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Applications of Fractional Lower Order
Time-Frequency Representation to Machine Bearing

Fault Diagnosis
Junbo Long, Haibin Wang, Peng Li and Hongshe Fan

Abstract—The machinery fault signal is a typical non-Gaussian
and non-stationary process. The fault signal can be described by
SαS distribution model because of the presence of impulses.
Time-frequency distribution is a useful tool to extract helpful
information of the machinery fault signal. Various fractional
lower order (FLO) time-frequency distribution methods have
been proposed based on fractional lower order statistics, which
include fractional lower order short time Fourier transform
(FLO-STFT), fractional lower order Wigner-Ville distributions
(FLO-WVDs), fractional lower order Cohen class time-frequency
distributions (FLO-CDs), fractional lower order adaptive kernel
time-frequency distributions (FLO-AKDs) and adaptive frac-
tional lower order time-frequency auto-regressive moving average
(FLO-TFARMA) model time-frequency representation method.
The methods and the exiting methods based on second order
statistics in SαS distribution environments are compared, simula-
tion results show that the new methods have better performances
than the existing methods. The advantages and disadvantages of
the improved time-frequency methods have been summarized.
Last, the new methods are applied to analyze the outer race
fault signals, the results illustrate their good performances.

Index Terms—Alpha stable distribution; non-stationary signal;
adaptive function; auto-regressive (AR) model; parameter esti-
mation; time frequency representation.

I. INTRODUCTION

THe machinery vibration signal is a non-stationary
signal, its spectrum characteristic changes with the

time. The time-frequency analysis is a powerful tool to
provide the frequency spectrum information for the non-
stationary signals. The traditional short time Fourier transform
(STFT) time-frequency distributions[1], Wigner-Ville distribu-
tions (WVDs)[2], wavelet transform (WT) time-frequency[3],
Hilbert-Huang transform (HHT) time-frequency[4−6], the time-
frequency analysis methods have been widely used in me-
chanical fault diagnosis. Recently, some improved methods
based on traditional time-frequency distribution are also used
in fault diagnosis, such as the evolutionary spectrum based
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on STFT[6] and the improved cyclic WVD spectrum analysis
based on WVD[7]. The time-frequency distribution cannot
change according to the signal’s characteristic, hence, the
adaptive time-frequency analysis method has been focused and
applied to the mechanical fault diagnosis because of its high
performance. The time-frequency analysis method based on
adaptive kernel function is proposed in literature[8], and the
adaptive optimization criterion can adaptively adjust the kernel
function according to the characteristics of the signals.

Recently, the adaptive time-frequency analysis method is
developed rapidly, such as adaptive time-frequency distribution
based on radial Gaussian kernel function, cone-shaped kernel
function[9−10] and butterworth kernel function[11]. The new
adaptive parabola kernel function time-frequency distribution
method has been proposed in [12]. The improved basis func-
tion chirplet adaptive time-frequency method is introduced in
literature[13], and it is applied to the bearings and gear box fault
analysis. An improved radial parabolic kernel time-frequency
method has been used to the bearing fault diagnosis, which can
effectively improve the bearing fault diagnosis time-frequency
resolution and suppress the cross-term interference[14]. Shi
Dong-feng proposed a kind of adaptive time-frequency de-
composition algorithm based on Gaussian linear frequency-
modulation[15], the method has good performance in the
machinery critical vibration analysis. Recently, the adaptive
time-frequency method is proposed based on AR parameter
model by Michael Jachan[16−17], whereafter, the improved
vector time-frequency AR (VTFAR) and TFARMA adaptive
time-frequency algorithm are put forward[18−19]. The model
time-frequency methods have been applied in mechanical
engineering[20−21], the TFAR model method has illustrated
fine time-frequency resolution when it is used to analyze the
vibration signals of a faulty gearbox[20], more application
examples with parametric models method could be found in
literature[21]. However, the TFARMA model method has not
been applied for the machinery fault signals analysis.

Gaussian model and second order statistics are used to
analyze the fault signals in the above methods, but some actual
mechanical fault signals have obvious pulsing characteristics,
and they are non-Gaussian, hence there will be a certain
deviation. Therefore, Nikias first proposed a new statistical
model for the typical signal Alpha (α) stable distribution
process[22−25]. When 0 < α < 2, the performance of the
time-frequency analysis method based on Gaussian model
degenerates, therefore, the new methods based on α stable
distribution model are put forward, and they are applied to
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the mechanical fault diagnosis. Chang-Ning Li proved that
the bearing fault signals belong to α stable distribution[26]. A
new support vector machine fault diagnosis algorithm based
on the stable distribution model is proposed in [27], it can
effectively improve small sample learning and convergence
speed. A rolling bearing fault diagnosis method is put forward
with fractional lower order statistics instead of second order
statistics based on α stable model and kurtogram[28], which
effectively improve the performance. However, few research
works are studied on applications of time-frequency distri-
bution in machine fault diagnosis with α stable distribution
model. The adaptive time-frequency analysis method based
on α stable distribution is worth investigating. More realis-
tic statistical model will bring new machine fault detection
and diagnosis methods for rotating machines. In addition,
the fractional-order differential calculus methods have been
applied in many fields[29−31].

In this paper, several new time-frequency representation
methods based on α stable distribution statistical modeling are
proposed for machine fault diagnosis. The paper is structured
in the following manner. α stable distribution and its statis-
tical moment are introduced in Section 2. The bearing fault
signals are introduced in Section 3. The improved fractional
lower order time-frequency representation methods are demon-
strated, and the simulations comparisons with the conventional
methods are performed to demonstrate justifiability of the

proposed methods in Section 4. The simulations of the outer
race fault signals diagnosis are presented in Section 5. Finally,
the conclusions and future research are given in Section 6.

II. α STABLE DISTRIBUTION AND ITS STATISTICS

A. α stable distribution

α stable distribution is a kind of generalized Gaussian
distribution, the process is not limited in variance and its
probability density function has a serious tail, its characteristic
function can be described as[22−25]

φ(t) = exp {jµt− γ|t|α[1 + jβsign(t)ω(τ, α)]} (1)

where α is the characteristic index, when 0 < α < 2 it
(type 1) is lower order α stable distribution, when α = 2
it is Gaussian distribution. β is the symmetry coefficient, γ is
the dispersion coefficient, µ is the location parameter. When
β = 0, µ = 0, γ = 1, When α= 0.5, 1.0, 1.5 and 2.0, the time-
domain waveforms of SαS distribution are shown in Fig. 1,
and their probability density function (PDF) are shown in Fig.
2.

Waveforms of SαS stable dαvariance are shown in Fig.
3 when sample numbers successively increase with α =
0.5, 1.0, 1.5 and 2.0. When 0 < α < 2, the results show
that variances are not limited, the variance is convergent when
α = 2 (Gaussian distribution), γ = 2σ2 = 2(σ = 1).

Fig. 1 Waveform of SαS distribution under α = 0.5, 1.0, 1.5 and 2.0 in time domain
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Fig. 2 PDF of SαS distribution with different alpha α

Fig. 3 Variance of SαS distribution with successively increase of sample numbers with different alpha (α)

B. fractional lower order statistics

1) Fractional lower order covariation coefficient: The co-
variance of SαS distribution is not existing because of its
limited variance. Hence, the covariation concept is put forward
by Miller in 1978, it is similar to the covariance of Gaussian
random process. Covariation of two SαS distribution random

variables X and Y is defined as

[X, Y ]α =
∫

s

xy<α−1>µ(ds), 1 < α ≤ 2 (2)

where S denotes the unit circle, < > denotes the operation
z<α> = |z|αsign(z), the covariation coefficient of Xand Y is
defined as

λXY =
[X, Y ]α
[Y, Y ]α

(3)
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If the dispersion coefficient of Y is γy , the covariation and
covariation coefficient can be written as

[X, Y ]α =
E(XY <p−1>)

E(|Y |p) γy, 1 ≤ p < α ≤ 2 (4)

λXY =
E(XY <p−1>)

E(|Y |p) , 1 ≤ p < α ≤ 2 (5)

According to the definition of covariation coefficient, the co-
variation coefficient of a real observation sequence X(n)(n =
0, 1, . . . N)can be defined as[21]:

λ(m) =
E(X(n)X(n + m)<p−1>)

E(|X(n + m)|p) , 1 ≤ p < α ≤ 2 (6)

λ̂(m) =

N∑
m=1

X(n)|X(n + m)|p−1
sign[X(n + m)]

N∑
m=1

|X(n + m)|p
,

1 ≤ p < α ≤ 2 (7)

where λ̂(m) is the approximate estimation of λ(m). The
simplified fractional lower order moment is used in array
signal processing, and it is expressed as[23, 24]:

λFLOM (m) = E(X(n)X(n + m)<p−1>), 1 ≤ p < α ≤ 2
(8)

when X(n) is real

λ̂FLOM (m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−1
sign[X(n + m)] (9)

when X(n) is complex

λ̂FLOM (m) =

1
L2 − L1

L2∑

n=L1+1

X(n)|X(n + m)|p−2
X∗(n + m) (10)

where 1 ≤ p < α ≤ 2, L1 = max(0,−m), L2 = min(N −
m,N).

2) Fractional lower order covariance: Because the frac-
tional lower order covariation and fractional lower order
moment define α as 1 < α ≤ 2 and the range from 0 to 1 is not
defined, hence, fractional lower order covariance (FLOC) is
given in [25], in which 0 < α ≤ 2 is defined. Fractional lower
order auto-covariance (FLOAC) of N pairs of the observations
X(n)(n = 0, 1, · · ·N) based on the definition of FLOC[25] can
be defined as:

Rd(m) = E
{

X(n)<a>
X(n + m)<b>

}
,

0 ≤ a < α/2, 0 ≤ b < α/2 (11)

where 0 < α ≤ 2, if X(n) is real, the FLOAC can be
estimated with the sample FLOAC R̂d(m).

R̂d(m) =
1

L2 − L1

L2∑

n=L1+1

|X(n)|a|X(n + m)|bsign[X(n)X(n + m)] (12)

And if X(n) is complex, the FLOAC is estimated with the
sample FLOAC R̂d(m)

R̂d(m) =
1

L2 − L1

L2∑

n=L1+1

|X(n)|a−1|X(n + m)|b−1
X∗(n)X∗(n + m) (13)

where L1 = max(0,−m), L2 = min(N −m,N), ∗ denotes
the conjugate operation.

III. BEARING FAULT SIGNALS

The data of real bearing fault signals are got from the Case
Western Reserve University (CWRU) bearing data center[29].
As shown in Figure 4, the diameter of the bearing fault in the
test motor is 0.007 inches, and the fault points include inner
race fault, ball fault and outer race fault. The experiments
are conducted with a 2hp reliance electric motor, and the
acceleration data are measured at proximal and distal points of
motor bearings, the points include the drive end accelerometer
(DE), fan end accelerometer (FE) and base accelerometer
(BA). The motor speed is 1797 RPM (revolutions per minute),
and the digital data are collected with a speed of 12, 000
samples per second.

Fig. 4 The apparatus of bearing fault test data

When the single fault point appears in inner race, outer race
or ball, we collect the fault signals. Waveforms are shown in
Figure 4 a, b, c and d, where it is shown that fault points
cause different impulse intensities. The ball fault has very
small impulse intensity, while the impulse intensity of outer
race is higher.

Statistical characteristics of these bearing fault signals
should be analyzed to obtain the condition information. Hence,
the stable distribution statistical model is used to estimate
parameters of the inner race fault signals, ball fault signals
and outer race fault signals, the estimated four parameters
are shown in Table 1. As it can be seen, bearing signals
in normal condition are Gaussian distribution for α = 2,
and they are non-Gaussian α stable distribution for
α < 2. Probability density function (PDF) of the inner race
fault signals, the ball fault signals and the outer race fault
signals are shown in Figure 6. By comparing PDF of normal
signals and fault signals, we know that PDF of fault signals
have serious trailing. Table 1 shows that the β value around
zero, and Fig. 6 shows that bearing fault signals generally have
symmetric PDF, hence, SαS distribution statistical model is
concise and accurate for bearing fault signals.
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Fig. 5 Bearing fault waveforms (a. The waveform of normal signals in DE and FE b. the waveform of the inner race fault signals in DE,
FE and BA c. the waveform of the ball fault signals in DE, FE and BA d. the waveform of the outer race fault signals in DE, FE and BA)

Table I α stable distribution model parameter estimates of bearing
fault signals

parameters α β γ µ

Normal
DE 2.000 –0.283 0.1304 0.1317
FE 2.000 1.000 0.0583 0.0236
BA 1.7682 0.0872 0.0590 0.0062

Inner race DE 1.4195 0.0155 0.2407 0.0175
FE 1.8350 0.0322 0.1495 0.0291
BA 1.9790 0.0592 0.0293 0.0055

Ball DE 1.8697 0.1215 0.0772 0.0193
FE 1.998 –0.0371 0.0674 0.0321
BA 1.6077 –0.1731 0.0530 0.0012

Outer race DE 1.1096 0.0433 0.1341 0.0367
FE 1.5435 –0.0169 0.0968 0.0296

IV. FRACTIONAL LOWER ORDER TIME-FREQUENCY
DISTRIBUTIONS

A. Fractional lower order short-time Fourier transform

1) Principle: Short time Fourier transform (STFT) time-
frequency distribution is free from cross-term interference, but
the time-frequency resolution is low and it is governed by the

Heisenberg uncertainty principle. The conventional STFT of
an analytic signal x(t) is defined as

STFTx(t, ω) =
∫ +∞

−∞
x(τ)h(τ − t)e−jωτdτ (14)

The discrete equation is defined as

STFTx(n,$) =
∑
m

x(m)h(m− n)e−jn$ (15)

STFT is one of Fourier transform, which is added with time
window h(t) at each specific time of x(t), in α stable distri-
bution environment, fractional low order short time Fourier
transform (FLO-STFT) based on P order moment can be
defined as

FLOSTFTx(t, ω) =
∫ +∞

−∞
x<P>(τ)h(τ − t)e−jωτdτ

(16)

FLO-STFT discrete equation is defined as

FLOSTFTx(n,$) =
∑
m

x<P>(m)h(m− n)e−jn$ (17)
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Fig. 6 PDF of the bearing fault signals (a. PDF of inner race fault
signals in DE, FE and BA; b. PDF of the ball fault signals in DE, FE
and BA; c. PDF of the outer race fault signals in DE, FE and BA)

In the equations 16-17, the moving window function can
satisfy that P moment of non-stationary signal is stationary
and integrable within the time window, however, the traditional
STFT method is no longer stationary and integrable because
E[|s|] = ∞ when α < 1.

2) Application review: We apply FLO-STFT time-
frequency distribution to estimate the time-varying spectral,

the signal x added with SαS distribution noise is defined as

x = e−a(n−80)2+jω1(n−80) + e−a(n−190)2+jω2(n−190) + SαS

= y + SαS (18)

Fig. 7 Time-frequency representations of the signal x in SαS noise
environment. (a. Waveform of x and y ; b. STFT time-frequency
representation of the signal x; c. FLO-STFT time-frequency repre-
sentation of the signal x)

where a = 0.002, ω1 = 1.85, ω2 = 1.2, n =
1, 2, · · · 256, α = 1.5,MSNR = 15 db (Mixed Signal
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to Noise Ratio), MNSR = 10 log(E
{
|s(t)|2

}
/γα). The

traditional STFT method and FLO-STFT method are used
to estimate time-frequency representations of the signal x,
simulation results are shown in Figure 7.

3) Remarks: Figure 7. b shows that the traditional STFT
time-frequency method fails in noise environment, the im-
proved FLOC-STFT method shows good robustness in
Fig. 7.c. However, the time-frequency resolution of the FLO-
STFT method is controlled by the length of the window
function like STFT method. In real application, the shorter
time window should be used when we want to get the
information of higher frequency components, and if we wish
to closely localize the frequency location of lower frequency
components, a longer time window is preferred. As a result,
STFT time-frequency method is only suitable to analyze
signals in Gaussian environment, but FLO-STFT can work
in Gaussian and noise environment, which is robust.

B. Fractional lower order Wigner-Ville Distributions
1) Principle: Wigner-Ville Distribution (WVD) of the sig-

nal x(t) is defined as

WV Dx(t, ω) =
∫ +∞

−∞
x(t + τ/2)x(t− τ/2)e−jωτdτ (19)

WVD time-frequency is a quadratic transformation, it has
serious cross-terms, hence, the smoothing window function
h(τ) is used to reduce the cross-term interference, Pseudo
WVD (PWVD) is expressed as

PWV Dx(t, ω) =
∫ +∞

−∞
h(τ)x(t + τ/2)x(t− τ/2)e−jωτdτ

(20)

In α stable distribution environment, Fractional Low Order
Wigner-Ville Distribution (FLO-WVD) based on P order mo-
ment can be expressed as

FLOWV Dx(t, ω)

=
∫ +∞

−∞
x<P>(t + τ/2)x−<P>(t− τ/2)e−jωτdτ (21)

The FLO-WVD discrete equation of the signal x(t) is ex-
pressed as

FLOWV Dx(n,$)

= 2
∑
m

x<P>(n + m)x−<P>(n−m)e−jm$ (22)

FLO-PWVD of the signal x(t) can be defined as

FLOPWV Dx(t, ω) =∫ +∞

−∞
h(τ)x<P>(t + τ/2)x−<P>(t− τ/2)e−jωτdτ (23)

The instantaneous auto-covariance of the signal x(t) is defined
as

RC
x (t, τ) = x<P>(t + τ/2)x−<P>(t− τ/2) (24)

According to the equation (24), FLO-WVD changes as

FLOWV Dx(t, ω) =
∫ +∞

−∞
RC

x (t, τ)e−jωτdτ (25)

According to the equation (24), we can know that FLO-WVD
of the signal x(t) is the Fourier transform of instantaneous
auto-covariance in time delay τ .

2) Application review: The traditional WVD method,
PWVD method, the improved FLO-WVD method and FLO-
PWVD method are used to estimate time-frequency distribu-
tions of the signal x(t), and their simulation results are shown
in Figure 8.

3) Remarks: Fig. 8.a and Fig. 8.c respectively are WVD
and PWVD time-frequency representations of the synthetic
signal x, Fig8. b and Fig8. d respectively are FLO-WVD
and FLO-PWVD of the synthetic signal x. Simulation results
show WVD and PWVD time-frequency methods cannot work,
but FLO-WVD and FLO-PWVD time-frequency methods have
good performance in SαS environment. FLO-WVD method
is an improved WVD time-frequency method, FLO-WVD has
high time-frequency resolution, but it has serious cross-term
interference. Hence, its application is inevitably hindered by
the cross-term interference. FLO-PWVD is FLO-WVD added
the window function, it can better suppress the cross term
interference.
Fractional lower order Cohen class time-frequency distributions

1) Principle : The Cohen-class time-frequency distribution
is intended to obtain the expected properties like higher
resolution, non-negativeness and removal of cross-terms with
a kernel function, Cohen class Time-frequency distribution
(CTFD) of the analytic signal x(t) is defined as

Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x(t + τ/2)x(t− τ/2)Φ(θ, τ)ejθt−jωτ−jθudθdτdu (26)

Ambiguity function (AF) of the signal x(t) is expressed as

AFx(θ, τ) =
∫ +∞

−∞
x(t + τ/2)x(t− τ/2)e−jθtdt

=
∫ +∞

−∞
RC

x (t, τ)e−jθtdt (27)

Fractional Low Order Ambiguity function (FLOAF) of the
analytic signal x(t) based on P order moment is defined as

FLOAFx(θ, τ) =
∫ +∞

−∞
RC

x (t, τ)e−jθtdt

=
∫ +∞

−∞
x<P>(t + τ/2)x−<P>(t− τ/2)e−jθtdt (28)

When the inverse Fourier transform of equation (28) is com-
puted, we can get:

RC
x (t, τ) =

1
2π

∫ +∞

−∞
FLOAFx(θ, τ)ejθtdθ (29)
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Fig. 8 Time-frequency representations of the signal x in SαS noise environment (a. WVD time-frequency representation of the signal
x; b. FLO-WVD time-frequency representation of the signal x; c. PWVD time-frequency representation of the signal x; d. FLO-PWVD
time-frequency representation of the signal x)

If the equation (29) is substituted to equation (25), we get
the following form.

FLOWV Dx(t, ω) =

1
2π

∫ +∞

−∞

∫ +∞

−∞
FLOAFx(θ, τ)ejθt−jωτdθdτ (30)

From the equation (30), we know that FLOWVD of the
signal x(t) is two-dimensional Fourier transform of FLOC-
AF, FLOWVD is three-dimensional (3-D) indication of the
signal x(t) in time, frequency and energy, and FLOC-AF
is 3-D indication in time-delay, frequency deviation and the
correlation. The images of FLOWVD and FLOC-AF have the
components and cross-terms, the components of FLOWVD
method are on both sides, and the cross terms are in the
middle. However, the components of FLOC-AF are in the
middle, and the cross terms are in both sides. When FLOC-AF
of the signal x(t) is computed, and a low-pass filter is used
to filter cross-terms in AF plane, finally, the time-frequency
distribution is calculated. FLO-Cohen distribution of the signal

x(t) is defined as

FLO − Cx(t, ω) =
1
2π

∫ +∞

−∞

∫ +∞

−∞
Φ(θ, τ)

FLOAFx(θ, τ)ejθt−jωτdθdτ (31)

Φ(θ, τ) is the kernel function, a different distribution is got
when a different kernel function is used. If Φ(θ, τ) = 1,
FLO-Cohen time-frequency representation degenerates into
FLOWVD method, when Φ(θ, τ) is a moving window func-
tion, FLO-Cohen method is called pseudo FLOWVD time-
frequency representation, if Φ(θ, τ) = cos(θτ/2), FLO-
Cohen method is called FLO- Rihaczek time-frequency rep-
resentation, when Φ(θ, τ) = ejθτ/2, FLO-Cohen method is
called FLO-Page time-frequency representation, if Φ(θ, τ) =
e−θ2τ2/σ , FLO-Cohen method is called FLO-Choi-Williams
time-frequency representation, σis a constant between 0.2-8, if
Φ(θ, τ) = g(τ) |τ | sin(βθτ)/βθτ , it is called as FLO-conical
kernel distribution.

4) Application review: Choi-Williams and FLO-Choi-
Williams time-frequency methods are used to estimate time-
frequency distributions of the synthetic signal x (equation 18),
simulation results are shown in Figure 9.
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Fig. 9 Time-frequency representations of the signal x in SαS noise
environment. (a. Choi-Williams time-frequency representation of the
signal x;b. FLO-Choi-Williams time-frequency representation of the
signal x)

5) Remarks Fig. 9.a shows the Choi-Williams time-
frequency representation of the synthetic signal x, and Fig.
9.b is the FLO-Choi-Williams time-frequency representation
of the synthetic signal x. In view of the SαS stable distri-
bution noise environment, the Choi-Williams method fails,
and FLO-Choi-Williams method can better represent time-
frequency distribution. FLO-Choi-Williams time-frequency
method smoothing by the kernel function get rid of most of
the cross-terms, but the time-frequency resolution is reduced.

C. FLO adaptive kernel time-frequency representation method

1) Principle: The kernel functions of traditional Cohen-
class time-frequency method and fractional lower order
Cohen-class time-frequency method are fixed, a class ker-
nel function is only suitable for one type of signal, which
can not meet all the signals. However, the adaptive ker-
nel time-frequency distribution can change optimal kernel
functionΦ(θ, τ)according to the feature of the different signals.
Hence, adaptive optimal kernel time-frequency method is
focused, and adaptive optimal kernel time-frequency repre-
sentation in stable distribution environment will be a new
direction.

According to the definition of FLOC-Cohen method, we
use the optimal kernel function Φopt(θ, τ) instead of the fixed
kernel function Φ(θ, τ), then we can get a new fractional low-
order adaptive kernel time-frequency distribution. the polar
coordinates expression of optimal kernel can be defined as:

max
Φ

∫ 2π

0

∫ +∞

0

|AFx(r, φ)Φ(r, φ)|2rdrdφ (32)

when the kernel function is a radial Gaussian kernel function,
the optimal kernel function is defined as:

Φ(r, φ) = e
− r2

2σ2(φ) (33)

Where φ is radial angleφ = arctan τ
θ σ(φ) is radial extension

functionit controls the radial shape of Φ(θ, τ), constraint
condition in polar coordinates is defined as:

1
4π2

∫ 2π

0

∫ +∞

0

|Φ(r, φ)|2rdrdφ

=
1

4π2

∫ 2π

0

∫ +∞

0

∣∣∣∣e
− r2

2σ2(φ)

∣∣∣∣
2

rdrdφ

=
1

4π2

∫ 2π

0

σ2(φ)dφ ≤ β (34)

When Φopt(θ, τ) is a radial optimal parabolic kernel function,
its function is defined as:

Φ(θ, τ) = 1− w(θ2 + τ2)
2σ2(φ)

, (0 ≤ w(θ2 + τ2)
2σ2(φ)

≤ 1) (35)

The constraint condition in polar coordinates is expressed as:

1
6wπ

∫ π

0

σ2(φ)dφ ≤ β (36)

If we use the equation (32), (33) and (34) to choose kernel
function, the method can be called fractional lower order
adaptive Gaussian-kernel time-frequency distribution (FLO-
AGK-TFD). When we use the equation (32), (35) and (36)
to choose kernel function, it is called fractional lower order
adaptive parabolic kernel time-frequency distribution (FLO-
APK-TFD).

2) Application review: The adaptive kernel function time-
frequency distribution and FLO-adaptive kernel function time-
frequency distribution are used to estimate time-frequency
distributions of the synthetic signal x(the equation 18), the
optimal radial Gaussian kernel function is used in the methods.
Simulation results are shown in Figure 10.

3) Remarks: The adaptive kernel time-frequency distribu-
tions of synthetic signal x are illustrated in Fig. 10.a, and
Fig. 10.b illustrate the FLO-adaptive optimal kernel time-
frequency distributions of synthetic signal x. As shown in
the figures, two components of the FLO-adaptive optimal
kernel time-frequency method can be clearly resolved in fine
resolution, but adaptive optimal kernel time-frequency method
cannot represent time-frequency distributions. From Figure
10.b, we know that the FLO-adaptive kernel function method
can effectively suppress the cross-terms, and it has a better
timeCfrequency resolution. The FLO-adaptive kernel method
requires that the auto-terms of the signals concentrate around
the origin on the ambiguity plane, the cross-terms distribute
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in an area is far from the origin, and it will not be effective
to separate the auto-terms and cross-terms when they overlap
regardless of what volume of parameter is used.

Fig. 10 Time-frequency representations of the signal x in SαS

noise environment. (a. Adaptive kernel time-frequency representation
of the signal x; b. FLO- adaptive kernel time-frequency representation
of the signal)

D. Adaptive FLO-TFARMA Time-Frequency Representation
method

TFARMA model of a non-stationary random process is
defined as[19]

x[n] =−
M∑

i=1

ai[n]x[n− i]+

L∑

i=0

bi[n]e[n− i], n = 0, 1, 2, · · ·N − 1 (37)

Where ai[n] and bi[n] are the time-varying parameters of
the TFAR and TFMA part, M and L are orders, e(n) is
stationary white noise. When the noise e(n) is a stationary
SαS distribution process u(n), according to the definition
method of the equation (37) TFARMA, we can also define a

non-stationary time-frequency auto-regressive moving average
SαS process TFARMA (M , L, A, B) as

x[n] =−
M∑

i=1

ai[n]x[n− i]+

L∑

i=0

bi[n]u[n− i], n = 0, 1, 2, · · ·N − 1 (38)

where

ai[n] =
A∑

l=−A

ai,lfl[n] =

A∑

l=−A

ai,le
j 2π

N nl, n = 0, 1, 2, · · ·N − 1

bi[n] =
B∑

l=−B

bi,lfl[n] =

B∑

l=−B

bi,le
j 2π

N nl, n = 0, 1, 2, · · ·N − 1

fl[n] = ej 2π
N nl, l = 0, 1, 2, · · · ,max {A,B} (39)

We call it as fractional lower order time-frequency auto-
regressive moving average (FLO -TFARMA) process, where
M , L, A and B are the orders of the model, and M and
L are the order in time domain, A and B are the order in
frequency domain (the bandwidth of the model are [−A,A]
and [−B,B]), ai[n] and bi[n] are the parameters of the FLO
-TFAR model, the numbers are as high as N(M + L + 1),
ai,l and bi,l are basis expansion of the parameter functions,
the number of ai,l is M(2A + 1), the number of bi,l is
(L + 1)(2B + 1). When L = 0, B = 0, FLO - TFARMA
model will degrade into FLO-TFAR (M , A) model, and if
A = 0, B = 0, it will degrade into FLO-TFMA (M , L)
model. fl[n] is the basis functions, u(n) is a stationary white
noise SαS process, γ is its dispersion coefficient(γ = 1).

1) FLO-TFMA Time-Frequency Representations: The α
spectrum of the α stable distribution process is defined as

Sα(z) =


X[n],

q∑

i=−q

X(n− i)zi




= γ

[
(
1
z
)
<α−1>]

[H(z)]<α−1> (40)

When inserting z = ejω into the equation (40), α spectrum
on the unit circle is calculated as

Sα(ejω) = γH(ejω) · [H(ejω)]
<α−1>

= γ
∣∣H(ejω)

∣∣α (41)

When Z transformation with respect to both sides of the
equation (38) is computed, we obtain

H[Z] =
1 +

L∑
i=1

bi[n]Z−i

1 +
M∑
i=1

ai[n]Z−i

=
B(Z)
A(Z)

(42)
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By inserting the equation (42) into the equation (40), FLO-
TFARMA model spectrum estimation of a SαS process X[n]
can be defined as

Sα(n, k) = γ

∣∣∣∣∣∣∣∣

1 +
L∑

i=1

bi[n]e−j 2π
N ik

1 +
M∑
i=1

ai[n]e−j 2π
N ik

∣∣∣∣∣∣∣∣

α

= γ

∣∣∣∣∣∣∣∣∣

1 +
L∑

i=1

B∑
l=−B

bi,le
−j 2π

N (ik−nl)

1 +
M∑
i=1

A∑
l=−A

ai,le−j 2π
N (ik−nl)

∣∣∣∣∣∣∣∣∣

α

(43)

For getting ai,l and bi,l of FLO-TFARMA model parameters,
we solve the parameters ai,l of FLO-TFAR model, and then
solve the parameters bi,l of FLO - TFMA model.

2) FLO-TFAR parameters estimation: If both sides of the
equation (38) are multiplied by x<P−1>[n − i′] and taken
expectation, it can be written as

M∑

i′=0

ai[n]E
{
x[n− i′]x<P−1>[n− i′]

}

=
L∑

i′=0

bi[n]E
{
U [n− i′]x<P−1>[n− i′]

}
(44)

A simplified fractional lower order covariance is defined in
[21], it simplifies to equation (44), and then we can get

M∑

i′=0

A∑

l′=−A

ai′,l′Cx[n− i′, i− i′]ej 2π
N nl′

=
L∑

i′=0

B∑

l′=−B

bi′,l′CU,x[n− i′, i− i′]ej 2π
N nl′ (45)

where Cx[n− i′, i− i′]∆=E
{
x[n− i′]x<P−1>[n− i′]

} ∆=
E

{
x[n− i′]|x[n− i′]|P−2

X∗[n− i′]
}

is auto-covariance
function of x[n],

CU,x[n − i′, i − i′]∆=E
{
U [n− i′]x<P−1>[n− i′]

} ∆=
E

{
U [n− i′]|x[n− i′]|P−2 · x∗[n− i′]

}
is cross-covariance

of x[n] and U [n], N points of discrete Fourier transform
(DFT) with respect to both sides of the equation (45) can be
expressed as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′)

=
L∑

i′=0

B∑

l′=−B

bi′,l′λU,x[i− i′, l − l′]e−j 2π
N i′(l−l′) (46)

λx[i− i′, l − l′]∆=
N−1∑
n=0

Cx[n− i′, i− i′]e−j 2π
N nl′

λU,x[i− i′, l − l′]∆=
N−1∑
n=0

CU,x[n− i′, i− i′]e−j 2π
N nl′ (47)

where λx[i − i′, l − l′] and λU,x[i − i′, l − l′]are similar to
Cohen-class time-frequency distribution expected ambiguity

function (EAF) based on the second-order correlation func-

tion Ax[i, l]∆=
N−1∑
n=0

RX [n, i]e−j 2π
N nl, its auto-correlation is re-

placed by auto-covariance, it can be named as fractional order
discrete expect ambiguity function (FLO-EAF), it represents
statistical covariance of the time shift and frequency shift in
time-frequency domain. When i ≥ A, x[n], U [n] are statisti-
cally independent from each other and CU,x[n− i′, i− i′] = 0,
the equation (46) can be written as

M∑

i′=0

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = 0

M∑

i′=1

A∑

l′=−A

ai′,l′λx[i− i′, l − l′]e−j 2π
N i′(l−l′) = −λx[i, l]

A + 1 ≤ i ≤ A + M − L ≤ l ≤ L (48)

The equation (48) can be written as

Γa = −θ or a = −Γ−1θ (49)

where Γ is (2L+1)M×(2L+1)M Toeplitz-block matrix, a =
[a1

T , a2
T , · · · , aM

T ]T , am = [ai,−L, ai,−L+1, · · · , ai,L]T ,
θ = [θA+1

T , θA+2
T , · · · θA+M

T ]
T

.
The equation (49) has (2L + 1)M independent equations,

and the required parameters ai′,l′ are (2L+1)M . The lengths
of θ and a are (2L+1)M , and through the solution of Toeplitz
matrices using equation (49), we can obtain the vector a and
FLO - TFAR model parameters ai,l.

3) FLO-TFMA parameters estimation: A SαS distribution
signal y[n] can be produced by SαS noise distribution U [n]
through causal linear time-varying (LTV) system (TFMA), we
can also obtain it when U [n] is passed through a TFARMA
system and then through a TFAR model system. Then, we
can take advantage of the observation sequence x[n] that is
discussed in Section 5.2 with the help of TFAR model filter
to obtain TFMA process y[n], this whole process can be
expressed as

y[n] =
L∑

i=0

bi[n]U [n− i] =
L∑

i=0

B∑

l=−B

bi,l[n]ej 2π
N nlU [n− i]

(50)

The both sides of the equation (50) are multiplied by
x<P−1>[n − i′] and taken expectation, then, N points of
discrete Fourier transform (DFT) with respect to both sides
of the equation (50) can be written as

L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′]e−j 2π
N i′(l−l′) = λy[i, l]

0 ≤ i ≤ L −B ≤ i ≤ B (51)

When LB << N , phase factor e−j 2π
N i′(l−l′) ≈ 1, it can be

expressed as

L∑

i′=0

B∑

l′=−B

bi′,l′ [n]λU,y[i− i′, l − l′] = λy[i, l]

0 ≤ i ≤ L −B ≤ i ≤ B (52)
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According to the method in section 5.2, the equation (49) is
written as Toeplitz matrix form Γb = θ, and then the model
parameters bi,l are solved.

However, U [n] and λU,y[i − i′, l − l′] are unknown from
the observations of a random signal x[n], in that way, we
cannot evaluate bi,l through the above method. We can use
improved fractional lower order complex time-frequency spec-
trum (FLO-CTFC) algorithm to calculate FLO-TFMA coeffi-
cient bi,l[17], where, the second order correlation is replaced
by fractional low-order covariance.

4) Application review: We will study the performances of
the TFAR, TFMA and TFARMA, the proposed FLO-TFAR,
FLO-TFMA and FLO-TFARMA, they are applied to estimate
the time frequency representations of the synthetic signal x
(the equation 18) in SαS stable distribution noise environ-
ment. The length of the signal N=256, its time frequency
representations are shown in Fig. 11-Fig. 13.

Fig. 11 The model time-frequency representations of the signal x

in SαS noise environment (a. TFAR (5, 1) model time-frequency
representation of the signal x; b. FLO- TFAR (5, 1) model time-
frequency representation of the signal)

5) Remarks: The results show that TFAR (5, 1) model
time-frequency spectrum is a failure in Fig. 11.a, the overall

resolution of FLO-TFAR (5, 1) is poorer than that of
the nonparametric FLO-PWVD in Fig. 11.b. but it can better
suppress the cross term interference. TFMA (2, 2) method
failed in Fig. 12.a, and FLO-TFMA (2, 2) spectrum is very
poor in Fig. 12.b. Finally, TFARMA (2, 2, 1, 2) model method
cannot work in SαS noise environment in Fig. 13.a, but
FLO-TFARMA (2, 2, 1, 2) model time-frequency spectrum
exhibits better resolution than FLO-TFAR and FLO-TFMA in
Fig. 13.b, and it does not contain any cross terms as does
FLO-PWVD.

Fig. 12 The model time-frequency representations of the signal x

in SαS noise environment (a. TFMA (2, 2) model time-frequency
representation of the signal x; b. FLO- TFMA (2, 2) model time-
frequency representation of the signal)

The improved FLO-TFAR, FLO-TFMA and FLO-
TFARMA methods are effective for slowly time-varying
signals, and they are free from cross-term interference. The
timeCfrequency resolution of the FLO-TFAR and FLO-TFMA
methods are relatively low, and FLO-TFARMA method
illustrates better resolution. In addition, the complicated
algorithm for estimating model parameters makes FLO-
TFARMA method computationally demanding. Therefore,
some works will be made to improve the time-frequency
resolution and model parameter estimation process for
practical fault signal analysis.
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Fig. 13 The model time-frequency representations of the signal x in SαS noise environment (a. TFARMA (2, 2, 1, 2) model time-frequency
representation of the signal x; b. FLO- TFARMA (2, 2, 1, 2) model time-frequency representation of the signal)

Fig. 14 The conventional time-frequency representations of the outer race fault signal in α stable distribution environment (a. The
conventional STFT time-frequency representation; b. The conventional PWVD time-frequency representation; c. The conventional CWD
time-frequency representation; d. The conventional adaptive kernel time-frequency representation; e. The TFAR model time-frequency
representation; f. The TFARMA model time-frequency representation)
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V. APPLICATION SIMULATIONS

The impulse of the outer race fault signals in the vibration
position of the drive end accelerometer, the fan end accelerom-
eter and the base accelerometer is generated because of the lo-
cal defects of rolling element bearings, as shown Fig. 5.d and
Table. 1. The fault signals are non-Gaussian and non-stationary
α stable distribution because of the presence of impulses.
α stable distribution noises are added to the fault signals
in the experiment, setting α=0.8, MSNR=20 dB, and letting
N=2400. The conventional time-frequency distribution meth-
ods including STFT, PWVD, CWD, the adaptive kernel time-

frequency method, TFMA, TFARMA model time-frequency
method, and the improved lower order time-frequency dis-
tribution methods including FLO-STFT, FLO-PWVD, FLO-
CWD, the FLO-adaptive kernel time-frequency method, FLO-
TFMA and FLO-TFARMA model time-frequency method are
applied to analyze the vibration signal of a bearing with an
artificially seeded defect on outer race in the position of DE
in α stable distribution environment. FLO-TFMA (2, 2) and
FLO-TFARMA (2, 2, 1, 2) model time-frequency spectrum
methods are used to analyze the signals in the experiment.
The results are shown in Fig. 14 and Fig. 15.

Fig. 15 The new time-frequency representations of the outer race fault signal in α stable distribution environment (a. The FLO-STFT
time-frequency representation; b. The FLO-PWVD time-frequency representation; c. The FLO-CWD time-frequency representation; d. The
FLO-adaptive kernel time-frequency representation; e. The FLO-TFAR model time-frequency representation; f. The FLO-TFARMA model
time-frequency representation;)
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Table II The comparison of various FLO-time-frequency distribution methods

Methods Advantages Disadvantages Application to fault Diagnosis
FLO-STFT time-frequency Free from cross-terms, Low time-frequency resolution Revealing the time-frequency

distribution Low computational complexity, structure of the fault signals as
Definite physical meaning a preprocessing tool

FLO-WVD time-frequency High time-frequency resolution Serious cross-terms interference Analyzing the fault signals after
distribution getting the signals structure

FLO-Cohen class time-frequency Suppressed cross-terms Reduced time-frequency resolution, Analyzing the fault signals after
distribution compared with FLO-WVD method certain cross-term interference getting the signals structure

FLO-adaptive kernel time-frequency Suppressed cross-terms, improved High computationally complex Suitable to the computational
distribution timeCfrequency resolution complexity fault signals

FLO-ARMA time-frequency Free from cross-terms High computational complexity, Suitable to analyzing the slowly
distribution low time-frequency resolution time-varying fault signals

STFT time-frequency representation of the outer race fault
signal is shown in Figure. 14.a, Fig. 14.b is the PWVD time-
frequency distribution, CWD method time-frequency repre-
sentation is shown in Fig. 14.c, the adaptive kernel time-
frequency representation is in Figure. 15.d, Figure. 15.e and
Figure. 15.f respectively are TFAR model time-frequency rep-
resentation and TFARMA model time-frequency distribution.
The results show that the conventional time-frequency methods
fail in α stable distribution environment. FLO-STFT time-
frequency representations of the outer race fault signal in
Figure. 15.a show the shock pulse is mainly distributed in
low-frequency band from 0 Hz to 4000 Hz, and the transient
harmonic vibration components of about 600 Hz, 2800 Hz and
3500 Hz dominate frequency-domain. Its vertical resolution is
bad, the fault characteristic frequency cannot be seen. FLO-
PWVD time-frequency representations in Fig. 15.b have a
good vertical resolution, but there are serious cross terms,
which render it not conducive to observe. FLO-CWD method
preferably restrains the cross-term interference in Fig. 15.c, it
can be seen clearly that the gap regularly changes between
the impact, the interval between the impulses A, B, C, D, E
and F is approximately 30ms, the interval corresponds to the
characteristic frequency of outer race as 33.333Hz. We can
also know the interval between A, B, C, D, E and F is about
30ms from FLO-adaptive kernel time-frequency representation
in Figure. 15.d, the impact frequency band expanded into 0-
6000 Hz because of its poor lateral resolution. The results
show that the transient harmonic vibration components are
600Hz, 2800Hz and 3500Hz from the FLO-TFAR model time-
frequency representation in Fig. 15.e, but its vertical resolution
is bad, so we cannot see the effect of the time interval.
However, FLO-TFARMA model time-frequency distributions
in Fig. 15.f show the interval between the impulses A, B, C, D,
E and F is approximately 30ms, as well as that the dominant
frequency of 600Hz, 2800Hz and 3500Hz, FLO-TFARMA has
certain ability in the horizontal and vertical, but the overall
resolution is low.

The simulations show that the improved methods have their
respective advantages and disadvantages as shown in this
paper. The fractional lower order short time Fourier transform
time-frequency representation has low computational com-
plexity and definite physical meaning, but the time-frequency

resolution is low, hence it is suitable to analyze the non-
stationary machinery fault signals whose local stationary is
larger. The fractional lower Wigner-ville time-frequency rep-
resentation has high time-frequency resolution, however, there
are serious cross-terms interference. The fractional lower order
pseudo Wigner-Ville time-frequency representation added win-
dow function and the different kernel function fractional low-
order Cohen class time-frequency distribution can suppress
certain cross-term interference, but it leads to reduced the
time-frequency resolution. The fractional lower order adap-
tive kernel time-frequency representation can suppress cross-
term interference, and effectively improve the time-frequency
resolution, but the computational complexity is higher. The
fractional lower order ARMA model time-frequency repre-
sentation has no interference of cross-terms, but the time-
frequency resolution is low, hence it is suitable for analyzing
the changing slowly non-stationary machinery fault signals.
The methods are summarized in Table 2. In real applications,
several methods can be selected to analyze the fault signals
according to their specific characteristics.

VI. CONCLUSIONS

The paper has presented an accurate statistical parameter
model SαS distribution for bearing fault signals diagnosis.
The time-frequency analysis methods are key tools for ma-
chinery fault diagnosis, they can be used to identify the
constituent components and time variation of the signals. We
have presented FLO-STFT, FLO-WVD, FLO-PWVD, FLO-
CWD, FLO-AKTFD and FLO-ARMA time-frequency analy-
sis methods based on SαS stable distribution statistical model.
The methods have better performances than the conventional
methods including STFT, WVD, PWVD, CWD, AKTFD and
ARMATFD. The traditional methods fail in SαS stable distri-
bution environment, but the proposed methods can regularly
work in the noise environment, which shows robustness. The
proposed time-frequency analysis methods are used to analyze
the bearing fault signals, they have respective advantages and
disadvantages, the FLO-STFT method has low computational
complexity and low resolution. FLO-WVD has better reso-
lution, but there are serious cross terms. The FLO-PWVD
and FLO-CWD methods suppress the cross-term interference
through adding the window function, but they still suffer from
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cross-term interference. The FLO-AKTFD methods could be
effective to improve time-frequency resolution and suppress
cross-terms. The FLO-TFARMA model method is free from
cross-term interference, however, the timeCfrequency resolu-
tion is not as high as expected. The improved time-frequency
analysis method is applied to the bearing fault diagnosis, which
can better get fault features of the signals. In the actual bearing
fault diagnosis analysis, we can use the above several kinds
of comprehensive methods to analyze together, and take their
respective advantages to comprehensive judgment, and hence
better results can be obtained.
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