let Ω be a discrete set of frequencies in [−π, π] which are

equispaced. For each integer, r, a column vector of size equal

to the cardinality of Ω is defined by

ê(r) = (e(−jωr/M))ω∈Ω (36)

Further the diagonal matrix is defined as

DZ [α] = M−1 × diag

[
Z

(
ω − α

M

)
, ω ∈ Ω

]
(37)

Assume that the inter-frequency spacing of Ω is Δ. Then

we have

Y1 =(Y1(ω))ω∈Ω

=
∑
k,l

h[k]e(j2πlrk/M)DZ [2πl]D(rk)ê(rk) (38)

where

D(r) = diag
[
e(−jωr/M) : ω ∈ Ω

]
(39)
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Y2 =(Y2(ω))ω∈Ω

=Δ×
∑

k,m,l,ω1

g[k,m]e(−jω1(rk−rm))

× Z(ω1)e
(j2πlrm/M)DZ(ω1 + 2lπ)ê(rm) (40)

Considering the vectors

Q[k,m|r] = Δ×
∑
l,ω1

e(−jω1(rk−rm))

× Z(ω1)e
(j2πlrm/M)DZ(ω1 + 2lπ)ê(rm) (41)

and

P [k|r] =
∑
l

e(j2πlrk/M)DZ(2πl)D(rk)ê(rk) (42)

where

r = (rm)pm=0

Then,

Y1 =
∑
k

h[k]P [k|r]

Y2 =
∑
k,m

g[k,m]Q[k,m|r] (43)

Further, in terms of the matrices

P [r] = Col[P [k|r] : k = 1, 2, · · · , p]
Q[r] = [Q[k,m|r] : k,m = 1, 2, · · · , p] (44)

Thus,

Y ≈ Y1 + Y2 = P [r]h+Q[r]g (45)

Here,

h = (h[k]) ∈ Rp, g = vec(g[k,m]) ∈ Rp2

(46)

h, g, r are estimated by minimizing

E[h, g, r] =‖ Y − P [r]h−Q[r]g ‖2 (47)

Now, writing (
h
g

)
= q ∈ Rp2+p (48)

and

[P [r]|Q[r]] = S[r] (49)

gives

E[q, r] =‖ Y − S[r]q ‖2 (50)

Eq. (50) has to be minimized w.r.t q, r. Firstly, minimizing E
w.r.t. q gives

q̂(r) = (S[r]TS[r])−1S[r]TY (51)

Substituting eq. (51) into the expression for E gives

E[r] = E[q̂(r), r] =‖ Y ‖2 − ‖ PS[r]Y ‖2 (52)

Minimizing this w.r.t. r is equivalent to maximizing

F (r) =‖ PS[r]Y ‖2 (53)

w.r.t r. Here, PS[r] is the orthogonal projection onto R(S[r]):

PS[r] = S[r](S[r]TS[r])−1S[r]T (54)

The above result has been simulated using the MATLAB

software and the results are illustrated in the next subsection.

TABLE I
CONTROL PARAMETERS FOR FILTER DESIGN.

Parameters Symbol RGA PSO CSA

Population Size ng, np, nc 55 55 25
Max. Iteration Cycle N 200 200 200

Tolerance 10−6 10−6 10−6

Limits of System
Coefficients -10,+10 -10,+10 -10,+10
Selection Tournament Size: 4 - -
Crossover Rate, Ratio Heuristic 0.8, 1.2 - -
Mutation rate Adaptive feasible 0.01 - -
Learning Parameters C1, C2 - 2, 2 -
Particle Velocity vmin, vmax - 0.01, 1 -
Inertia Weight W - 0.4 -
Discovering Rate Pa - - 0.25
of alien eggs

B. Nonlinear System Modeling Examples

Extensive simulations have been conducted with two non-

linear system examples to evaluate the performance of the

proposed method based on second order Volterra system

using fractional delay. The unknown nonlinear system and

a second order Volterra system are tested with five different

input signals. The results obtained are presented in terms

of the comparison between the actual system output and

the estimated output using gradient search, RGA, PSO and

CSA. Mean square error (MSE), accuracy and statistical data

are investigated in order to demonstrate the effectiveness of

the proposed nonlinear system modeling method. The fitness

function is minimized such that the output of the estimated

Volterra system closely approximates the actual nonlinear

system output. The mean square error objective function is

defined as

E =
1

M

M∑
n=1

(ŷ[n]− y[n])2 (55)

where ŷ[n] and y[n] are the response of the actual nonlinear

system and the second order Volterra system, respectively,

M is the number of samples utilized to compute the fitness

function. The two examples are expressed below.

1) Example 1: A standard nonlinear model is considered

to carry out the simulations as utilized by Chang in [14]. This

system is input with the discrete-time signal, x[n] and the

system output is given as

d[n] =
0.3d2[n− 1] + 0.8x[n− 1] + 0.6d[n− 2]

1 + x2[n− 1] + d2[n− 1]
(56)

The eq. (56) is considered as the actual output which is

approximated with the discrete-time output of the second-order

Volterra system, y[n] given in eq. (32). Table 1 summarizes

the control parameters of the stochastic algorithms to perform

the system identification task. Several simulation runs have

been performed with different initial conditions in order to

obtain an accurate approximation to the nonlinear system

under consideration.

Computations are performed with the Volterra kernel size,

p = 5 and with following five different discrete-time input

signals, (i) sinusoidal signal, x[n] = 0.8 sin(π9n), (ii) noisy

sinusoidal signal, x[n] = 0.8 sin(π9n) + w[n], (iii) square

input, x = 0.4 × square(n), (iv) noisy square input, x =
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Fig. 3. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for sinusoidal input signal x(n) = 0.8 sin(π

9
n) in example 1.
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Fig. 4. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for sinusoidal input
signal x(n) = 0.8 sin(π

9
n) in example 1.
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Fig. 5. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy sinusoidal input signal x(n) = 0.8 sin(π

9
n)+w(n)

in example 1.

TABLE II
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 4.7819 -2.6580 -0.2483 -1.1851
h(1) 6.9289 7.0705 0.9464 0.3521
h(2) -1.6173 -6.4367 -0.6477 0.3159
h(3) -7.6525 0.3392 -0.1653 -0.2498
h(4) -0.4248 -3.5871 0.3371 -0.1913
h(5) 6.3502 5.5849 0.4426 0.6771
g(0, 0) -2.6945 10.0000 -0.2351 -0.2155
g(0, 1) -8.0000 -6.5660 0.5631 2.7324
g(0, 2) 7.4322 0.3116 -1.4216 -0.1614
g(0, 3) 1.7955 0.4281 0.3063 0.5090
g(0, 4) 6.2381 -0.3697 -0.9874 -3.9133
g(1, 1) -6.6592 -6.8174 -0.3265 -1.5858
g(1, 2) -0.4924 9.3514 1.5749 0.5226
g(1, 3) -1.4650 -0.3788 0.1068 1.5532
g(1, 4) -4.5295 -4.4736 -1.0289 1.0851
g(2, 2) 7.9095 -2.0326 1.0759 0.9137
g(2, 3) -7.3655 -2.9788 -1.0691 -0.5968
g(2, 4) -6.1501 -0.4481 0.3015 0.1160
g(3, 3) 7.7976 9.8700 0.3764 -0.9234
g(3, 4) 1.9988 -0.0004 1.2163 0.8949
g(4, 4) -7.6527 0.0220 -0.8601 1.0284

TABLE III
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR NOISY SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) + w(n) FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) -0.0517 -0.2039 -0.0371 0.6549
h(1) 2.7845 -1.6059 0.7056 -2.6148
h(2) -2.3396 1.3792 0.2225 0.2798
h(3) 0.0679 -0.7032 0.4377 2.8849
h(4) 1.2805 0.0966 -1.1508 1.5909
h(5) 0.3900 -1.0010 1.6167 -2.9161
g(0, 0) -1.3171 1.7034 0.6819 -0.4359
g(0, 1) -0.0356 0.8047 -0.4647 0.8494
g(0, 2) -0.2043 0.0536 -0.3457 1.9477
g(0, 3) -0.5186 2.8425 0.0924 -2.9480
g(0, 4) 1.7869 0.1401 0.0518 1.6660
g(1, 1) 0.3328 -0.9125 -0.8096 2.1944
g(1, 2) 1.4369 -2.3005 -1.1969 -2.5532
g(1, 3) 2.1203 -2.4689 -1.0682 0.9425
g(1, 4) -2.7382 -1.5798 1.9820 -0.9348
g(2, 2) -0.2732 1.5571 1.6017 -2.8826
g(2, 3) -3.4732 -0.8132 1.3062 0.1963
g(2, 4) -0.3665 2.1578 -2.5803 0.0648
g(3, 3) 1.1350 0.7772 0.5590 0.7749
g(3, 4) 0.8235 -1.1588 -1.3976 4.0653
g(4, 4) 0.0337 1.9707 0.5623 -2.7554

0.4×square(n)+w[n] and (v) random input signal. The noise

factor, w[n] is taken to be 0.5. Fig. 3 shows the comparison

of the actual system output by simulating eq. (56) with the

sinusoidal input signal and the estimated signal using gradient-

search, RGA, PSO and CSA. The mean square error between

the actual and estimated system output with sinusoidal input

signal is depicted in Fig. 4 for gradient-search, RGA, PSO and

CSA. The Volterra system coefficients, h(k) and g(k,m) with

kernel memory size, p = 5, optimized using aforementioned

algorithms are listed in Table II. The mean value of MSE with
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Fig. 6. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for noisy sinusoidal
input signal x(n) = 0.8 sin(π
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Fig. 7. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for square input signal in example 1.

a sinusoidal signal using gradient-search, RGA, PSO and CSA

is observed to be 0.0028, 0.0036, 0.0016, and 8.6450× 10−4,

respectively. Based on the observations of MSE values and

the graphical comparison in Figs. 3 and 4, it is inferred that

CSA gives a better approximation to the nonlinear system

coefficients. The performance of the employed methodologies

is sequenced as, CSA > PSO > GS > RGA. The comparison

of output response of the system when tested with noisy

sinusoidal signal is demonstrated in Fig. 5. The MSE obtained

when the system is subjected to noisy sinusoidal signal using

gradient-search, RGA, PSO and CSA is shown in Fig. 6.

Table III indicates the kernel parameters of Volterra system

with noisy sinusoidal input signal. The mean MSE values

obtained are 0.0013, 0.0020, 9.5133×10−4 and 5.3905×10−4,

respectively, with gradient-search, RGA, PSO and CSA when

the system is tested with noisy sinusoidal input signal. Thus,

a better approximation to the nonlinear system coefficients

is achieved with CSA and optimization techniques can be

arranged according to the performance as, CSA > PSO >
GS > RGA.

TABLE IV
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR SQUARE INPUT SIGNAL FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.2427 -0.0773 -0.3601 -0.3919
h(1) 0.3044 0.2828 -0.0349 0.0153
h(2) 1.1082 0.7179 0.5309 0.5852
h(3) -0.1549 -0.1826 -0.1097 -0.1126
h(4) 0.5619 0.6813 0.3180 0.3600
h(5) 0.4230 -0.0164 -0.1591 -0.1024
g(0, 0) 0.1047 1.2752 0.1685 0.5475
g(0, 1) 0.1606 0.4552 0.6614 0.6311
g(0, 2) 0.2924 0.3694 -0.0932 -0.5869
g(0, 3) 0.7192 0.1017 0.2101 0.4265
g(0, 4) 1.1304 0.7404 0.6378 0.4574
g(1, 1) 0.1574 -0.0658 0.7991 0.0763
g(1, 2) 0.5883 0.5414 0.9405 0.5744
g(1, 3) -0.0925 0.5049 -0.0661 -0.0203
g(1, 4) 0.3228 0.1119 0.0264 0.0726
g(2, 2) 0.9729 -1.0543 0.6691 1.4622
g(2, 3) -0.4436 0.4137 0.5556 0.0912
g(2, 4) 1.2680 0.3468 0.4035 -0.0375
g(3, 3) -0.5785 0.0981 0.1056 -0.1419
g(3, 4) 0.2559 0.9561 0.6068 0.4822
g(4, 4) -0.4156 0.3841 0.3029 0.5164

TABLE V
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR NOISY SQUARE INPUT SIGNAL FOR EXAMPLE

1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.5125 -0.1586 -0.0891 0.4181
h(1) 0.5834 -0.6495 0.4696 0.6257
h(2) -0.4553 1.8403 -0.5114 -0.1225
h(3) -0.9315 0.9366 -0.1402 -0.1988
h(4) -0.4992 -0.5597 0.2433 -0.9789
h(5) 0.6559 -0.5733 0.0443 -0.1059
g(0, 0) -0.4693 0.4794 0.1119 -0.6883
g(0, 1) -0.6476 -0.4107 -0.1892 0.3784
g(0, 2) -0.7153 -0.0229 0.0493 -0.2357
g(0, 3) 1.5708 1.0239 -0.4435 -0.0758
g(0, 4) -0.5353 0.7520 -0.5391 0.0521
g(1, 1) 1.0706 -0.5719 0.9744 −2.6585× 10−4

g(1, 2) 0.7109 -0.6802 -0.4078 0.6443
g(1, 3) -1.0828 -0.1425 -0.0566 -0.1139
g(1, 4) 0.1929 0.0527 0.2139 -0.2014
g(2, 2) 0.7066 -0.5288 0.4387 -0.2642
g(2, 3) 0.9443 -0.3442 0.0375 0.3473
g(2, 4) -0.6769 0.0722 -0.3825 0.0691
g(3, 3) -0.3896 0.5909 0.2997 0.9077
g(3, 4) 0.5375 0.6186 -0.3601 0.2017
g(4, 4) -0.5179 0.2909 0.4694 0.0131

Fig. 7 shows the comparison of the actual system out-

put with square input signal and the estimated signal using

gradient-search, RGA, PSO and CSA. Fig. 8 depicts the

MSE observed when the system is tested with square input

signal using gradient-search, RGA, PSO and CSA. The kernel

parameters of Volterra system with squared input are reported

in Table IV. The mean value of MSE noticed with gradient-

search, RGA, PSO and CSA is 0.0042, 0.0026, 8.7709×10−4

and 5.4547×10−4, respectively when squared signal is applied

at the input of the system. From the graphical results and

numerical values of MSE, one can conclude that CSA provides
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Fig. 8. Comparison of MSE for second order fractional delay Volterra system
model output using gradient search, RGA, PSO and CSA for square input
signal in example 1.
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Fig. 9. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy square input signal in example 1.
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Fig. 10. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
square input signal in example 1.

a good approximation to the nonlinear fractional delay second

order Volterra system coefficients compared to other applied
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Fig. 11. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for the random input signal in example 1.

TABLE VI
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR RANDOM INPUT SIGNAL FOR EXAMPLE 1.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 0.2872 0.3162 0.1696 0.2202
h(1) 0.0922 0.0613 0.3087 0.0095
h(2) 0.1827 0.5617 0.1116 0.5814
h(3) -0.2102 -0.4402 0.0351 -0.0396
h(4) 0.0715 0.1864 0.4296 0.3219
h(5) 0.2372 0.0375 0.1394 0.0298
g(0, 0) 0.0045 0.0853 -0.0468 0.0147
g(0, 1) 0.0971 -0.1805 −6.4717× 10−5 -0.0171
g(0, 2) 0.6207 0.0495 -0.3325 -0.0077
g(0, 3) 0.0275 -0.2599 -0.2727 -0.0041
g(0, 4) -0.8997 0.0516 0.1541 -0.0085
g(1, 1) 0.2362 -0.2754 -0.1177 -0.3871
g(1, 2) -0.4174 0.1923 0.2645 0.0192
g(1, 3) 0.2129 -0.1189 -0.0345 -0.0073
g(1, 4) -0.1775 -0.0659 0.1635 0.0210
g(2, 2) -0.1632 0.0866 -0.0579 0.0247
g(2, 3) -0.1397 0.0479 0.1556 -0.0484
g(2, 4) 0.7185 0.3258 -0.1632 0.0172
g(3, 3) -0.2123 0.2361 -0.0389 -0.1671
g(3, 4) 0.3809 -0.2795 -0.3564 -0.0522
g(4, 4) -0.2813 -0.0921 -0.0363 -0.0268

optimization algorithms. The performance of these algorithms

is arranged as, CSA > PSO > GS > RGA. Fig. 9 exhibits

the comparison of output response of the system analyzed

with noisy square input using gradient-search, RGA, PSO and

CSA. The MSE remarked for the system under consideration

when examined with noisy square input is shown in Fig. 10.

Table V summarizes the kernel parameters of Volterra system

with noisy square input signal. The MSE values for second

order fractional delay Volterra system with gradient-search,

RGA, PSO and CSA are 0.0033, 0.0057, 6.0527× 10−4 and

5.9464×10−4, respectively. Based on these MSE values, it can

be finally deduced that nonlinear system identification with

the second order Volterra system using CSA surpasses the

other employed optimization methods. The performance can

be ranked as CSA > PSO > RGA > GS. The comparison

of output response of the system with random signal using
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Fig. 12. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for the
random input signal in example 1.

gradient-search, RGA, PSO and CSA is demonstrated in Fig.

11. The observed values of MSE and kernel parameters of

Volterra system with random signal are exhibited in Fig. 12

and Table VI, respectively. The mean MSE values obtained

are 0.0027, 8.5199×10−4, 7.7135×10−4 and 1.9658×10−4,

respectively, with gradient-search, RGA, PSO and CSA when

the system is tested with random signal. It can be concluded

from the aforementioned results that the CSA based nonlinear

system identification outperforms all other reported algorithms

in terms of MSE. The order of the algorithm based on its

performance is given as CSA > PSO > RGA > GS.

Furthermore, the statistical analysis in terms of maximum,

minimum, mean, variance and standard deviation of the MSE

is performed to evaluate the performance of the proposed

method. Table VII shows the comparative numerical values

of different characteristics like maximum, minimum, mean,

variance and standard deviation of mean square error of the

proposed second order fractional delay Volterra system for

different input signals using gradient-search, RGA, PSO and

CSA algorithms. This analysis provides a detailed comparison

amongst the performance of estimated Volterra systems em-

ploying all four optimization techniques. It is observed that

the MSE value obtained with CSA is lower as compared to

other algorithms with all input signals. From Figs. 3-12 and

statistically analyzed results from Table VII, it is evident that

with all input signals, the proposed nonlinear system modeling

method based on fractional delay second order Volterra system

produced minimum MSE compared to that of the gradient-

search, RGA and PSO. Finally, it can be concluded that

CSA based second order fractional delay Volterra system

identification method gives superior results compared to other

reported algorithms with all the input signals.
2) Example 2: In this example, the mathematical model of

heat exchanger used in [14] is considered. The system can be

expressed as

w[n] =x[n]− 1.3228x2[n] + 0.7671x3[n]

− 2.1755x4[n] (57)

d[n] =1.608d[n− 1]− 0.6385d[n− 2]− 6.5306w[n− 1]
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Fig. 13. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for sinusoidal input signal x(n) = 0.8 sin(π

9
n) in example 2.

TABLE VIII
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 9.4709 16.2089 16.6626 14.4537
h(1) -0.6698 25.5888 25.1569 19.6381
h(2) -19.3316 11.4107 13.3984 15.6001
h(3) 8.6093 -11.0001 -11.9957 -14.5285
h(4) -5.0777 43.6126 44.6720 42.9363
h(5) -4.6264 13.3334 14.0811 11.2961
g(0, 0) -9.7089 5.2952 4.6671 1.2645
g(0, 1) 15.3888 7.2002 7.6748 8.8481
g(0, 2) 4.2497 -0.2573 4.3471 0.6401
g(0, 3) 9.2702 -6.0859 -6.9853 -10.2706
g(0, 4) 4.8762 -6.8910 -10.3297 -10.0909
g(1, 1) -3.8765 -0.6058 -2.8362 4.3473
g(1, 2) -16.4299 0.7216 -0.0073 -2.2931
g(1, 3) -17.3760 -3.6154 -1.2420 -6.1239
g(1, 4) -0.6727 -46.8916 -47.5947 -47.6447
g(2, 2) -0.4807 16.0521 15.5387 15.1564
g(2, 3) 35.0206 28.9075 29.4013 31.9329
g(2, 4) -2.0420 -19.8110 -20.3997 -18.8809
g(3, 3) -10.0147 27.3951 28.3579 30.8179
g(3, 4) -15.3354 -17.4811 -17.5201 -22.3759
g(4, 4) 11.2373 19.7659 19.8043 19.8045

+ 5.5652w[n− 2] (58)

where x[n] be the input to the system, w[n] is the static

nonlinearity and d[n] be the output of the system.

In order to evaluate the performance of this system Volterra

kernel size is selected as p = 5 and the input to the system

is tested with five different input signals. Fig. 13 shows the

comparison of actual output and the estimated output using

gradient-search, RGA, PSO and CSA, when the sinusoidal

input signal is applied. The Volterra system coefficients ob-

tained with sinusoidal input using gradient-search, RGA, PSO

and CSA are listed in Table VIII. The MSE error noticed with

sinusoidal input is exhibited in Fig. 14. The mean MSE values

obtained are 0.0220, 0.0155, 0.0154 and 0.0151, respectively,

with gradient-search, RGA, PSO and CSA, when the system
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TABLE VII
STATISTICAL COMPARISON OF MEAN SQUARE ERROR FOR THE IDENTIFICATION OF NONLINEAR SYSTEM WITH DIFFERENT INPUT SIGNAL USING

GRADIENT SEARCH, RGA, PSO AND CSA BASED METHODS FOR EXAMPLE 1.

Input Signal Algorithm Mean Square Error (MSE)

Max Min Mean Variance Standard Deviation

x(n) = 0.8 sin(π
9
n) GS 0.0446 4.8916× 10−5 0.0028 2.8003× 10−5 0.0053

RGA 0.1788 8.6341× 10−6 0.0036 3.4486× 10−4 0.0186

PSO 0.0446 2.0815× 10−5 0.0016 2.1110× 10−5 0.0046

CSA 0.0446 1.3196× 10−9 8.6450× 10−4 2.0281× 10−5 0.0045

x(n) = 0.8 sin(π
9
n) + w(n) GS 0.0623 5.0772× 10−7 0.0013 6.4219× 10−5 0.0080

RGA 0.0787 2.4005× 10−6 0.0020 9.5760× 10−5 0.0098

PSO 0.0494 1.9535× 10−8 9.5133× 10−4 2.7945× 10−5 0.0053

CSA 0.0494 2.1471× 10−11 5.3905× 10−4 2.5107× 10−5 0.0050

x(n) = 0.4square(n) GS 0.0945 1.3653× 10−7 0.0042 1.9755× 10−4 0.0141

RGA 0.0409 1.2848× 10−9 0.0026 4.2058× 10−5 0.0065

PSO 0.0242 6.8875× 10−7 8.7709× 10−4 7.6877× 10−6 0.0028

CSA 0.0242 1.0647× 10−16 5.4547× 10−4 6.5939× 10−6 0.0026

x(n) = 0.4square(n) + w(n) GS 0.0836 9.3438× 10−7 0.0033 1.0524× 10−4 0.0103

RGA 0.0615 7.7230× 10−6 0.0057 1.7510× 10−4 0.0132

PSO 0.0504 2.4164× 10−8 6.0527× 10−4 2.6298× 10−5 0.0051

CSA 0.0504 5.7384× 10−13 5.9464× 10−4 2.6299× 10−5 0.0051

x(n) = rand(n) GS 0.0341 4.6628× 10−10 0.0027 2.3409× 10−5 0.0048

RGA 0.0110 1.1880× 10−7 8.5199× 10−4 2.2017× 10−6 0.0015

PSO 0.0110 2.9739× 10−9 7.7135× 10−4 2.0691× 10−6 0.0014

CSA 0.0110 3.9740× 10−8 1.9658× 10−4 1.2529× 10−6 0.0011
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Fig. 14. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for sinusoidal
input signal x(n) = 0.8 sin(π

9
n) in example 2.

is tested with sinusoidal input. Based on the observations of

MSE values and the graphical comparison in Figs. 13 and

14, it is inferred that CSA gives a better approximation to

the nonlinear system coefficients. The performance of the

employed methodologies is sequenced as, CSA > PSO >
RGA > GS.

The comparison of output response of the system when

tested with noisy sinusoidal signal is demonstrated in Fig.

15. The MSE obtained when the system is subjected to noisy

sinusoidal signal using gradient-search, RGA, PSO and CSA

is shown in Fig. 16. Table IX lists the kernel parameters of

20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

Samples

Sy
st

em
 O

ut
pu

t

Actual GS RGA PSO CSA

Fig. 15. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy sinusoidal input signal x(n) = 0.8 sin(π

9
n)+w(n)

in example 2.

Volterra system with noisy sinusoidal input signal. The mean

value of MSE with noisy sinusoidal signal using gradient-

search, RGA, PSO and CSA is observed to be 0.0154, 0.0158,

0.0154, and 0.0137, respectively. Thus, a better approximation

to the nonlinear system coefficients is achieved with CSA

and optimization techniques can be arranged according to the

performance as, CSA > PSO = GS > RGA.

The kernel parameters of Volterra system with squared input

are reported in Table X. Fig. 17 shows the comparison of

the actual system output with square input signal and the
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Fig. 16. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
sinusoidal input signal x(n) = 0.8 sin(π

9
n) + w(n) in example 2.
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Fig. 17. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for square input signal in example 2.
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Fig. 18. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for square
input signal in example 2.

estimated signal using gradient-search, RGA, PSO and CSA.

TABLE IX
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR NOISY SINUSOIDAL INPUT SIGNAL

x(n) = 0.8 sin(π
9
n) + w(n) FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 19.7175 19.9878 19.7175 19.6256
h(1) 2.5659 2.0529 2.5659 3.4482
h(2) -24.1582 -23.6178 -24.1582 -26.4619
h(3) -2.0403 -0.4954 -2.0403 -0.3887
h(4) 19.9393 20.0624 19.9393 23.4229
h(5) -7.6989 -7.4160 -7.6989 -10.5589
g(0, 0) -7.0703 -7.2762 -7.0703 -6.6456
g(0, 1) 11.4793 12.0153 11.4793 10.4377
g(0, 2) 1.4172 2.3618 1.4172 1.6714
g(0, 3) -1.8849 -0.4439 -1.8849 -0.8707
g(0, 4) 1.5957 0.1224 1.5957 0.9816
g(1, 1) -3.3497 -4.2333 -3.3497 -3.1366
g(1, 2) -5.7131 -6.3393 -5.7131 -5.6986
g(1, 3) 0.4449 -1.0819 0.4449 1.1859
g(1, 4) 4.8335 6.2813 4.8335 4.3979
g(2, 2) -2.1866 -1.1669 -2.1866 -1.8611
g(2, 3) 6.8904 7.1536 6.8904 4.9551
g(2, 4) -1.2842 -1.4654 -1.2842 -1.7116
g(3, 3) 2.6831 2.7344 2.6831 3.8625
g(3, 4) -10.9289 -11.3184 -10.9289 -9.3152
g(4, 4) 7.6593 7.9471 7.6593 6.4721

TABLE X
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR SQUARE INPUT SIGNAL FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 5.3951 3.8427 5.2620 -1.4383
h(1) 6.6501 1.0145 1.2080 1.8399
h(2) 4.5466 -2.4147 -2.3915 -3.0599
h(3) 4.7278 0.5306 -1.4995 -0.6803
h(4) 5.1116 -0.8780 1.8397 5.3169
h(5) 7.1848 -1.2398 1.5111 6.1945
g(0, 0) 3.4676 1.8247 -0.8796 3.7098
g(0, 1) 8.5345 1.1147 2.1813 0.6935
g(0, 2) 4.6133 2.4419 0.5851 -0.5799
g(0, 3) 0.9336 -1.4757 0.4633 -0.0428
g(0, 4) 8.2602 0.3734 0.4705 -0.4795
g(1, 1) 6.7420 3.0117 0.9524 5.2397
g(1, 2) 3.4231 0.6770 1.5778 4.5719
g(1, 3) 5.9950 2.9727 0.6525 1.9149
g(1, 4) 4.2657 -0.8576 1.3171 -5.3846
g(2, 2) 6.8185 4.0588 1.4162 1.2048
g(2, 3) 2.3524 3.0529 3.6863 7.1106
g(2, 4) 6.0669 0.1657 -1.3885 -3.1878
g(3, 3) 10.1462 0.9998 4.1036 5.8609
g(3, 4) 3.8599 2.8173 2.1098 8.6596
g(4, 4) 3.4468 -1.8829 1.6816 15.5536

Fig. 18 depicts the MSE observed when the system is tested

with square input signal. The mean value of MSE noticed

with gradient-search, RGA, PSO and CSA is 0.0023, 0.0016,

0.0016 and 8.9512× 10−4, respectively when squared signal

is applied at the input of the system. From the graphical

results and numerical values of MSE, one can conclude that

CSA provides a good approximation to the nonlinear fractional

delay second order Volterra system coefficients compared to

other applied optimization algorithms. The performance of

these algorithms is arranged as, CSA > PSO = RGA > GS.

Table XI summarizes the kernel parameters of Volterra
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Fig. 19. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for noisy square input signal in example 2.

TABLE XI
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR NOISY SQUARE INPUT SIGNAL FOR EXAMPLE

2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 2.0734 2.0628 6.1067 3.5476
h(1) 1.2933 -0.4618 4.7040 -0.7788
h(2) 1.3408 1.0626 2.0808 -2.4513
h(3) 3.3256 -0.0636 2.7889 0.0166
h(4) 0.0297 0.2113 6.8997 0.8947
h(5) 1.8156 1.5619 4.4455 -1.2868
g(0, 0) 3.4476 2.6711 3.7141 1.8125
g(0, 1) 4.0397 -0.8521 3.0184 0.1079
g(0, 2) -1.3687 -1.2592 1.6243 -0.4851
g(0, 3) -1.3194 -0.4355 -2.9203 -1.7564
g(0, 4) 1.1708 -2.5746 0.7713 -3.0847
g(1, 1) 5.1978 8.6357 5.4871 3.6384
g(1, 2) 5.3892 1.6294 3.9281 2.8376
g(1, 3) 0.0668 -1.2428 3.6944 1.6550
g(1, 4) 1.6461 -0.8980 -3.9143 -3.6949
g(2, 2) 3.4492 3.1523 1.0847 1.3733
g(2, 3) 3.5700 4.9677 6.3690 3.5562
g(2, 4) 0.9387 -4.7134 -0.9484 -1.3355
g(3, 3) 2.6421 0.4263 3.3774 0.7597
g(3, 4) 2.3118 3.6257 6.6161 2.9279
g(4, 4) 4.4797 6.1514 5.4867 3.3231

system with noisy square input signal. The comparison of

output response of the system analyzed with noisy square input

using gradient-search, RGA, PSO and CSA is demonstrated

in Fig. 19. The MSE remarked for the system under consid-

eration when examined with noisy square input is shown in

Fig. 20. The MSE values for second order fractional delay

Volterra system with gradient-search, RGA, PSO and CSA

are 0.0068, 0.0040, 0.0039 and 0.0039, respectively. Based

on these MSE values, it can be finally deduced that nonlinear

system identification with the second order Volterra system

using CSA surpass the other employed optimization methods.

The performance can be ranked as CSA = PSO > RGA >
GS. The comparison of output response of the system with

random signal using gradient-search, RGA, PSO and CSA is

depicted in Fig. 21. The noted values of MSE with random

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

Samples

M
ea

n 
Sq

ua
re

 E
rro

r

GS RGA PSO CSA

Fig. 20. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for noisy
square input signal in example 2.

TABLE XII
KERNEL PARAMETERS OF SECOND ORDER FRACTIONAL DELAY

VOLTERRA SYSTEM MODEL USING GRADIENT SEARCH, RGA, PSO AND

CSA BASED METHODS FOR RANDOM INPUT SIGNAL FOR EXAMPLE 2.

Kernel Gradient RGA PSO CSA
Parameters search

h(0) 1.0418 1.1669 1.1405 1.1775
h(1) 0.2133 -0.5722 0.1031 -0.2277
h(2) -7.4315 -7.5149 -6.8923 -7.5111
h(3) -4.4032 -4.4664 -4.3393 -4.4983
h(4) -2.5474 -2.5632 -2.9064 -2.7099
h(5) -0.0057 -0.6688 -1.5127 -1.3608
g(0, 0) -0.0514 -1.1548 -0.3505 -0.6698
g(0, 1) -0.1563 0.5335 -0.2269 -0.3422
g(0, 2) 2.6338 2.7008 2.5176 2.5249
g(0, 3) 0.7263 1.2250 0.8140 0.8262
g(0, 4) 2.1507 1.7291 1.6591 1.5885
g(1, 1) -1.5875 -1.5097 -0.7013 -1.4393
g(1, 2) 0.6341 -0.3207 -0.3789 -0.3649
g(1, 3) 1.7894 1.6511 1.4016 1.3383
g(1, 4) 2.2614 1.6739 0.8213 1.2354
g(2, 2) 0.1802 0.2774 0.3187 0.1962
g(2, 3) -0.7735 -1.1470 -0.6745 -0.8926
g(2, 4) 1.4143 1.2553 1.4124 1.2015
g(3, 3) 0.9802 1.0123 0.5143 0.8377
g(3, 4) -0.7264 -0.3468 -0.1677 -0.7615
g(4, 4) 2.6381 1.9273 0.9942 1.2558

signal is exhibited in Fig. 22 and Table XII lists the kernel

parameters of Volterra system with random input. The mean

MSE values obtained are 0.0023, 0.0023, 0.0023 and 0.0022,

respectively. It can be concluded from the aforementioned

results that the CSA based nonlinear system identification

outperforms all other reported algorithm in terms of MSE. The

order of the algorithm based on its performance is given as

CSA > PSO = RGA = GS. Table XII shows the comparative

numerical values of different characteristics like maximum,

minimum, mean, variance and standard deviation of mean

square error of proposed second order Volterra system using

fractional delay for five different input signals using gradient-

search, RGA, PSO and CSA algorithms. It is observed that

the MSE value observed with CSA is lower as compared to

other algorithms with all input signals. From Figs. 13-22 and

statistically analyzed results from Table XIII, it is evident that
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Fig. 21. Comparison of actual nonlinear system output with second order
fractional delay Volterra system model output using gradient search, RGA,
PSO and CSA for random input signal in example 2.
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Fig. 22. Comparison of MSE for second order fractional delay Volterra
system model output using gradient search, RGA, PSO and CSA for the
random input signal in example 2.

with all input signals, the proposed nonlinear system modeling

method based on fractional delay second order Volterra system

produced minimum MSE compared to that of the gradient-

search, RGA and PSO. Finally, it can be concluded that

CSA based second order fractional delay Volterra system

identification method gives superior results compared to other

reported algorithms with all the input signals. In order to

demonstrate the effectiveness of the proposed method in terms

of convergence rate, Fig. 23 shows the convergence of MSE

obtained, for example 1 tested with sinusoidal input. Similar

plots have also been obtained for the example 1 and 2 with

different input signals which are not shown here.

C. Comparative Analysis

1) Comparison with a Third Order Integer Delay Volterra
System: The superiority of the proposed Volterra system

identification method is demonstrated by comparing the results

with a nonlinear Volterra system using an integer delay. Fig.

24 shows the comparison of approximated output of proposed

second order fractional delay Volterra system in example 1,
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Fig. 23. Convergence profile for RGA, PSO and CSA for nonlinear system
identification using second order fractional delay Volterra system model in
example 1.
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Fig. 24. Comparison of third order integer delay Volterra system output
with second order fractional delay Volterra system model output using CSA
for sinusoidal input signal in example 1.

eq. (56) with the output of a third order integer delay Volterra

system when both the systems are subjected to the sinusoidal

input signal. From the visual analysis of Fig. 24, it can be

inferred that a better approximation of the nonlinear unknown

system is achieved using the proposed second order fractional

delay Volterra system to its integer counterpart of third order.

The mean values of MSE for integer and fractional delay

system are obtained to be 3.2914× 10−3 and 8.6450× 10−4.

Thus, the introduction of fractional delay in the Volterra

system identification technique leads to a better approximation

with the involvement of less number of multipliers (due to

order reduction) and low energy consumption in comparison

to the integer delay systems. Similar graphical results are

obtained for example 1 and example 2 with different input

signals, which are not reported here.

2) Comparison with the Existing Techniques: The compar-

ison of the proposed second order fractional delay Volterra

system with the other reported nonlinear system modeling

method has been presented in Table XIV. The observations

are made on the MSE values of the existing methodologies
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TABLE XIII
STATISTICAL COMPARISON OF MEAN SQUARE ERROR FOR THE IDENTIFICATION OF NONLINEAR SYSTEM WITH DIFFERENT INPUT SIGNAL USING

GRADIENT SEARCH, RGA, PSO AND CSA BASED METHODS FOR EXAMPLE 2.

Input Signal Algorithm Mean Square Error (MSE)

Max Min Mean Variance Standard Deviation

x(n) = 0.8 sin(π
9
n) GS 0.3326 2.9491× 10−6 0.0220 0.0020 0.0443

RGA 0.1787 6.3511× 10−5 0.0155 7.7422× 10−4 0.0278

PSO 0.1815 5.0935× 10−5 0.0154 7.7765× 10−4 0.0279

CSA 0.1605 2.0301× 10−8 0.0151 7.4953× 10−4 0.0274

x(n) = 0.8 sin(π
9
n) + w(n) GS 0.2117 1.3487× 10−5 0.0154 7.4549× 10−4 0.0273

RGA 0.2129 8.0414× 10−7 0.0158 7.4020× 10−4 0.0272

PSO 0.2117 1.3487× 10−5 0.0154 7.4549× 10−4 0.0273

CSA 0.1947 5.4686× 10−8 0.0137 6.0762× 10−4 0.0246

x(n) = 0.4square(n) GS 0.0282 6.2620× 10−7 0.0023 2.7538× 10−5 0.0052

RGA 0.0311 3.3186× 10−8 0.0016 1.6176× 10−5 0.0040

PSO 0.0177 2.5478× 10−7 0.0016 8.8820× 10−6 0.0030

CSA 0.0115 4.8790× 10−14 8.9512× 10−4 3.4831× 10−6 0.0019

x(n) = 0.4square(n) + w(n) GS 0.0975 5.2938× 10−6 0.0068 1.6614× 10−4 0.0129

RGA 0.0880 1.8202× 10−9 0.0040 1.3367× 10−4 0.0116

PSO 0.0865 1.0412× 10−14 0.0039 1.3078× 10−4 0.0114

CSA 0.0865 3.7582× 10−11 0.0039 1.3078× 10−4 0.0114

x(n) = rand(n) GS 0.0184 2.3431× 10−6 0.0023 1.0509× 10−5 0.0032

RGA 0.0166 6.7229× 10−7 0.0023 9.7658× 10−6 0.0031

PSO 0.0168 7.0138× 10−8 0.0023 1.0681× 10−5 0.0033

CSA 0.0161 1.5406× 10−9 0.0022 9.6443× 10−6 0.0031

TABLE XIV
COMPARISON OF THE PROPOSED FRACTIONAL DELAY BASED NONLINEAR SYSTEM IDENTIFICATION WITH OTHER REPORTED METHODS.

Method Example Algorithm Input signal Memory size (p) MSE

Rashedi et al. [22] Example 1 GSA White noise sequence x(k) + noise η(k) ∈ [−0.001, 0.001] - 3.91× 10−7

GSA White noise sequence x(k) + noise η(k) ∈ [−0.01, 0.01] - 4.23× 10−5

Chang [14] Example 1 IPSO x(n) = 0.8 cos(π
9
n) 5 0.00929002

IPSO x(n) = 0.8 cos(π
9
n) 8 0.00491307

IPSO x(n) = rand(n) 5 0.00556229
IPSO x(n) = rand(n) 8 0.00260959

Present Study Example 1 CSA x(n) = 0.8 sin(π
9
n) 5 8.6450× 10−4

CSA x(n) = 0.8 sin(π
9
n) + w(n) 5 5.3905× 10−4

CSA x(n) = 0.4square(n) 5 5.4547× 10−4

CSA x(n) = 0.4square(n) + w(n) 5 5.9464× 10−4

CSA x(n) = rand(n) 5 1.9658× 10−4

Example 2 CSA x(n) = 0.8 sin(π
9
n) 5 7.4953× 10−4

CSA x(n) = 0.8 sin(π
9
n) + w(n) 5 0.0137

CSA x(n) = 0.4square(n) 5 8.9512× 10−4

CSA x(n) = 0.4square(n) + w(n) 5 0.0039
CSA x(n) = rand(n) 5 0.0022

for nonlinear system identification problem.

VI. CONCLUSION

The objective of this work is to design an efficient method

for nonlinear system approximation with the use of fractional

delays. The novelty is that in implementing the fractional

order delays, the higher order nonlinearities are estimated

using a low order Volterra model with higher accuracy by

using adept optimization methodologies. A discrete model of

the estimation problem is formulated in order to simulate the

proposed method in MATLAB. The Gradient-search method

is developed for the system identification problem and opti-

mizing the Volterra system parameters. To further optimize

the system coefficients, different stochastic algorithms are

applied. Two design examples are presented using nonlinear

benchmark models with five different input signals and close

approximations of the unknown system are analyzed in figures

and tables, comparing the proposed gradient-search, RGA,

PSO and CSA techniques. The statistical analysis of the

estimated results is portrayed by computing the mean, variance

and standard deviation of the computed error while performing

multiple simulations. The accuracy in results is achieved

with the globally convergent and widely applied metaheuristic

optimization, CSA. A comparison between the various op-

timization technique is made. It can be concluded that the
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proposed method incorporating the fractional delay systems,

delivers an effective approximation to an unknown nonlinear

system modeled using a second order Volterra function.
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