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Robust Attitude Control for Reusable Launch
Vehicles Based on Fractional Calculus and

Pigeon-inspired Optimization
Qiang Xue and Haibin Duan, Senior Member, IEEE

Abstract—In this paper, a robust attitude control system based
on fractional order sliding mode control and dynamic inversion
approach is presented for the reusable launch vehicle (RLV)
during the reentry phase. By introducing the fractional order
sliding surface to replace the integer order one, we design robust
outer loop controller to compensate the error introduced by
inner loop controller designed by dynamic inversion approach. To
take the uncertainties of aerodynamic parameters into account,
stochastic robustness design approach based on the Monte Carlo
simulation and Pigeon-inspired optimization is established to
increase the robustness of the controller. Some simulation results
are given out which indicate the reliability and effectiveness of
the attitude control system.

Index Terms—Attitude control, fractional calculus, pigeon-
inspired optimization, reusable launch vehicle (RLV), sliding
mode control.

I. INTRODUCTION

W ITH the necessity of the development of reusable
space transportation system as well as the hypersonic

weapons with high penetration ability and kill efficiency,
reusable launch vehicle (RLV) technology becomes a hot
research field all over the world [1]. Unpowered gliding
reentry vehicle is one of the implementations which have the
aerodynamic configuration with high lift-to-drag ratio (L/D).
During the reentry phase, the flight envelope ranges from over
Mach 20 to Mach 1 and altitude ranges from 100 km to 20 km
[2]. When reusable launch vehicle maneuvers in the so called
near space, the flow field around the vehicle would present
the hypersonic flow dynamic characteristics, such as viscous
interference, thin shock layer, low density effect and so on [3].
Thus, complex coupling between state variables and control
variables, high nonlinear terms and strongly time varying
characteristics take into the dynamics of reentry vehicles.

Facing with these challenges, the guidance and control
technology becomes one of the key issues in the development
process of reusable launch vehicles [4]. Guidance subsystem
leads the vehicle to steer the reference trajectory or predict
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trajectory onboard, while control subsystem stabilizes the atti-
tude and takes attitude maneuver to track guidance commands.
By introducing advanced control theories such as adaptive
control theory, dynamic inversion approach and sliding mode
control, the robustness and effectiveness of the flight control
systems were obviously improved [4], compared with some
classical design techniques such as gain-scheduling methods.
Recently, the dynamic inversion technique was applied into
the flight control law design process, especially in reentry
flight control and high angle of attack maneuver, demonstrated
several advantages [5]. However, it required a precise model to
avoid the error introduced by inversion, which might strongly
influence the control qualities. The saturation of actuators is
also an additional serious problem which should be avoided.
However, another nonlinear control method named sliding
mode control approach as a robust control technique has
been widely applied in the flight control law design which
could tolerate the uncertainties of models and disturbance.
Unfortunately, there are some problems when applying the
sliding mode method directly. For example, the order of the
sliding mode method would be high when the controlled model
is complex, which might make the algorithm difficult to be
employed.

Fractional calculus theory, which is about integration and
differential with non-integer orders, has a rapid development
with an increasing attention since hundred years ago. More and
more attention focuses on the application of fractional calculus
in the modeling and control in engineering viewpoint [6].
Some designs based on fractional calculus for flight control
system also present the possibility of the application and the
advantages compared with traditional integer control approach
[7]. In general, the fractional order of integral or derivation
is more flexible and widely used than the integer order. To
introduce the fractional calculus in these control method,
the performance of closed-loop systems could probably be
improved and control inputs could be reduced. Therefore,
applying fractional calculus in reusable launch vehicle attitude
control would be a beneficial trial.

In fact, the uncertainties of aerodynamic coefficients are
also necessary to be taken into consideration in the process
of control law design. It demands that the control system
could tolerate these uncertainties of the coefficients and
endure any dispersion. In order to improve the robustness of
control system, the stochastic robustness method based on
Pigeon-inspired optimization is introduced. By this procedure,
the optimal parameters of the controller have been obtained
and the controller is optimal in terms of stochastic robustness.
Therefore, a combined and robust control structure based
on stochastic robustness design method is established to
overcome these challenges mentioned previously. In this
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structure, the dynamic inversion is applied to design the inner
loop controller, while the fractional sliding mode approach is
applied to design the outer loop controller. The fractional slid-
ing mode approach could weak the integral action and decrease
the control input. It could also smooth the time history of
controlled variables. The stochastic robustness method based
on PIO algorithm allows us to obtain the optimal controller
in terms of stochastic robustness. The organization of this
paper is as follows. In Section II, the description of the
reusable launch vehicle model is presented. In Section III,
the control system including control law and control allocation
algorithm is established. The control law is based on fractional
sliding mode control (FSMC) and dynamic inversion (DI)
approach, and the control allocation algorithm is a commonly
used algorithm. In Section IV, the stochastic robustness design
method based on a new swarm intelligent algorithm, i.e.,
pigeon-inspired optimization is introduced, based on which
we design stochastic robustness optimal controller. In Section
V, we give the design examples and simulation results to
demonstrate the robustness and effectiveness of the control
system, and the influence of different fractional orders of
FSMC to the closed-loop system is discussed.

II. ATTITUDE CONTROL PROBLEM

A. Mathematical Model of Attitude Dynamics
The mathematical equations of reentry dynamics consist of

the translational motion associated with flight path variables
and the rotational motion associated with attitude angles which
used to be aerodynamic angles during the reentry phase. The
three-degree-of-freedom model of unpowered reentry attitude
dynamics is given out as follows [8]:

α̇ = q − (p cos α + r sinα) tan β − γ̇ cos µ/ cos β

− χ̇ cos γ sinµ/ cos β (1)

β̇ = p sinα− r cos α− γ̇ sinµ + χ̇ cos γ cos µ (2)
µ̇ = p cos α/ cos β + r sinα/ cos β

+ χ̇(sin γ + tanβ sinµ cos γ) + γ̇ tanβ cos µ (3)

where α is the angle of attack, β is the angle of sideslip, µ is
the bank angle, γ is the flight-path angle, and χ is the airspeed
heading angle.

The rotational dynamic equation is as follows:

ṗ = IlpMx + InpMz +
(Iy − Iz)Iz − I2

xz

IxIz − I2
xz

qr

+
(Ix − Iy + Iz)Ixz

IxIz − I2
xz

pq (4)

q̇ = ImqMy +
Iz − Ix

Iy
pr − Ixz

Iy
(p2 − r2) (5)

ṙ = IlrMx + InrMz +
Ix(Ix − Iy) + I2

xz

IxIz − I2
xz

pq

− (Ix − Iy + Iz)Ixz

IxIz − I2
xz

qr (6)

Ilp =
Iz

IxIz − I2
xz

, Inp =
Ixz

IxIz − I2
xz

, Imq =
1
Iy

Ilr =
Ixz

IxIz − I2
xz

, Inr =
Ix

IxIz − I2
xz

(7)

where ~w = (p, q, r)T are the roll rate, the pitch rate and the
yaw rate, ~M = (Mx,My,Mz)are the moments acting on the
vehicle, consisting of aerodynamic trim moments and control
torques generated by aerodynamic surfaces and reaction con-
trol systems.

I =

[
Ix −Ixy −Ixz

−Ixy Iy −Iyz

−Ixz −Iyz Iz

]

which is the inertia matrix.

B. Improved Aerodynamic Model of RLV
The aerodynamic moments generated by the aerodynamic

control surfaces could be calculated by the following standard
formulation:

L̄ = Cl,totalqbarSLref (8)

M = Cm,totalqbarSLref (9)

N = Cn,totalqbarSLref (10)

where L̄ is the roll aerodynamic moment, M is the pitch
aerodynamic moment, N is the yaw aerodynamic moment,
qbar is the dynamic pressure, S is the reference area, Lref is
the reference length, Cl,total is the non-dimensional roll mo-
ment coefficient, Cm,total it he non-dimensional pitch moment
coefficient, and Cn,total is the non-dimensional yaw moment
coefficient.

The reusable launch vehicle used in this study is configured
with several aerodynamic surfaces: four body flaps placed at
the tail, two elevons and one rudder. In order to simplify
the relationship between the motion channel and the control
surface deflection, nominal control surfaces are introduced to
replace the actual aerodynamic surfaces with the transforma-
tional matrix as follows [9]:



0 0 0 0 0.5 −0.5 0
0 0 0 0 0.5 0.5 0
0 0 0 0 0 0 1

0.5 0.5 0 0 0 0 0
0 0 0.5 0.5 0 0 0

0.5 −0.5 0.5 −0.5 0 0 0







δLLBP

δLRBP

δULBP

δURBP

δWL

δWR

δr




=




δa

δe

δr

δf+

δf−
δ∆f




.

(11)

As for our specific developed reentry vehicle, the orig-
inal formulations of the moment coefficients are shown in
(12)−(14) [10].

Cl,total = Clβ,basicβ + ∆Cl,BF + ∆Cl,rudder

+ ∆Cl.Elevon + ∆Clβ,GEβ + ∆Clβ,LGβ

+ ∆Clp
pb

2V
+ ∆Clr

rb

2V
(12)

Cm,total = Cm,basic + ∆Cm,BF + ∆Cm,Elevon

+ ∆Cm,rudder + ∆Cm,GE + ∆Cm,LG + ∆Cmq
qc

2V
(13)

Cn,total = Cnβ,basicβ + ∆Cn,BF + ∆Cn,elevon

+ ∆Cn,rudder + ∆Cnβ,GEβ + ∆Cnβ,LGβ

+ ∆Cnp
pb

2V
+ ∆Cnr

pr

2V
. (14)

According to the relations between the actual surfaces and
nominal surfaces, and converting the aerodynamic coefficients
to the aerodynamic derivatives by Ci,j = ∆Ci,j/∆δj , the
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developed formulation of the moment coefficients could be
obtained as follows:

Cl,total = Clβ,basicβ + Clδa
δa

+ Clδrδr + Clδ∆f
δ∆f + Clp

pb

2V
+ Clr

rb

2V
(15)

Cm,total = Cm,basic + Cmδe
δe

+ Cmδf+δf+ + Cmδf−δf− + ∆Cmq
qc

2V
(16)

Cn,total = Cnβ,basicβ + Cnδaδa

+ Cnδr
δr + Cnp

pb

2V
+ Cnr

pr

2V
(17)

where δ = [δa δe δr δf+ δf− δ∆f ] is deflection vector of the
aerodynamic control surfaces ranking as the aileron, elevator,
rudder, body flap positive deflection, body flap negative de-
flection and body flap differential deflection.

These aerodynamic coefficients and derivatives mentioned
above could be obtained from the complete set of the coef-
ficient and derivative lookup table vs Mach and AOA using
interpolation algorithm.

C. Attitude Control Strategy

In the design process of reentry flight attitude control
law, adequate engineering practices present the feasibility
and effectiveness of the application of time-scale separation
principle to deal with the flight state variables [5], [11]. The
aerodynamic angles including angle of attack and slip slide
angle and bank angle are regarded as the slow variables of the
outer loop, while the angle rates around body axis are regarded
as the fast variables of the inner loop. Dual loop control
framework could be designed for the inner loop and outer loop:
the function of inner loop controller is to track the angular rate
commands generated by the outer loop, while the outer loop
controller operates to control aerodynamic commands.

In this study, dynamic inversion approach is chosen to
design the dual loop controller and obtain three channel
decoupling model of aerodynamic angles, and sliding mode
technique improved by fractional calculus is used to design
to provide the desired time-scale separation [2]. Thus, when
guidance commands are given out from guidance subsystem,
the required total control torque would be generated by the
control law. The control torque allocation algorithm presents
the mapping relation between the control torque and control
surface deflections. By combining control law and control
torque allocation, the complete attitude control system is
established. The framework of the whole system is shown in
Fig. 1.

Fig. 1. The diagram of control system.

III. IMPLEMENTATION OF THE ATTITUDE CONTROL
SYSTEM

A. Fractional Calculus and Approximate Form of Fractional
Calculus Operator

The Caputo’s definition of the fractional derivative of order
α with respect to variable t and initial point at t = 0 is as
follows [12]:

0D
α
t f(t) =

1
Γ(1− δ)

∫ t

0

f (m+1)(τ)

(t− τ)δ
dτ

(α = m + δ; m ∈ Z; 0 < δ ≤ 1) (18)

where Γ(·) is the gamma function [12]:

Γ(ξ) =
∫ ∞

0

e−mmξ−1dm. (19)

The Grunwald-Letnikov’s fractional derivative of order m
is defined as follows:

aDm
t f(t) = lim

h→∞
h−m

t−m
h∑

j=0

(−1)j

(
m
j

)
f(t− jh) (20)

where h is the step size, a is the lower limit of integral and t is
the upper limit of integral. The Laplace transform of fractional
derivative is given as follows:

L{0Dα
t f(t)} = sαF (s)− [0Dα−1

t f(t)]t=0 (21)

L{0D−α
t f(t)} = s−αF (s). (22)

One of the digital implement of fractional derivative is
using the discrete filter to approximate it which can be easily
applied in engineering practice [13]. In this study, the directly
discretization method is conducted to obtain the equivalent dis-
crete filter. Firstly, apply Tustin mapping function to transform
the fractional derivative from S domain to Z domain:

s±α = (w(z−1))
±α

(23)

where w(·) is the Tustin mapping function as follows:

w(z−1) =
2
T

1− z−1

1 + z−1
. (24)

Then the CFE (continued fraction expansion) method is
used to obtain the rationalization result of the fractional
derivative model in Z domain. The whole procedure of Tustin
with CFE method is as follows [14]:

D±α
E (z)=

(
1
T

)±α

CFE{(1− z−1)
±α}p,q =

(
1
T

)±α
Pp(z−1)
Qq(z−1)

(25)

B. Dual Loop Control Law Designed by Nonlinear Dynamic
Inversion Approach

According to time-scale separation principle, control law
could be designed separately for the fast loop variables and
the slow loop variables. It is assumed that the dynamic of fast
loop is so fast that does not affect the responses of slow loop.

For the fast loop, a first-order desired dynamic could be
chosen as follows [2], [5]:

[
ṗ
q̇
ṙ

]

des

= Kw

( [
pc

qc

rc

]
−

[
p
q
r

] )
. (26)
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Combined with the rotational dynamic (4)−(6), the required
total torque could be calculated as follows:

[
Mx

My

Mz

]
=

[
Ilp 0 Inp

0 Imq 0
Ilr 0 Inr

]−1

×




[
ṗ
q̇
ṙ

]

des

−




(Iy−Iz)Iz−I2
xz

IxIz−I2
xz

qr + (Ix−Iy+Iz)Ixz

IxIz−I2
xz

pq
Iz−Ix

Iy
pr − Ixz

Iy
(p2 − r2)

Ix(Ix−Iy)+I2
xz

IxIz−I2
xz

pq − (Ix−Iy+Iz)Ixz

IxIz−I2
xz

qr





 .

(27)

Subtracting the basic aerodynamic moments and damping
aerodynamic moments from the total required torque, the
required control torque is obtained as in (28).

Mc = M −Ma. (28)

The fast loop control law allows the angular rates to be able
to track the angular rate commands, while the angular rate
commands are generated by the slow loop. The characteristics
of fast loop dynamic such as the bandwidth depend on
parameter Kw.

For the slow loop, the rotational motion equations about
aerodynamic angles could be rearranged in vector form as
follows [2]:




α̇

β̇
µ̇


 =

[− cos α tanβ 1 − sinα tanβ
sinα 0 − cos α

cos α/ cos β 0 sin α/ cos β

][
p
q
r

]
+

[
vα

vβ

vµ

]

= L

[
p
q
r

]
+

[
vα

vβ

vµ

]
(29)

[
vα

vβ

vµ

]
=

[ −1/ cos β(γ̇ cos µ + χ̇ cos γ sinµ)
χ̇ cos µ cos γ − γ̇ sinµ

γ̇ cos µ tanβ + χ̇(cos γ sinµ tanβ + sin γ)

]
.

(30)

When β satisfies the inequality β 6= ±90◦, matrix L is
invertible, while in the reentry flight phase this condition is
always satisfied. Thus, assuming v is the virtual control input,
the fast loop input, i.e., angular rate commands could be
obtained as follows:

[
p
q
r

]

c

=

[0 sin α cos α cos β
1 0 sin β
0 − cos α sinα cos β

](
v −

[
vα

vβ

vµ

])
. (31)

According to time-scale separation principle, the fast loop
dynamic is so fast compared with the dynamic of the slow
loop which allows us to suppose that the angular rate is equal
to the angular rate command.

By introducing the dual loop control law, the three channels
have been decoupled and a linear system is obtained as
follows:




α̇

β̇
µ̇


 = v. (32)

C. Sliding Mode Control Design Based on Fractional Calcu-
lus

For the decoupling linear system about three aerodynamic
angle channels, a sliding mode control law based on fractional
calculus is designed to obtain the virtual control input v of
dual loop dynamic inversion law and compensating the error
generated by dynamic inversion approach.

First, define the attitude error as in (33), and choose the
fractional sliding surface function as in (34).

e = [αc − α βc − β µc − µ]T (33)

S = e + K · 0Dt
λe. (34)

The fractional exponential reaching law is chosen as fol-
lows:

0Dt
ηS = −κS − σ sign(S) (35)

where the parameters above are defined as:

κ = diag{κα, κβ , κµ}, σ = diag{σα, σβ , σµ}
κα, κβ , κµ > 0; σα, σβ , σµ > 0.

Combine (34) and (35), the virtual control input v could be
obtained.

Ṡ =
d

dt
(e + K · 0Dt

λe)

= ė + K · 0Dt
λ+1e = 0Dt

1−η(−κS − σ sign(S)) (36)

v=




α̇

β̇
µ̇




=




α̇c+kα0Dt
λ+1(αc−α) + 0Dt

1−η[καSα+σα sign(Sα)]
β̇c+kβ0Dt

λ+1(βc−β) + 0Dt
1−η[κβSβ+σβ sign(Sβ)]

µ̇c+kµ0Dt
λ+1(µc−µ) + 0Dt

1−η[κµSµ+σµ sign(Sµ)]




(37)

where S = [Sα Sβ Sµ]T . In the next, Dλ is used to replace
the description 0Dt

λ.

D. Control Allocation Algorithm
The control law designed above generates the required

control torque command to steer the guidance commands,
while the control torque is generated by vehicle’s control sur-
faces. For reentry vehicles, they always configure with hybrid
control surfaces including aerodynamic control surfaces and
reaction control systems (RCS). During early reentry phase,
both aerodynamic control surfaces and RCS are operated,
while pure aerodynamic control surfaces are operated during
final reentry phase. In this study, the terminal of reentry phase
is focused on and pure aerodynamic control surfaces are used
to generate all the control torques:

[
Mcx

Mcy

Mcz

]
= qSLrefC




δa

δe

δr

δf+

δf−
δ∆f




= qSLrefCδ (38)

where C is the control matrix with aerodynamic derivatives:

C =




Clδa
0 Clδr

0 0 Clδ∆f

0 Cmδe
0 Cmδf+ Cmδf− 0

Cnδa 0 Cnδr 0 0 0




(39)
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rank(C) = 3. (40)

The reference control allocation strategy is chosen in [8],
[15]:

δc,rtd = Q−1CT [CQ−1CT ]
−1 Mc

qSLref
. (41)

If the rated deflection of aerodynamic surfaces is saturated,
the saturated value is chosen to be the deflection command,
although it is important to try to avoid these conditions.

IV. PRINCIPLES OF PIO ALGORITHM AND STOCHASTIC
ROBUSTNESS DESIGN

A. PIO Algorithm Description and Principles
PIO algorithm, firstly proposed by Duan and Qiao, is a

swarm intelligence algorithm inspired by the behavior of
homing pigeons [16]. As presented in [16], homing pigeons
are considered to go home by three homing tools: magnetic
field, sun and landmarks. The homing behaviors depending on
different homing tools are mapping to the update formulations
in this new evolution algorithm. The detailed description of
PIO is as follows [16]:

Individual in the pigeon swarm is initialized with initial
velocity Vi and the initial position Xi in D-dimension research
space randomly, while the position is the vector formed by
parameters to be optimized and the velocity is the vector
to update the position vector. Each individual is related to
a value named the fitness value which is the cost function
and always depends on the position of the individual. The
evolution algorithm is to find the best position which has the
maximum or minimum cost function. Two operators, map and
compass operator and landmark operator, are introduced to
model the two homing behaviors as mentioned early. At the
early moment, pigeons are supposed to adjust their direction to
the destination by the map shaped in their brains and compass.
Thus, in this map and compass operator, the pigeon is trend to
the global best position by the update formulations as follows:

Vi(t) = Vi(t− 1) · e−Rt + rand · (Xg,best −Xi(t− 1)) (42)

Xi(t) = Xi(t− 1) + Vi(t) (43)

where R is defined as the map and compass factor, Xg,best

denotes the global best position among all individual in current
iteration, rand signifies a random number.

With pigeons approaching to the destination, they switch
their homing tool from map and compass to landmark, which
means the landmark operator starts. In the landmark operator,
pigeons are halved in every iteration generation. The pigeons
which are familiar to the landmark fly straight to the desti-
nation, while others are supposed to follow the ones which
are familiar to the landmark. In this model, the destination
is regarded as the center of all pigeons in current iteration
generation and can be calculated by weighted average of the
position, the formulation is as follows:

Xc(t) =

∑
Np

Xk(t) · fitness(Xk(t))
∑
Np

fitness(Xk(t))
. (44)

In addition, the number of pigeons would be updated as
follows:

Np(t) =
Np(t− 1)

2
. (45)

In this operator, the update formulation of the position of
pigeons can be written as follows:

Xi(t) = Xi(t− 1) + rand · (Xc(t)−Xi(t− 1)). (46)

Several papers indicate the effectiveness and robustness to
solve some optimization problems or converted optimization
problem, such as target detection, air robot path planning
problem, UAVs formation cooperative control problem and so
on [16]−[19]. In this study, PIO algorithm is selected to design
parameters of the controller using stochastic robustness design
method.

B. Stochastic Robustness Design Method
Due to the difficulties of the application of classical robust

control theoretics in engineering practice, R.F. Stengel et al.
introduced the concept of stochastic robustness and estab-
lished a new robust control design method named stochastic
robustness analysis and design (SRAD) in 1990s, which has
been widely applied in engineering practice especially in flight
control area in the past years [20]−[22].

In Stengel’s theoretic, for linear time invariant (LTI) sys-
tem, suppose that there are uncertain parameters v ∈ Q, the
instability probability can be defined as follows [23]:

Pinstability = 1−
∫

v∈Q,g(v)≤0

f(x)dx (47)

where g(v) = [σ1(v)σ2(v) · · ·σn(v)]T is the vector formed
by the real parts of the eigenvalues of closed-loop system,
f [g(v)] is the combined probability density distribution func-
tion. In practical application, the instability probability can
be calculated by sample frequency calculation instead of the
integral calculation, i.e.,

∫

v∈Q,g(v)≤0

f(x)dx = lim
N→∞

M [gmax(v) ≤ 0]
N

∣∣∣∣
v∈Q

(48)

where gmax(v) = max{σ1(v), σ2(v), . . . , σn(v)}, M(·) is the
number of the maximum real part of eigenvalue less than zero
in N times estimates. Moreover, the stochastic robust stability
and stochastic robust performance can be introduced.

Similar to the definition of the instability probability, the
probability that the dynamic out of performance envelope or
the control variable saturated could be weighted summed to
describe the performance of the closed-loop system. The sum
is which named stochastic robustness cost function. When the
structure of the controller has been chosen, the parameters of
the controller can be designed by optimizing the cost function.
The optimal control law from the point of stochastic robustness
concepts is obtained.

For each performance demand, a two-valued indicator func-
tion is introduced to tell whether the closed-loop system
satisfies this requirement in once simulation:

I[G(v), C(d)] =
{

0, satified,
1, unsatified,

v ∈ Q (49)

where d is the parameters to be designed, Q is the value set
of uncertain parameters. Supposing that f(v) is the combined
probability density distribution function about v, the probabil-
ity that closed-loop system violate this performance demand
can be defined as follows [20]:

p =
∫

v∈Q
I[G(v), C(d)]f(v)dv. (50)
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In practical application, this integral can be approximately
calculated through Monte-Carlo simulation:

p̂ =
1
N

N∑

k=1

I[H(vk), G(d)] (51)

where N is the simulation times, and p̂ is the estimate of the
violate probability.

Synthesize all the performance violate probability and insta-
bility probability, the stochastic robustness cost function can
be defined as follows:

J (d) =
M∑

i=1

[wip̂i (d)] (52)

where wi is the weight, and M is the number of the indicators.
After the stochastic robustness cost function is defined, the

last step is to use an optimization method to optimize this
cost function. PIO algorithm introduced previously is applied
in this optimization procedure. So far, the main principle of
the stochastic robustness method has been presented.

V. SIMULATION RESULTS AND ANALYSIS

In this section, the simulation results of the closed-loop
system composed of the RLV and the controller designed
by stochastic robustness design method are presented. Firstly,
some simulation parameters setting are given out at the begin-
ning of this section.

The test flight condition of the reusable launch vehicle is
selected to give a design instance and evaluate the performance
of the controller. This flight condition is selected refer to the
flight envelope of the X-38. The flight condition selected is in
Table I.

TABLE I
THE SELECTED FLIGHT CONDITION

h (m) Ma γ dγ/dt χ dχ/dt

30 000 2.8 −5 0 0 0

The evaluation commands are: angle of attack 5 degree step
command, angle of side slip remains at the zero point, bank
angle −5 degree step command.

The uncertainties of aerodynamic coefficients are supposed
to subject to normal distribution, i.e.,:

v ∼ N(1, 0.152), Cij = vCij (53)

where Cij is the aerodynamic coefficients.
The design process goes for the different fractional order of

the fractional SMC to give a preliminary study of the influence
of the fractional orders. The parameters and performance
indicators of stochastic robustness design method are set as in
Table II, while the simulation times of Monte Carlo simulation
N = 50.

The parameters to be optimized are the control parameters:
d = [kw kα kβ kµ σα σβ σµ κα κβ κµ]T .

The parameters of PIO algorithm are set as follows: the
number of pigeon n = 20, the map and compass operator
R = 0.02, the iteration times of the map and compass operator
T1 = 30, the iteration times of landmark operator T2 = 5.

Case 1: In this case, the stochastic robustness design for
selected fractional order is focused on and the Monte-Carlo
simulation is carried out to evaluate the designed parameters
of the controller.

TABLE II
THE STABILITY AND PERFORMANCE METRICS

Index Weight Indicator Performance demand

1 8 I1 outputs convergence

2 0.1 I2 Regulation time at point 10% less than 1s

3 1 I3 Regulation time at point 10% less than 2s

4 1 I4 Overshoot less than 20%

5 0.1 I5 Overshoot less than 10%

6 1 I6 Deflection of aileron less than 40 deg

7 0.5 I7 Deflection of aileron less than 30 deg

8 1 I8 Deflection of elevator less than 40 deg

9 0.5 I9 Deflection of elevator less than 30 deg

10 1 I10 Deflection of rudder less than 40 deg

11 0.5 I11 Deflection of rudder less than 30 deg

12 1 I12 Deflection of body flap less than50 deg

13 0.5 I13 Deflection of body flap less than 40 deg

The fractional order of FSMC selected: λ = −0.8, η = 0.9.
The result of design parameter is:

d = [1.8359 1.0651 2.1960 1.0364 3.4948× 10−5

8.1261× 10−5 6.2807× 10−5 0.7458 1.2157 1.4024]

Fig. 2 shows the history of the stochastic robustness cost
function in the design process based on PIO algorithm. Then
the Monte-Carlo simulation goes for the closed loop system
with the designed control parameters. Fig. 3 is the simulation
results from which we can evaluate the robustness of the
control system. The time history of attitude angles shows
that they can steer the evaluation step command quickly and
robustly though angle of attack has a tolerant steady-state error.

Fig. 2. The fitness value curve of PIO algorithm.

From the simulation results, the controller based on FSMC
and DI can tolerate the uncertainties of aerodynamic parame-
ters through the stochastic robustness design process.

Case 2: In this case, the design results based on stochastic
robustness design method for the different fractional orders
are compared, from which we can find out the influence of
the fractional order in FSMC to the closed loop system.

Six groups of the fractional order are selected:

λ1 = −1, η1 = 0.9; λ2 = −0.9, η2 = 0.9
λ3 = −0.8, η3 = 0.9; λ4 = −0.7, η4 = 0.9
λ5 = −0.7, η5 = 1; λ6 = −1, η6 = 1.



XUE AND DUAN: ROBUST ATTITUDE CONTROL FOR REUSABLE LAUNCH VEHICLES BASED ON FRACTIONAL CALCULUS · · · 95

Fig. 3. Results of Monte Carlo simulation experiments.

These groups include different fractional order in the slid-
ing surface function and fractional reaching law, as well as
integral order sliding surface and reaching law. Through the
stochastic robustness design procedure above, we obtain the
optimal design parameters of the each controller with different
fractional orders and integral order. The simulations of these
closed-loop systems with different FSMC and SMC have been
carried out. Fig. 4 gives the compared results of these closed-
loop systems.

It should be noted that in these figures, symbol a represents
the fractional integral order, while symbol b represents the
fractional integral order. These compared results show how the

different fractional orders in FSMC influence the performance
of the closed loop system. For the group 1 to group 4, these
groups all have the same fractional order of the reaching law
and different fractional order of the sliding surface. The group
2 and group 3 have the similar performance, the response
of the attitude angle is smoother and faster which means a
shorter settling time and a smaller overshoot. Compared the
control surface deflection, the group 2 and group 3 have a
smaller control effectors but the group 1 and group 4 have
one aerodynamic surface saturated. With the above factors
combined, the group 2 and group 3 have more desirable
performance. By Comparing the group 3 with the group 6
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Fig. 4. Results of simulation experiments of different FSMC.

which has integral order sliding surface and reaching law,
we can see that the attitude angle response of group 3 is
smoother and faster than that of group 6. The control surface
deflection in the group 6 is smaller than that in the group
3. Comparing the group 1, group 4, group 5 and group 6,
we can see that the fractional order obviously influence the
control variables. So the optimal fractional order or integral
order in FSMC should been chosen by taking both the dynamic
characters and control effects into count. In this study, the
stochastic robustness design method for the different fractional
orders also influence the performance of these controllers. The
more credible mean to find the optimal fractional order in the

controller remains a question.

VI. CONCLUSIONS

In this paper, we have established a robust controller for
reusable launch vehicle based on fractional sliding mode tech-
nology and dynamic inversion approach. For the parameters
of the controller, stochastic robustness design method based
on PIO algorithm and Monte-Carlo simulations is applied to
obtain the optimal values. The influence of different fractional
order of the FSMC to the performance of closed loop system is
discussed. The experimental results validate the effectiveness
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and robustness of the combined robust controller when con-
sidering sufficient dispersion of aerodynamic coefficients. In
addition, the fractional orders in sliding mode method improve
the performance of the closed-loop system.

It should be pointed out that FSMCs with several different
fractional orders in our control law are designed to com-
pare the performance of the closed-loop systems. The direct
analysis to obtain the optimal fractional order in FSMC for
the closed-loop system has not been given out. In addition,
how to simply the algorithm and make it more convenient in
engineering is still a challenge. The more relative further work
and details would be conducted in these issues in the future.

REFERENCES

[1] E. Mooij, “Aerospace-plane flight dynamics: analysis of guidance and
control concepts,” Ph.D. dissertation, Delft University of Technology,
The Netherlands, 1998.

[2] A. J. Roenneke and K. H. Well, “Nonlinear flight control for a high-lift
reentry vehicle,” in Guidance, Navigation, and Control Conf., Guidance,
Navigation, and Control and Co-located Conf., Baltimore, MD, 1995,
pp. 1798−1805.

[3] H. X. Wu and B. Meng, “Review on the control of hypersonic flight
vehicles,” Adv. Mechan., vol. 39, no. 6, pp. 756−765, Nov. 2009.

[4] J. M. Hanson, “A plan for advanced guidance and control technology for
2nd generation reusable launch vehicles,” in AIAA Guidance, Naviga-
tion, and Control Conf. and Exhibit, Guidance, Navigation, and Control
and Co-located Conf. Monterey, California, USA, 2002, pp. 1−9.

[5] D. Ito, J. Georgie, J. Valasek, and D. T. Ward, “Reentry vehicle
flight controls design guidelines: dynamic inversion,” Technical Report
NASA/TP-2002-210771, Mar. 1, 2002.

[6] C. Y. Wang, Y. Luo, and Y. Q. Chen, “An analytical design of fractional
order proportional integral and [proportional integral] controllers for
robust velocity servo,” in Proc. 4th IEEE Conf. Industrial Electronics
and Applications (ICIEA 2009), Xi’an, China, 2009, pp. 3448−3453.

[7] B. C. Zhang, S. F. Wang, Z. P. Han, and C. M. Li, “Using fractional-
order PID controller for control of aerodynamic missile,” J. Astronaut.,
vol. 26, no. 5, pp. 653−656, Sep. 2005.

[8] R. J. Adams, J. M. Buffington, and S. S. Banda, “Design of nonlinear
control laws for high-angle-of-attack flight,” J. Guid. Contr. Dynam.,
vol. 17, no. 4, pp. 737−746, Jul. 1994.

[9] E. B. Jackson and C. I. Cruz, “Preliminary subsonic aerodynamic model
for simulation studies of the HL-20 lifting body,” Technical Report
NASA TM-4302, Sep. 1992.

[10] E. B. Jackson, C. I. Cruz, and W. A. Ragsdale, “Real-time simulation
model of the HL-20 lifting body,” Technical Report NASA TM-107580,
Aug. 1992.

[11] J. Reiner, G. J. Balas, and W. L. Garrard, “Flight control design
using robust dynamic inversion and time-scale separation,” Automatica,
vol. 32, no. 11, pp. 1493−1504, Nov. 1996.

[12] I. Podlubny, “Fractional-order systems and PIλDµ-controllers,” IEEE
Trans. Automat. Contr., vol. 44, no. 1, pp. 208−214, Jan. 1999.

[13] X. Yuan, H. Y. Zhang, and J. B. Yu, “Fractional-order derivative and
design of fractional digital differentiators,” Acta Electron. Sin., vol. 32,
no. 10, pp. 1658−1665, Oct. 2004.

[14] J. Y. Cao and B. G. Cao, “Digital realization and characteristics of frac-
tional order controllers,” Contr. Theor. Appl., vol. 23, no. 5, pp. 791−799,
Oct. 2006.

[15] W. T. Ma, Q. Z. Zhang, B. B. Shi, and C. Gao, “Robust control approach
for re-entry vehicle based on inversion model,” in Proc. 29th Chinese
Control Conf., Beijing, China, 2010, pp. 2005−2009.

[16] H. B. Duan and P. X. Qiao, “Pigeon-inspired optimization: a new swarm
intelligence optimizer for air robot path planning,” Int. J. Intell. Comput.
Cybernet., vol. 7, no. 1, pp. 24−37, Feb. 2014.

[17] H. B. Duan and X. H. Wang, “Echo state networks with orthogonal
pigeon-inspired optimization for image restoration,” IEEE Trans. Neural
Network. Learn. Syst., vol. 27, no. 11, pp. 2413−2425, Nov. 2016.

[18] H. B. Duan, H. X. Qiu, and Y. M. Fan, “Unmanned aerial vehi-
cle close formation cooperative control based on predatory escaping
pigeon-inspired optimization,” Sci. China Technol. Sci., vol. 45, no. 6,
pp. 559−572, Apr. 2015.

[19] B. Zhang and H. B. Duan, “Three-dimensional path planning for unin-
habited combat aerial vehicle based on predator-prey pigeon-inspired
optimization in dynamic environment,” IEEE/ACM Trans. Computat.
Biol. Bioinf., 2017, to be published, DOI:10.1109/TCBB.2015.2443789.

[20] L. R. Ray and R. F. Stengel, “Application of stochastic robustness
to aircraft control systems,” J. Guid. Contr. Dynam., vol. 14, no. 6,
pp. 1251−1259, Nov. 1991.

[21] C. I. Marrison and R. F. Stengel, “Design of robust control systems for
a hypersonic aircraft,” J. Guid. Contr. Dynam., vol. 21, no. 1, pp. 58−63,
Jan. 1998.

[22] Q. Wang and R. F. Stengel, “Robust nonlinear control of a hypersonic
aircraft,” J. Guid. Contr. Dynam., vol. 23, no. 4, pp. 577−585, Jul. 2000.

[23] S. T. Wu, Stochastic Robustness Analysis and Design for Guidance and
Control System of Winged Missile. Beijing: National Defense Industry
Press, 2010.

Qiang Xue is a master student at the School of
Automation Science and Electrical Engineering, Bei-
hang University, China. He received his bachelor
degree from Beihang University in 2015. He is a
member of BUAA Bio-inspired Autonomous Flight
Systems (BAFS) Research Group. His reserach inter-
ests include multiple UAVs cooperative control and
flight control.

Haibin Duan is a professor in the School of Au-
tomation Science and Electrical Engineering, Bei-
hang University, China. He received his Ph.D. de-
gree from Nanjing University of Aeronautics and
Astronautics in 2005. He is the head of BUAA
Bio-inspired Autonomous Flight Systems (BAFS)
Research Group. His research interests include mul-
tiple UAVs cooperative control, biological computer
vision and bio-inspired computation. Corresponding
author of this paper.


