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Design and Implementation of Digital Fractional
Order PID Controller using Optimal Pole-Zero

Approximation Method for Magnetic
Levitation System

Amit S. Chopade, Swapnil W. Khubalkar, A. S. Junghare, M. V. Aware, and Shantanu Das

Abstract—The aim of this paper is to employ fractional order
proportional integral derivative (FO-PID) controller and integer
order PID controller to control the position of the levitated object
in a magnetic levitation system (MLS), which is inherently non-
linear and unstable system. The proposal is to deploy discrete
optimal pole-zero approximation method for realization of digital
fractional order controller. An approach of phase shaping by
slope cancellation of asymptotic phase plots for zeros and poles
within given bandwidth is explored. The controller parameters
are tuned using dynamic particle swarm optimization (dPSO)
technique. Effectiveness of the proposed control scheme is verified
by simulation and experimental results. The performance of
realized digital FO-PID controller has been compared with that
of the integer order PID controllers. It is observed that effort
required in fractional order control is smaller as compared
with its integer counterpart for obtaining the same system
performance.

Index Terms—Digital control, Position control, Fractional
calculus, Particle swarm optimization (PSO), Approximation
methods, Magnetic levitation, Discretization, Fractional order
PID controller (FOPID).

I. INTRODUCTION

IN 1914, American inventor Emile Bachelet presented his
idea of a magnetically levitated (maglev) vehicle with a dis-

play model. In magnetic levitation system (MLS), ferromag-
netic object levitate by the electromagnetic force induced due
to electric current flowing through coil around a solenoid[1−5].
The MLS is inherently nonlinear and unstable[6−10]. However,
the advantage is that, as the suspended object has no mechan-
ical support, there is no friction and noise. This allows us to
position it accurately - a major advantage, explored in many
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applications such as magnetically levitated train, magnetic
bearing, conveyor system, etc.[1].

In recent years, various methods have been proposed to
improve control in MLS-based applications. In 2006, Chiang
et al. proposed the concept of integral variable-structure grey
control[2]. Yang et al. introduced the concept of adaptive robust
output-feedback control with K-filter approach in 2008[3].
In 2011, Chih-Min Lin et al. developed an adaptive PID
controller and a fuzzy compensation controller for MLS[1].
In the same year, Rafael Morales et al. proposed generalized
proportional integral output feedback controller[4]. Recently in
2014, Chih-Min Lin et al. proposed a function-link cerebellar
model articulation control system design based on the neural
network concept[5]. However, in spite of all these develop-
ments, there is scope for improving efficiency of the controller.
The energy required to achieve and maintain the object’s
position (in the face of disturbances) form an important part
of improving the control action. The aim of this paper is to
control and maintain the desired object’s position, with lesser
controller effort. The controller effort minimization is reported
in literature[11−14].

The conventional integer order controllers such as, PD and
PID controller have been applied in industry for over half-a-
century to control linear and nonlinear systems[15]. Recently,
such control schemes have been extended to their generalized
form using fractional calculus[16−17] (differentiation and inte-
gration of an arbitrary order). The FO-PID controller has frac-
tional differ-integrator operations. This makes the controller
have memory (i.e. its action will memorize its past states)
and avoids instantaneous actions. Using the definition of con-
volution integral, the expression for the fractional integration
(which also is embedded in the fractional differentiation) can
be written as the convolution of the function and the power
function, which is elaborately explained in [17].

In last few decades, the fractional order approach to rep-
resent the plant and its controllers are increasingly used to
describe the dynamic process accurately[17]. The fractional or-
der transfer function is approximated by integer order transfer
function using various methods[16−20]. The proposed method
can achieve the desired accuracy over a much larger bandwidth
than has been achieved using earlier methods. In applications,
where non-integer order controllers are used for integer order
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plant, there is more flexibility in adjusting the gain and phase
characteristics as compared to integer order controllers. This
flexibility makes fractional order control a more versatile tool
in designing robust and precise control systems.

This paper presents the control of magnetic levitation sys-
tem using FO-PID controller based on optimal pole-zero ap-
proximation method. An algorithm is developed to realize digi-
tal FO-differentiators and FO-integrators. The proposed design
procedure aims to ensure that the performance is within re-
quired tolerance bandwidth. Five parameters (kp, ki, kd, α, β)
of FO-PID need to be tuned for designing the controller. This
paper utilizes dynamic PSO optimization (dPSO) method to
achieve the required values. Finally, a comparative study of
the performance parameters of the controller is presented to
evaluate the advantages of deployment of FO-PID against
the conventionally used integer-order controllers. The control
effort minimization by FO-PID controller is quantified and
demonstrated.

This work is organized as follows: section II presents the
system description. Design procedure of proposed digital FO-
PID controller using discrete optimal pole-zero approximation
method and dPSO technique is discussed in section III. In
section IV simulation and experimental results on MLS are
provided to validate effectiveness of the proposed controller.
Paper concludes with a summary of the results obtained in
section V.

II. SYSTEM IDENTIFICATION OF MLS MODEL

A laboratory scale magnetic levitation system is used to
evaluate the performance of proposed controller in a controlled
environment. MLS levitates an object (metallic ball with mass
m) in a desired position by controlling the electromagnetic
field counteracting the gravitational force. The applied control
input is voltage, which is converted into current via embedded
driver[21]. Fig.1 shows the schematic diagram of MLS. The
system model is nonlinear, that means at least one of the two
states (i–current, x–ball position) is an argument of a non-
linear function. The nonlinear model of MLS relating the ball
position x and coil current i is given as (1):

Fig. 1. Schematic diagram of MLS.

mẍ = mg − k
i2

x2
(1)

i = k1u (2)

where, k is a constant depending on coil (electromagnet)
parameters, m is the mass of sphere, g is gravitational force,
k1 is an input conductance, u is control voltage, and x is
a ball position. The values of these parameters are given in
Appendix-A. A relation between control voltage x and coil
current i is given in (2). The control signal ranges between
[−5V, +5V ].

A. Linearization of MLS Model

The nonlinear form of maglev model is linearized for
analysis of the system[21]. The linear form of the model is
obtained from (1) as follows:

ẍ = g − f(x, i) (3)

where, f(x, i) = k i2

mx2

Equilibrium point is calculated by setting ẍ = 0,

g = f(x, i)|io,xo
(4)

Linearization is carried out about the equilibrium point of
xo = −1.5V (the position is expressed in volts), io = 0.8A[8].
Using series expansion method, (5) is obtained.

ẍ = −
(∂f(i, x)

∂i

∣∣∣
io,xo

4i +
∂f(i, x)

∂x

∣∣∣
io,xo

4x
)

(5)

Application of Laplace Transform on (5) simplifies it to (6).

4X(s)
4I(s)

=
−Ki

s2 + Kx
(6)

where, Ki = 2mg
io

and Kx = − 2mg
xo

Linearized model transfer function (6) has two poles, one of
which is in the right half plane at

√
(2mg/x0), which makes

the MLS open-loop unstable. Transfer function, obtained by
the linearization, is verified using system identification proce-
dure.

B. Integer Order System Identification of MLS Model

System identification is a process for obtaining mathe-
matical model using input and output system response. The
identified model response should fit with measured response
for input applied to the system model[21]. Usually there are two
methods for system identification, least mean square (LMS)
method and instrumental variable method. The identification
of MLS is generally accomplished via traditional least squares
method, and is implemented in MATLAB[21−22].

As MLS is unstable, it has to be identified with a run-
ning, stabilizing controller i.e. closed loop identification. Fig.2
shows the scheme of unstable system identification. LMS
method minimizes error between the model and plant output.
The optimal model parameters, for which the square of the
error is minimal is the result of identification. In order to
carry out identification experiment, a discrete controller has
to be applied, in the absence of which, the ball falls down,
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rendering dentification impossible. The reference signal r(t)
i.e. random binary sequence signal is given to excite the MLS
and output y(t) is monitored. 2500 samples of the input, output
signals are collected from the system with sampling period of
0.01s.

Fig. 2. Block diagram of MLS control and close loop system
identification.

Fig.3 presents the comparison between measured and iden-
tified model output. Input and output data is taken from MLS
system for real-time identification. The best fit obtained is
90.78% for integer order identification, which gives close loop
discrete transfer function as in (7):

Fig. 3. Measured and simulated model output.

Y (z−1) =
G(z−1)

1 + C(z−1)G(z−1)
(7)

where, Y (z−1) is complete system transfer function, C(z−1)
is controller transfer function, and G(z−1) is MLS model
transfer function in discrete domain.

III. DESIGN OF DIGITAL FRACTIONAL ORDER PID
CONTROLLER

A. Fractional Calculus

Fractional calculus is a branch of mathematics that studies
the possibility of taking real or complex number powers of
differential and integral operator. Basic definitions of fractional
calculus and approximation of fractional integrator and frac-
tional differentiator are described in the literature[16−17]. The
real order operator is generalized as follows in (8):

Dα =





dα

dt α > 0
1 α = 0∫ t

a
(dτ)−α α < 0



 (8)

where, α ∈ R

Some popular definitions used for general fractional deriva-
tives/integrals in fractional calculus are :

1) : Riemann-Liouville (RL) definition is given in (9).

aDα
t f(t) =

1
Γ(n− α)

(
d
dt

)n ∫ t

a

f(τ)
(t− τ)α−n+1

dτ (9)

for (n− 1) ≤ α < n
where, n is an integer, α is a real number, and Γ is Euler
gamma function. Laplace transform of the RL fractional
derivative/integral (9), under zero initial conditions, is given
in (10).

L{aD±α
t f(t)} = s±αF (s) (10)

2) : Another definition is based on the concept of fractional
differentiation i.e. Grunewald-Letnikov (GL) definition. It is
given in (11).

aDα
t f(t) = lim

h→0
h−αΣ

[
t−a

h

]
j=0 (−1)j

(
α

j

)
f(t− jh) (11)

where,
[

t−a
h

] −→ Integer
3) : One more option for computing fractional derivatives

is Caputo fractional derivative, its definition is as follows (12):

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

fn(τ)
(t− τ)α+1−n

dτ (12)

where, (n − 1) ≤ α < n, n is an integer, and α is a real
number.

Initial conditions for Caputo’s derivatives are expressed in
terms of initial values of integer order derivatives. It is noted
that for zero initial conditions RL, GL, and Caputo fractional
derivatives coincide. Hence, any of the mentioned methods
may be used, using the case of zero initial conditions. That
would then eliminate the differences arising due to different
initial conditions (amongst the three methods).

B. Digital Realization of Fractional Order Differintegrals with
Optimal Pole-Zero for Phase Shaping

The aim behind the choice of frequency domain rational
approximation of FO-PID controller is to realize the controller
in real time using existing analog/digital filters[16−20, 23−25].
Precise hardware implementation of multi-dimensional na-
tured of fractional order operator is difficult. However, re-
cent research work revealed that band-limited implementation
of FO-PID controllers using higher order integer transfer
function approximation of the differintegrals give satisfactory
performance[26]. This paper, hence utilizes optimal pole-zero
algorithm to realize fractional differintegrals in the frequency
domain.

1) Optimal pole-zero approximation for phase shaping:
Any rational transfer function is characterized by its poles and
zeros. The Bode magnitude plot of non-integer order transfer
function has a slope of ±α20 dB/dec and the Bode phase
plot lies in the range of ±α90o (α is a real number). This is
achieved by the interlacing of real poles and zeros alternately
on the negative real axis[19−20, 27−28]. Thus, depending on
the error band ε around required phase angle αreq = α90o
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and the frequency band of interest (ωL, ωH), the nth order
approximation is obtained[28]. The proposed algorithm is de-
veloped to obtain the number of optimal pole-zero pairs to
maintain the phase value within the tolerance, of around 1o.
In this algorithm, poles and zeros given by (13) are obtained
as follows:

First pole, p1 = 10[
φreq+45logωl

45 +1]

First zero, z1 = 10ωl

Second pole, p2 = 10[log(p1)+2−µ]

Second zero, z2 = 10[log(z1)+2−µ]

...
till pn ≥ ωh

(13)

As a particular case, asymptotic phase plot for fractional
order integrator circuit having α = −0.4, φreq = −36o,
ωL = 0.1rad/s and ωH = 100rad/s is given in Fig.4 - Fig.6.
The selection of three pairs of poles and zeros with α = −0.4
fraction is shown in Fig.4. The asymptotic phase plot is a
straight line at φreq , but the actual phase plot is oscillating
about asymptotic phase plot, apart from that the average value
of phase angle −37.31o is also different from φreq . In Fig.4 the
required correction of phase is achieved over three decades by
three pole-zero pairs only, which is however less in pursuit
of more accuracy. This problem is rectified by increasing
the pole-zero density, i.e. having more pole-zero pairs in the
desired frequency band. Number of pole-zero pairs depend on
the permissible error and the desired band of frequency.

Fig. 4. Asymptotic phase plot with three pole-zero pairs for α =

−0.4(−36o).

Generally, three pole-zero pairs per decade give the phase
plot within ε = ±1o error, but it depends on the value of α
as well. For the same parameters, i.e. α = −0.4, φreq = 36o,
ωL = 0.1rad/s and ωH = 100 rad/s with seven pole-zero
pairs, phase plot is shown in Fig.5. The actual phase plot is
oscillating with rms error of 0.6471o(< 1o). Apart from that,
average value of phase angle (−35.9999o ≈ −36o) is same as
φreq . Moreover, this is achieved over 3 decades of cycle by
seven pole-zero pairs. In order to maintain the phase margin
tolerance within the lower limits, more pole-zero pairs in the
desired frequency band are required. This can be done by
adjusting z1, p2, z3.... closer towards left. To achieve this shift,
design parameter µ is introduced. Frequency band of constant
phase shrinks on both the ends with increasing µ for constant

number of pole-zero pairs. Fig.6 shows the basic idea of
frequency band tightening. The problem regarding frequency
band shrinking is tackled by designing the rational approx-
imation on wider frequency band ( ωl

10γ , 10δωh) followed by
curtailing the frequency overhang on either side, such that the
phase remains within φreq ± ε in range of (ωl, ωh). Nominal
values to expand frequency band are γ = 3, δ = 2.

Fig. 5. Asymptotic phase plot with seven pole-zero pairs.

Fig. 6. The basic idea of frequency band tightening.

2) Design of Digital Fractional Order Integrator: The key
point in digital implementation of fractional order controller
is discretization of fractional order differintegral[24, 27−29].
Contributions related to the discretization have been reported
in literature[30−33]. The pole-zero pairs obtained by algo-
rithm in the above case are discretized using first order hold
(foh), zero order hold (zoh), Tustin operator, impulse invari-
ant, matched pole-zero, and Tustin with pre-warp frequency
methods. In Fig.7, Bode plot for s−0.4 digital integrator
is shown and it depicts that digital integrator with Tustin
approximation method matches closely with continuous time
integrator. Tustin approximation method with a sample time
of 0.01s is used for discretization. To relate s-domain and z-
domain transfer functions, Tustin and bilinear methods use the
following approximation as (14).

z = esTs ≈ 1 + sTs/2
1− sTs/2

(14)

The optimal pole-zero algorithm for digital fractional in-
tegrator of s−0.4 within desired band of frequency ωL =
0.1rad/s and ωH = 100rad/s gives pole-zero pairs which are
listed in Table 1 with gain value 0.010127.
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Fig. 7. Bode plot of s−0.4 digital integrator.

Table I
THE POLE-ZERO PAIRS OF THE RATIONAL

APPROXIMATION OF s−0.4 ON (10−1, 102)rad/s

i 1 2 3 4 5 6 7
zi −0.9253 −0.4842 0.9307 0.992 0.9991 1 0.5136

pi −0.8286 0.7651 0.9707 0.9967 1 1 −0.0875

Digital fractional differentiator is designed along the lines
of approach similar to that of digital fractional integrator. The
architecture of digital FO-PID with digital fractional integrator
and digital fractional differentiator is shown in Fig.8.

Fig. 8. Digital FO-PID controller.

3) dynamic Particle Swarm Optimization: Recently, many
researchers have focused on fractional order controllers tuning,
and have obtained meaningful results[34−47]. In this work,
dPSO method is used to tune the gains and orders of the
controller. PSO is a method for optimizing hard numerical
functions, analogous to social behavior of flocks of birds,
schools of fish, etc. Here, each particle in swarm represents
a solution to the problem defined by its instantaneous po-
sition and velocity[48]. The position vector of each particle
is represented by unknown parameters to be ascertained. In
present case, five control parameters (kp, ki, kd, α, β) of FO-
PID controller need to be ascertained. The desired number of
particles is known as population. The population is varied to
carry out a search in multidimensional space. Each particle in
population will travel with the updated velocity and direction
to converge as early as possible to the optimal solution point.
Dynamic PSO is an improvement in PSO by adding the
product of differences in objective function value between

a particle and its individual best or the global best. Here,
the change in position of a particle is directly proportional
to iteration, which further depends on individual best, global
best, and a random velocity[49]. dPSO searches the workspace
similar to a simple PSO and velocity of a particle is obtained
by (15):

vid = (f(pid)− f(xid))× (pid − xid)× sf1

+ (f(pgd)− f(xid))× (pgd − xid)× sf2

+ rand()× signis()× sf3 (15)

where, vid: velocity of a particle, pid: individual best, xid:
current position of a particle, pgd: global best, rand: random
function, sf1, sf2, sf3: to scale the calculated value in the
range of the control variable, signis: function which generates
random positive or negative value.

Population size is taken as 100, maximum iteration is set
as 50, lower and higher translation frequencies are taken as
ωL = 0.1rad/s and ωH = 100rad/s. ITAE (Integral Time Ab-
solute Error) is chosen as performance criterion. The values of
controller parameters, obtained from dPSO, are implemented
in PD, PID, and FO-PID controller in simulation as well
as in real time mode on MLS. The optimized values of the
controllers are presented in Table II.

Table II
dPSO OPTIMIZED GAIN AND FRACTIONAL ORDER VALUES

USED FOR DIFFERENT CONTROLLERS ( α :ORDER OF
INTEGRATOR, β :ORDER OF DIFFERENTIATOR)

Sr. No. Controllers
Gain and Fractional Order Value
Kp Ki Kd α β

1. PD 4 – 2 – 1

2. PID 5.5 2 0.2 1 1

3. FOPID 7 12 1 0.4 0.8

IV. MLS CONTROL: SIMULATION AND
HARDWARE

A. Closed-Loop Control System Simulation

Control of MLS using optimized PD, PID, and FO-PID con-
troller is studied by MATLAB simulation. A sinusoidal excita-
tion signal is used to study the effects. The controller generates
a compensating control signal (based on the positional error) to
achieve desired ball position. Controller parameters are tuned
using dPSO method as discussed in section III-B-3. Fig.9 -
Fig.11 present simulation results of the controlled output of
MLS using PD, PID, and FO-PID controller respectively. Here,
encircled part pointed by an arrow shows deviation between
desired and actual ball position.

Fig. 9. Controlled output result of MLS using PD.
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Fig. 10. Controlled output result of MLS using PID.

The measured and desired ball positions with PD, PID,
and FO-PID controllers are quantitatively presented in Table
III. The simulation results indicate that deviation between
measured and desired ball positions by using dPSO tuned FO-
PID controller, is less as compared to PD or PID controllers.

Fig. 11. Controlled output result of MLS using FO-PID.

Error values presented in Table III are calculated using (16):

Percent error =
desired position− actual position

actual position
× 100%

(16)

From the data presented in Table III, it is observed that FO-
PID controller tracks the desired position more efficiently than
PD or PID controllers.

B. Real Time Implementation of Closed-Loop System

The MLS used for experimentation is shown in Fig.12. Due
to high nonlinearity and open-loop instability, MLS system
is a very challenging plant. Assembly of MLS consists of a
mechanical unit labeled A in Fig.12. Analogue control inter-
face unit labeled A is used to transfer control signals between
computing system and MLS. Advanced PCI1711 I/O card has
been inserted into a PCI computer slot and connected with
SCSI adapter box using SCSI cable. Mathworks software tools

are used to implement control algorithm. It includes MATLAB
control toolbox, real time windows workshop (RTW), real
time windows target (RTWT), and visual C as programming
environment. The flowchart required to obtain executable file
is shown in Fig.13. RTW builds a C++ source code from
the Simulink Model. C code compiler compiles and links the
code to produce executable program. RTWT communicates
with executable program acting as the control program and
interfaces with hardware through input/output board. The
block diagram of MLS close loop control is shown in Fig.14.

Fig. 12. Experimental setup.

1) Experimental Results using a PD Controller: The mea-
sured and desired ball positions using real time PD controller
is shown in Fig.15(a) and control signal c(t) before digital to
analog (D/A) conversion is given in Fig.15(b). This control
signal is used to levitate the object at desired position. The
plant input signal m(t) after D/A conversion and output signal
y(t), captured on the digital storage oscilloscope (DSO), is
presented in Fig.16.

The control effort required by controller to maintain object’s
position can be observed from the control signal c(t). The
ball position is tracked by infrared sensor and is fed back to
Simulink environment via analog to digital (A/D) converter. It
is observed from Fig.15 - Fig.16 that there is more deviation
in ball position and control effort required by the controller,
and is higher in case of PD controller. Hence, integral action is
added to the PD controller to achieve an improved control over
desired ball position. The quantitative analysis of desired and
actual ball position achieved by the controller is presented in
Table IV and the control effort analysis of controller is shown
in Table V.

Table III
MEASURED AND DESIRED BALL POSITIONS FOR DIFFERENT CONTROLLERS IN SIMULATION

Ball Positions (m)
Controllers

PD PID FO-PID

Measured ball position
Max. 8.12× 10−3 6.92× 10−3 5.94× 10−3

Min. −4.83× 10−3 −6.68× 10−3 −5.65× 10−3

Desired ball position
Max. 5.5× 10−3 5.5× 10−3 5.5× 10−3

Min. −5.5× 10−3 −5.5× 10−3 −5.5× 10−3

Error 23.06% 19.09% 5.03%
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Fig. 13. Control system development flow diagram.

Fig. 14. Block diagram of MLS close loop control.

Fig. 15. (a) Controlled output result of MLS using a PD controller
(b) Control signal of PD controller.

2) Experimental Results using a PID Controller: Fig.17(a)
shows measured and desired ball positions using PID con-
troller and output of controller c(t) is shown in Fig.17(b). The
captured controller output signal c(t) and output signal are
presented in Fig.18. The deviation in the ball position is mini-
mized to an extent by employing the PID controller. However,
the control effort required by controller is still similar to that

of PD controller while achieving the improvement.

Fig. 16. Experimental PD controller output and object’s trajectory
captured on DSO.

3) Experimental Results using a FO-PID Controller: The
deviation in ball positions using real time FO-PID controller is
shown in Fig.19(a). It depicts that error in desired and actual
ball positions has reduced in comparison to both PD or PID
control actions. The control signal c(t) of FO-PID controller
is presented in Fig.19(b). It shows that effort required by the
controller is least as compared to PD or PID controllers. Plant
input signal m(t) and output signal y(t) are presented in Fig.20.
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Table IV
MEASURED AND DESIRED BALL POSITIONS FOR DIFFERENT CONTROLLERS IN REAL TIME IMPLEMENTATION

Ball Positions (m)
Controllers
PD PID FO-PID

Measured ball position
Max. 16.8× 10−3 13.1× 10−3 12.6× 10−3

Min. 8.3× 10−3 4.85× 10−3 5.24× 10−3

Desired ball position
Max. 12.5× 10−3 12.5× 10−3 12.5× 10−3

Min. 5.5× 10−3 5.5× 10−3 5.5× 10−3

Error 29.66% 8.95% 5.75%

Fig. 17. (a) Controlled output result of MLS using a PID controller
(b) Control signal of PID controller.

Fig. 18. Experimental PID controller output and object’s trajectory
captured on DSO.

Fig. 19. (a) Controlled output result of MLS using a FO-PID
controller (b) Control signal of FO-PID controller.

From the data presented in Table IV it is observed that FO-

PID controller has improved the position accuracy of MLS
compared to PD or PID controllers in real time implementa-
tion. Also, the percentage error is least for FO-PID controller.

Fig. 20. Experimental FO-PID controller output and object’s trajec-
tory captured on DSO.

Table V
CONTROL EFFORT ANALYSIS OF DIFFERENT

CONTROLLERS IN REAL TIME IMPLEMENTATION

Performance Indices
Controllers

PD PID FO-PID

IAE
Error Signal 51.97 14.56 12.79

Control Signal 208 181 151.5

ITAE
Error Signal 609 455.7 425.5

Control Signal 900.6 797.9 602.5

ISE
Error Signal 28.38 4.978 2.488

Control Signal 832.6 647.2 347.2

Fig. 21. Control effort analysis.

The control effort required by PD, PID, and FO-PID
controllers is calculated using IAE (Integral Absolute Error),
ITAE, and ISE (Integral Square Error). The analysis has been
carried out for a period of 100s and is tabulated in Table V.
Fig.21 represents the control effort analysis in pictorial form.
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The error signal is maximum in the case of PD controller
and least in the case of FO-PID controller. The control signal
also follows the same pattern and is least in case of FO-PID
controller, leading to inference that the control effort in terms
of power required by the FO-PID controller to maintain the
ball position is least amongst the three controllers.

From the analysis, it infers that PID controller is better
than PD controller through performance characteristic. FO-
PID controller shows slight improvement over PID controller,
but the effort required is appreciably less for the same im-
provement. Thus proving superiority of FO-PID over integer
order controllers.

4) Disturbance Injection Analysis of Controllers: The ef-
fect of disturbance is studied by injecting step input to MLS
and effect of increased load is studied by introducing another
metallic ball in levitation system as shown in Fig.22. The step
is applied after interval of 25s on initiation of the input while
another ball is introduced manually after 35s. The measured
and desired ball positions using a PD controller are presented
in Fig.23(a) and the control signal of a controller is shown
in Fig.23(b). PD controller output and object’s trajectory as
captured on DSO is presented in Fig.24.

Fig. 22. Levitation of two metallic balls.

Fig. 23. (a) Controlled output result of MLS using a PD controller
(b) Control signal of PD controller.

The instant of step applied in input signal and the instant of
the addition of extra load are demonstrated by circles marked
on figures. Overshoot is observed at the instant of step and
after introducing second ball in levitation system.

Fig. 24. Experimental PD controller output and object’s trajectory
captured on DSO.

Fig. 25. (a) Controlled output result of MLS using a PID controller
(b) Control signal of PID controller.

Fig. 26. Experimental PID controller output and object’s trajectory
captured on DSO.

Fig. 27. (a) Controlled output result of MLS using a FO-PID
controller (b) Control signal of FO-PID controller.
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The deviation in ball position is higher as load is increased
and greater amount of effort (power consumption, as indicated
by high switching fluctuations in the voltage graph) is required
by controller to achieve desired ball position.

Similar analysis for PID and FO-PID controllers is pre-
sented in Fig.25 - Fig.28. These figures lead to inference that in
case of PID controller, the deviation in ball position is high and
greater amount of effort is required by controller to achieve
ball position as compared to FO-PID controller. Comparison
shows that FO-PID controller requires lesser effort to levitate
the object and effect of disturbance is less as compared to PD
or PID controllers.

Fig. 28. Experimental FO-PID controller output and object’s trajec-
tory captured on DSO.

V. CONCLUSION

In this paper, digital FO-PID controller is applied on MLS
to improve the positional accuracy and control effort. A new
discrete optimal pole-zero approximation method is proposed
for realization of controller. This method provides the optimal
number of pole-zero pairs to maintain the phase value within
the tolerance, of around 1o. dPSO method is used for tuning
the parameters of controller. The performance analysis for
integer and fractional order controllers have been carried out
in both simulation and experimentation. The results show that
a better control over position accuracy with lesser efforts (over
conventional methods) can be achieved. In practical terms, this
efficiency improvement translates to better fuel efficiency. This
paper provides a basis for evaluating the utility of fractional
order control to improve the performance of power conversion
systems and precision robotic applications.

Table VI
PARAMETERS OF THE MLS

Symbol Parameters Values
i Input Current in the Coil [0− 3]A

u Input Voltage [0− 5]V

m Mass of the Steel Sphere 20× 10−3 kg

k Magnetic Constant 8.54× 10−5 kg

k1 Input Conductance 0.3971/Ω

g Gravitational Acceleration 9.81m/s2
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