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Abstract—In this paper, we propose a delayed fractional-order
congestion control model which is more accurate than the original
integer-order model when depicting the dual congestion control
algorithms. The presence of fractional orders requires the use
of suitable criteria which usually make the analytical work so
harder. Based on the stability theorems on delayed fractional-
order differential equations, we study the issue of the stability
and bifurcations for such a model by choosing the communication
delay as the bifurcation parameter. By analyzing the associated
characteristic equation, some explicit conditions for the local
stability of the equilibrium are given for the delayed fractional-
order model of congestion control algorithms. Moreover, the
Hopf bifurcation conditions for general delayed fractional-order
systems are proposed. The existence of Hopf bifurcations at the
equilibrium is established. The critical values of the delay are
identified, where the Hopf bifurcations occur and a family of
oscillations bifurcate from the equilibrium. Same as the delay,
the fractional order normally plays an important role in the
dynamics of delayed fractional-order systems. It is found that
the critical value of Hopf bifurcations is crucially dependent on
the fractional order. Finally, numerical simulations are carried
out to illustrate the main results.

Index Terms—Congestion control algorithm, fractional-order
congestion control algorithm model, Hopf bifurcation, stability.

I. INTRODUCTION

FRACTIONAL calculus and its applications to physics,
biology and engineering have become a subject of intense

research activities. It has been found that dynamical equations
using fractional derivatives are useful and more accurate in
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the mathematical modeling of real world phenomena arising
from several interdisciplinary fields, such as diffusion and
wave propagation [1], electromagnetic waves [2], viscoelastic
liquids [3], dielectric polarization [4], control [5], and biology
[6]. As a result of growing applications, the study of dynamics
of fractional-order systems has attracted considerable interest
of many researchers and numerous important results have been
reported, including the stability [7], bifurcations [8], chaos [9],
and synchronization [10].

With the rapid development of the Internet, the congestion
control mechanism is a focus of interest to many researchers
in the past few years [11]−[13] since the seminal work
[14]. One of the important properties of congestion control
algorithms is the stability. Sufficient conditions for stability
are given for congestion control systems [15]−[18]. However,
it is found in [19], [20] that some common AQM (active queue
management) schemes coupled with the current congestion
avoidance TCP (transmission control protocol) algorithm may
lose the local stability due to an increase in delays or capacity,
or a decrease in the number of connections. The loss of
stability causes some nonlinear dynamical behaviors such as
chaos and bifurcation. Therefore, in addition to investigation
of stability, the Hopf bifurcation and control have also begun
to draw much attention from researchers [21]−[26].

Unlike integer-order derivatives that are local operators,
fractional-order derivatives are non-local integro-differential
operators [27]. As such, they can be used to represent mem-
ory effects and long-range dispersion processes. In the last
decade, fractional-order models have been an active field of
research both from a theoretical and applied perspective. For
instance, the resistance-capacitance-inductance (RLC) inter-
connect model of a transmission line is a fractional-order
model [28]. Heat conduction can be more adequately modeled
by fractional-order models than by their integer order counter-
parts [29]. In biology, it has been shown that the membranes
of cells of biological organism have a fractional-order elec-
trical conductance [30]. In economics, it is known that some
financial systems can display fractional-order dynamics [31].

There have been many results on Hopf bifurcations for a
variety of delayed integer-order congestion control systems
recently [21]−[26]. However, to the best of our knowledge,
few studies of Hopf bifurcations for delayed fractional-order
congestion control systems have been, reported. It should be
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mentioned that the qualitative theory of Hopf bifurcations
for the case of fractional-order dynamical systems has not
completely settled yet. Thus, the Hopf bifurcation theory in
fractional-order dynamical systems is still an open problem.
In this paper, we will establish some bifurcation conditions for
delayed fractional-order dynamical systems.

Motivated by the above discussions, this paper is devoted
to investigating the stability and bifurcations for a delayed
fractional-order congestion control model. The sufficient con-
ditions for the stability of the equilibrium are given for the
delayed fractional-order congestion control model. The Hopf
bifurcation conditions are proposed for delayed fractional-
order systems when the delay is chosen as the bifurcation
parameter. Then, the critical values of the delay are identi-
fied in the delayed fractional-order congestion control model,
where Hopf bifurcations occur and a family of oscillations
bifurcate from the equilibrium. It is worth mentioning that
the observations in this paper can help to design the Hopf
bifurcation of congestion control systems with the desired
bifurcation point via adjusting the delay and fractional-order.

The paper is organized as follows. In Section II, some
preliminaries on delayed fractional-order systems are sum-
marized. In Section III, a delayed fractional-order model
of fair dual congestion control algorithms is proposed. In
Section IV, by analyzing the associated characteristic equation,
the stability condition is derived for the delayed fractional-
order congestion control model. The existence of the Hopf
bifurcation is established when the communication delay is
chosen as the bifurcation parameter. In Section V, numerical
simulations are given to illustrate the results. Finally, the
conclusions are drawn in Section VI.

II. PRELIMINARIES

Generally speaking, there are three definitions of fractional
derivative, i.e., the Grünwald-Letnikov fractional derivative,
Riemann-Liouville fractional derivative, and Caputo fractional
derivative [27]. Due to taking on the same form as integer
order differential on the initial conditions, which has well-
understood physical meanings and has more applications in
engineering, here we only discuss the Caputo derivative which
is defined as follows:

C
a Dα

t f(t) =
1

Γ(n− α)

∫ t

a

(t− τ)n−α−1f (n)(τ)dτ (1)

where n−1 < α < n, n ∈ N, and Γ(·) is the Gamma function.
The symbol α denotes the value of the fractional order that is
usually chosen in the range 0 < α ≤ 1 in engineering.

The Laplace transform of the Caputo fractional derivative
(1) at a = 0 is given by

L {C
0 Dα

t f(t)} = sαF (s)−
n−1∑

k=0

sα−k−1f (k)(0). (2)

If f (k)(0) = 0, k = 0, 1, . . . , n − 1, then L {C
0 Dα

t f(t)} =
sαF (s).

A class of n-dimensional linear fractional-order systems
with multiple time delays can be represented in the following
form [32]:

dα1x1

dtα1
= a11x1(t− τ11) + a12x2(t− τ12)

+ · · ·+ a1nxn(t− τ1n)
dα2x2

dtα2
= a21x1(t− τ21) + a22x2(t− τ22)

+ · · ·+ a2nxn(t− τ2n)
...

dαnxn

dtαn
= an1x1(t− τn1) + an2x2(t− τn2)

+ · · ·+ annxn(t− τnn) (3)

where 0 < αi ≤ 1 for i = 1, 2, . . . , n, and the notation
dαi

dtαi

is chosen as the Caputo fractional derivative (1). The initial
values xi(t) = φi(t) are given for −τmax ≤ t ≤ 0, i =
1, 2, . . . , n, where τmax = max1≤i,j≤n{τij}.

Next, we introduce some stability results on the delayed
fractional-order system (3). The stability of the zero solution
of system (3) depends on the distribution of roots of the
associated characteristic equation (4), as shown at the bottom
of this page.

Theorem 1 [32]: The zero solution of system (3) is
Lyapunov globally asymptotically stable if all the roots of the
characteristic equation (4) have negative real parts.

Remark 1: If αi = 1, i = 1, 2, . . . , n , then the character-
istic equation of (3) is reduced to the characteristic equation of
delay differential equations. If τij = 0, i, j = 1, 2, . . . , n
and αi = 1, i = 1, 2, . . . , n, then the characteristic equation
of (3) is reduced to det (sI − A) = 0, where the coefficient
A = (aij)n×n. This coincides with the definition of the
characteristic equation for ordinary differential equations.

Corollary 1 [32]: Suppose that τij = 0, i, j =
1, 2, . . . , n and αi = α ∈ (0, 1], i = 1, 2, . . . , n. If all
the roots of the characteristic equation det (sI − A) = 0
satisfy | arg(s)| > απ/2, then the zero solution of system (3)
is Lyapunov globally asymptotically stable.

Corollary 1 is the Matignon criterion (Theorem 2 of [33]).
Corollary 2 [32]: If αi = α ∈ (0, 1], i = 1, 2, . . . , n, all

the eigenvalues λs of A satisfy | arg(s)| > απ/2 and the

———————————————————————————————————————————————————–

det




sα1 − a11e
−sτ11 −a12e

−sτ12 · · · −a1ne−sτ1n

−a21e
−sτ21 sα2 − a22e

−sτ22 · · · −a2ne−sτ2n

...
...

. . .
...

−an1e
−sτn1 −an2e

−sτn2 · · · sαn − anne−sτnn


 = 0 (4)
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characteristic equation (4) has no purely imaginary roots for
any τij > 0, i, j = 1, 2, . . . , n, then the zero solution of
system (3) is Lyapunov globally asymptotically stable.

There are a number of substantial differences between
integer-order dynamical systems and fraction-order dynamical
systems. Therefore, most results on the delayed integer-order
model of congestion control algorithms cannot be simply
extended to the case of fractional order one. As is well known,
limit cycles of integer-order dynamical systems are isolated
periodic oscillations, whose appearance can be explained us-
ing the Hopf bifurcation theory [34]. However, to the best
of our knowledge, there is no Hopf bifurcation qualitative
theory developed thoroughly for the case of fractional-order
dynamical systems yet, and thus, the Hopf bifurcation theory
in fractional-order dynamical systems is still an open problem.

The Hopf bifurcation conditions for fractional-order dy-
namical systems without delays were proposed based on
numerical simulations, but were not proved in [35], [36].
There are seldom reports about the Hopf bifurcation of delayed
fractional-order dynamical systems.

In this paper, we are interested in the stability and bifurca-
tion in delayed fractional-order congestion control systems.

III. MODEL DESCRIPTIONS

The dual algorithms are a subset of a larger class of con-
gestion control mechanisms. In these algorithms the resource
determines its congestion measure or price, by an averaging
process at the link, which is then communicated back to the
end-systems. To facilitate a control theoretic study, caricatures
of rate control or window-based algorithms are often con-
verted into delayed integer-order differential equations [19],
[37]−[39]. It has been found from the study of such integer-
order equations that some congestion control mechanisms may
lose the local stability with an increase in delays or capacity,
or a decrease in the number of connections, which is triggered
by the Hopf bifurcation.

Raina [19] introduced the following dynamical representa-
tion of a fair dual congestion control algorithm:

d

dt
p(t) = κp(t)(x(t− τ)− C) (5)

where the variable p is the price at the link, τ is the com-
munication delay, κ > 0 is the gain parameter, and the scalar
C > 0 is the capacity. In addition, x(t) = D(p(t)) with D(p),
p ≥ 0, a non-negative, continuous and strictly decreasing
demand function, and D(p) can be expressed by (w/p)1/γ ,
where w > 0 may be viewed as a willingness to pay parameter
of the user, and γ > 0 is the fair allocation parameter [40].

The integer-order dual algorithm model (5) has been exten-
sively studied regarding its bifurcation and control by many
researchers in the past years [19], [23], [41]. The local Hopf
bifurcation was studied for model (5) by choosing the non-
dimensional parameter κ as the bifurcation parameter [19].
Explicit conditions were derived to ensure the onset of stable
limit cycles as model (5) just loses its local stability, and
the direction of Hopf bifurcations was also determined by
applying the normal form theory and center manifold theorem.
On the other hand, unlike the work in [19] where the gain

parameter κ was considered as the bifurcation parameter, the
authors used the communication delay τ as the bifurcation
parameter [23]. It was demonstrated that model (5) loses its
stability and a Hopf bifurcation occurs when the delay τ passes
through a critical value. Moreover, the bifurcating periodic
solution was calculated by means of the perturbation method.
A hybrid control strategy using both the state feedback and
parameter perturbation was applied to control the undesirable
Hopf bifurcation of model (5) [41]. It was shown that this pro-
posed method can delay the onset of bifurcations effectively,
and thus extend the stable range in the parameter space and
improve the performance of congestion control systems.

Compared with the classical integer-order models,
fractional-order models are characterized by infinite memory.
Congestion control systems include round trip propagation
delays. Therefore, the incorporation of a memory term
into a congestion control model is an extremely important
improvement. Moreover, the fractional-order congestion
control models are more accurate than the original integer-
order models when modeling some congestion control
algorithms. Thus, studying fractional-order congestion control
models is of great significance.

In this paper, we replace the usual integer-order derivative
by the fractional-order Caputo derivative (1) in the fair dual
congestion control algorithm model (5). The new model is then
described by the following delayed fractional-order differential
equation:

dαp

dtα
= κp(t)(x(t− τ)− C) (6)

where α ∈ (0, 1].
Suppose that p∗ is a non-zero equilibrium of (6). Then it

satisfies the following equation:

D(p∗) = C. (7)

It should be underlined that p∗ is an equilibrium of model
(6) with the fractional order α if and only if it is an equilibrium
of the integer-order model (5).

IV. STABILITY AND BIFURCATION ANALYSIS

In this section, we investigate the stability and bifurcation of
the delayed fractional-order model (6) of fair dual congestion
control algorithms.

A. Stability Analysis
Let u(t) = p(t) − p∗ and the equilibrium p∗ is shifted to

the origin. The linearized model of (6) is
dαu

dtα
= κp∗D′(p∗)u(t− τ) (8)

with the characteristic equation

sα − κp∗D′(p∗)e−sτ = 0. (9)

Theorem 2: If [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ ,
where k ∈ Z, then the equilibrium p∗ of model (6) is Lyapunov
globally asymptotically stable.

Proof: Let s = iω = ω(cos π/2 + i sinπ/2)(ω > 0) be a
root of (9). Then

ωα(cos
απ

2
+ i sin

απ

2
)− κp∗D′(p∗)(cos ωτ − i sinωτ) = 0.
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Separating the real and imaginary parts gives

ωα cos
απ

2
− κp∗D′(p∗) cos ωτ = 0

ωα sin
απ

2
+ κp∗D′(p∗) sin ωτ = 0. (10)

Taking square on the both sides of (10) and summing them
up give

(ωα)2 + [κp∗D′(p∗)]2
−2ωακp∗D′(p∗) cos(απ

2 + ωτ) = 0.
(11)

Notice that κ > 0, p∗ > 0, and D′(p∗) < 0. It is
straightforward to obtain that

(ωα)2 + [κp∗D′(p∗)]2 − 2ωακp∗D′(p∗) cos(
απ

2
+ ωτ)

≥ (ωα)2 + [κp∗D′(p∗)]2 + 2ωακp∗D′(p∗)
= [ωα + κp∗D′(p∗)]2.

Obviously, if [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ ,
then (11) has no positive real roots, meaning that (9) has no
purely imaginary roots with positive imaginary parts.

Let s = iω = −ω[cos π/2+ i sin(−π/2)] (ω < 0) be a root
of (9). It is similar to prove that (9) has no purely imaginary
roots with negative imaginary parts under the assumption
[−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ .

Thus, if [−κp∗D′(p∗)]1/α 6= [(2k + 1)π − απ/2]/τ , then
the characteristic equation (9) has no purely imaginary roots.

On the other hand, it is easy to see that the coefficient A of
the linearized model (8) has one eigenvalue s = κp∗D′(p∗) <
0 satisfying | arg(s)| > απ/2.

Applying Corollary 2, the equilibrium p∗ of model (6) is
Lyapunov globally asymptotically stable. ¥

Remark 2: Although nonlinear dynamics of integer-order
congestion control systems were investigated in [19], [23],
[37]−[41], to date, the theoretical results on the stability with
respect to the system parameters and order have not been
reported yet for fractional-order congestion control systems.

For illustration of Theorem 2, we consider the fractional-
order model (6) with κ = 0.02, C = 40, τ = 1, α = 0.9,
and the proportional fairness [19] with γ = 1, w = 1. The
equilibrium can be found by solving (7), yielding p∗ = 0.025.
It is easy to verify that the condition [−κp∗D′(p∗)]1/α 6=
[(2k + 1)π − απ/2]/τ holds. Fig. 1 shows that the state p(t)
of model (6) is globally asymptotically decreasing toward the
equilibrium p∗.

B. Hopf Bifurcation

It is well known that the Hopf bifurcation is the birth of a
limit cycle from an equilibrium in integer-order dynamical sys-
tems, when the equilibrium changes the stability via a pair of
purely imaginary eigenvalues. However, the qualitative theory
of Hopf bifurcations for fractional-order dynamical systems
has not been constructed yet. In this Subsection, we study the
local bifurcation of the delayed fractional-order model (6) by
regarding the delay τ as the bifurcation parameter.

Fig. 1. Equilibrium p∗ = 0.025 of model (6) is Lyapunov globally asymp-
totically stable when κ = 0.02, C = 40, τ = 1, γ = 1, w = 1, α = 0.9,
and the initial condition p0 = 0.1.

First, we put forward the Hopf bifurcation conditions for
general delayed fractional-order systems. Consider the follow-
ing n-dimensional fractional-order system with delay:

dαxi

dtα
= fi(x1, x2, . . . , xn; τ), i = 1, 2, . . . , n (12)

where 0 < α ≤ 1 and the time delay τ ≥ 0. According to
Corollary 2, we propose the conditions of (12) to undergo
a Hopf bifurcation at the equilibrium x∗ = (x∗1, x

∗
2, . . . , x

∗
n)

when τ = τ0 as follows:
1) All the eigenvalues of the coefficient matrix of the

linearized system of (12) satisfy | arg(s)| > απ/2.
2) The characteristic equation of (12) has a purely imaginary

roots ±iω0 when τ = τ0.

3)
dRe[s(τ)]

dτ

∣∣
τ=τ0

> 0, where Re{·} denotes the real part

of the complex eigenvalue.
Remark 3: The condition 1) guarantees the stability of

the equilibrium x∗ of the delayed fractional-order system (12)
when τ = 0. It is well known that the Routh-Hurwitz criterion
is the necessary and sufficient condition for the stability of the
equilibrium of integer-order dynamical systems. It should be
noted that this criterion can also ensure the stability of the
equilibrium of fractional-order dynamical systems.

Remark 4: The condition 3) is the transversality condition
of Hopf bifurcations of the delayed fractional-order system
(12).

Remark 5: The Hopf bifurcation conditions for fractional-
order dynamical systems without time delays by the observa-
tions from numerical simulations were proposed in [35], [36].
We formulate the conditions of Hopf bifurcation of fractional-
order dynamical systems with time delays in this paper.

Lemma 1: If τ = τk, k = 0, 1, . . . , then (9) has a purely
imaginary roots ±iω0(ω0 > 0), where

τk =
(2k + 1)π − απ

2

[−κp∗D′(p∗)]1/α

ω0 = [−κp∗D′(p∗)]1/α. (13)
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Proof: From the proof of Theorem 2, we can see that (9)
has a pair of purely imaginary roots when [−κp∗D′(p∗)]1/α =
[(2k + 1)π − απ/2]/τ . Therefore, the conclusion follows
immediately. ¥

Remark 6: Lemma 1 illustrates that the proposed condition
2) of Hopf bifurcation is reached for the delayed fractional-
order model (6).

Lemma 2: Let s(τ) = ρ(τ) + iω(τ) be the root of (9)
satisfying ρ(τk) = 0 and ω(τk) = ω0 > 0, k = 0, 1, . . . .
Then,

dRe[s(τ)]
dτ

∣∣
τ=τk

> 0.

Proof: Substituting s(τ) into (9) and differentiating both
sides of the resulting equation with respect to τ , we obtain

αsα−1 ds

dτ
+ κp∗D′(p∗)e−sτ [τ

ds

dτ
+ s] = 0.

Thus
ds

dτ
=

−κp∗D′(p∗)se−sτ

αsα−1 + κp∗D′(p∗)τe−sτ
.

Note that s(τ) = ρ(τ) + iω(τ) = r(cos θ + i sin θ) is the
root of (9). Then we have

ds

dτ
=

−κp∗D′(p∗)[ρ + iω]e−ρτ [cos(ωτ)− i sin(ωτ)]
α[ρ + iω]α−1+κp∗D′(p∗)τe−ρτ [cos(ωτ)− i sin(ωτ)]

.

From this we obtain
dRe[s(τ)]

dτ
= −κp∗D′(p∗)e−ρτ P (τ)M(τ) + Q(τ)N(τ)

M2(τ) + N2(τ)

in which
P (τ) = ρ cos ωτ + ω sinωτ

Q(τ) = ω cos ωτ − ρ sinωτ

M(τ) = αrα−1 cos(α− 1)θ + κp∗D′(p∗)τe−ρτ cos ωτ

N(τ) = αrα−1 sin(α− 1)θ − κp∗D′(p∗)τe−ρτ sinωτ.

Replacing τ by τk, it follows that:

dRe[s(τ)]
dτ

∣∣∣∣
τ=τk

= −κp∗D′(p∗)P (τk)M(τk) + Q(τk)N(τk)
M2(τk) + N2(τk)

= −κp∗D′(p∗)
α(ω0)α sin[ω0τk + (α− 1)

π

2
]

M2(τk) + N2(τk)

where
P (τk) = ω0 sin(ω0τk)
Q(τk) = ω0 cos(ω0τk)

M(τk) = α(ω0)α−1 cos(α− 1)
π

2
+ κp∗D′(p∗)τk cos(ω0τk)

N(τk) = α(ω0)α−1 sin(α− 1)
π

2
− κp∗D′(p∗)τk sin(ω0τk).

It can be seen from (13) that ω0τk = (2k + 1)π − απ/2,
implying that sin [ω0τk + (α − 1)π/2] = 1. Moreover, note
that −κp∗D′(p∗) > 0. Therefore

dRe[s(τ)]
dτ

∣∣∣∣
τ=τ+

k

> 0.

The conclusion follows. ¥

Remark 7: Lemma 2 implies that the transversality con-
dition 3) of Hopf bifurcations is satisfied for the delayed
fractional-order model (6).

Theorem 3: For model (6), the following results hold.
1) The equilibrium p∗ of model (6) is asymptotically stable

for τ ∈ [0, τ0), and unstable when τ > τ0.
2) Model (6) undergoes a Hopf bifurcation at the equilib-

rium p∗ when τ = τ0.
Proof: Note that the coefficient matrix of the linearized

(8) has the eigenvalue λ = κp∗D′(p∗) < 0 satisfying the
inequality | arg(s)| > απ/2. Thus, the condition 1) of Hopf
bifurcations is satisfied for model (6).

1) It is easy to see that all the roots of (9) with τ = 0
have negative real parts. From Lemma 1, the definition of τ0

implies that all the roots of (9) have negative real parts for
τ ∈ [0, τ0). The conclusion in Lemma 2 indicates that (9) has
at least one root with positive real part when τ > τ0. Thus,
the conclusion follows.

2) From Remarks 6 and 7, we know that the conditions 2)
and 3) of Hopf bifurcations are satisfied for model (6). Hence,
a Hopf bifurcation occurs at the equilibrium p∗ when τ = τ0.¥

Remark 8: The Hopf bifurcation theory in fractional-
order dynamical systems is still an open problem. The Hopf
bifurcation conditions for fractional-order systems without
delays are proposed based on the observations from numerical
simulations [35], [36]. However, there are few results on the
Hopf bifurcation of delayed fractional-order systems.

Remark 9: The integer-order congestion control model
(5) may display a Hopf bifurcation when the delay τ passes
through the critical values [23]. However, the corresponding
fractional-order model (6) will not produce the bifurcation
at the same values, which will be confirmed by numerical
simulations later.

Remark 10: The order and system parameter were chosen as
the bifurcation parameters in fractional-order neural network
models in [8]. In this paper, we use the delay τ as the
bifurcation parameter in fractional-order congestion control
models.

V. NUMERICAL SIMULATIONS

In this section, we present some numerical results to illus-
trate the analytical results obtained in the previous section,
displaying the Hopf bifurcation phenomenon of the delayed
fractional-order model (6) of fair dual congestion control
algorithms. Simulations are performed using the method intro-
duced in [42] to find the solution of delayed fractional-order
differential equations. This method is the improved version
of the Adams-Bashforth-Moulton algorithm and is proposed
based on the predictor correctors scheme.

For a consistent comparison, we discuss model (6) with the
same system parameters used in [23]: κ = 0.01, C = 50, and
the proportional fairness [19] with D(p) = 1/p. From (7),
model (6) has a unique non-zero equilibrium p∗ = 0.02. For
model (6) with α = 1 (integer-order model (5)), it follows
from Theorem 1 in [23] that

τ0 = 3.1416, ω0 = 0.5.

The dynamical behavior of the integer-order model (5) is
illustrated in Figs. 2−4. From Theorem 1 in [23], it is shown
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Fig. 2. The equilibrium p∗ = 0.02 of the integer-order model (5) is
asymptotically stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 1, and τ = 2.95 < τ0 = 3.1416.

Fig. 3. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
the integer-order model (5), where κ = 0.01, C = 50,D(p) = 1/p, the
initial condition p0 = 0.1, and τ = 3.25 > τ0 = 3.1416.

Fig. 4. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
the integer-order model (5), where κ = 0.01, C = 50,D(p) = 1/p, the
initial condition p0 = 0.1, and τ = 3.45 > τ0 = 3.1416.

Fig. 5. The equilibrium p∗ = 0.02 of model (6) with α = 0.92 is
asymptotically stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 0.1, and τ = 3.45 < τ0 = 3.6037.

that when τ < τ0, the trajectory converges to the equilibrium
p∗ (see Fig. 2), while as τ is increased to pass through τ0, p∗

loses its stability and a Hopf bifurcation occurs (see Figs. 3
and 4).

Next, using our Theorem 3, we display the Hopf bifurcation
for the fractional-order model (6) with α∈(0, 1). For example,
by choosing α = 0.92, we can apply (13) in Lemma 1 to obtain

τ0 = 3.6037, ω0 = 0.4708.

Note that the fractional-order model (6) with α = 0.92 has
the same equilibrium as that of the integer-order model (5), but
the critical value τ0 increases from 3.1416 to 3.6037, implying
that the onset of Hopf bifurcations is delayed.

When α = 0.92, we choose τ = 3.45 < τ0 = 3.6037, which
is the same value as that used in Fig. 4. According to Theorem
3, we conclude that instead of having a Hopf bifurcation, the

fractional-order model (6) with α = 0.92 converges to the
equilibrium p∗ = 0.02, as shown in Fig. 5.

When α = 0.92, we choose τ = 3.8 > τ0 = 3.6037. From
Theorem 3, the equilibrium p∗ = 0.02 is unstable, as shown
in Fig. 6. It can be seen that when τ passes through the critical
value τ0 = 3.6037, a Hopf bifurcation occurs (see Figs. 5 and
6).

When α = 0.92, we choose τ = 3.45 < τ0 = 3.6037, which
is the same value as that used in Fig. 4. According to Theorem
3, we conclude that instead of having a Hopf bifurcation, the
fractional-order model (6) with α = 0.92 converges to the
equilibrium p∗ = 0.02, as shown in Fig. 5.

When α = 0.92, we choose τ = 3.8 > τ0 = 3.6037. From
Theorem 3, the equilibrium p∗ = 0.02 is unstable, as shown
in Fig. 6. It can be seen that when τ passes through the critical
value τ0 = 3.6037, a Hopf bifurcation occurs (see Figs. 5 and
6).
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Fig. 6. A periodic oscillation bifurcates from the equilibrium p∗ = 0.02 of
model (6) with α = 0.92, where κ = 0.01, C = 50,D(p) = 1/p, the initial
condition p0 = 0.1, and τ = 3.8 > τ0 = 3.6037.

It can be shown that if we choose a smaller value of α,
then the fractional-order model (6) may not have a Hopf
bifurcation even for the larger values of τ . This indicates that
the order α can delay the onset of Hopf bifurcations, thus
guaranteeing a stationary sending rate for the larger values
of τ . For example, when choosing α = 0.86, the fractional-
order model (6) converges to the equilibrium p∗ = 0.02 if
τ < τ0 = 4.0092, as shown in Fig. 7.

Fig. 7. Equilibrium p∗ = 0.02 of model (6) with α = 0.86 is asymptotically
stable, where κ = 0.01, C = 50,D(p) = 1/p, the initial condition p0 = 0.1,
and τ = 3.9 < τ0 = 4.0092.

The effect of the order α on the values of τ0 and ω0 is
shown in Table I. The critical value τ0 decreases clearly with
the order α, which means that the value of τ0 is sensitive to
the change of the order α.

VI. CONCLUSION

In this paper, we have extended a delayed integer-order
model of dual congestion control algorithms to a fractional-

order counterpart. We have considered the stability and bifur-
cations of network congestion control in the presence of com-
munication delays and fractional order. A stability criterion
for the delayed fractional-order congestion control model has
been established. We have also proposed some conditions of
Hopf-type bifurcations for delayed fractional-order systems.
The delayed fractional-order congestion control model can
exhibit a Hopf bifurcation (i.e., periodic oscillations appear)
as the delay achieves a critical value which can be determined
exactly. It is observed that an increase in the order may lead
to a decrease of the critical value. The observations allow
us to design Hopf bifurcations of congestion control systems
with the desired bifurcation points by adjusting the delays and
order.

TABLE I
VALUES OF ω0 AND τ0 FOR (6) WITH κ = 0.01, C = 50, D(P ) =
1/P , AND DIFFERENT VALUES OF α : α = 1, 0.9, 0.8, 0.7, 0.6,

0.5, 0.4, 0.3, 0.2, AND 0.1

Fractional order of model (6) ω0 τ0

α = 1 0.5 3.1416

α = 0.9 0.4629 3.7324

α = 0.8 0.4204 4.4832

α = 0.7 0.3715 5.4968

α = 0.6 0.3150 6.9818

α = 0.5 0.2500 9.4248

α = 0.4 0.1768 14.2172

α = 0.3 0.0992 26.9155

α = 0.2 0.0313 90.4779

α = 0.1 9.7656E−004 3.0561E + 003
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