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Constrained Fractional Variational Problems of
Variable Order

Dina Tavares, Ricardo Almeida, and Delfim F. M. Torres

Abstract—Isoperimetric problems consist in minimizing or
maximizing a cost functional subject to an integral constraint.
In this work, we present two fractional isoperimetric problems
where the Lagrangian depends on a combined Caputo derivative
of variable fractional order and we present a new variational
problem subject to a holonomic constraint. We establish neces-
sary optimality conditions in order to determine the minimizers
of the fractional problems. The terminal point in the cost integral,
as well as the terminal state, are considered to be free, and we
obtain corresponding natural boundary conditions.

Index Terms—Fractional calculus, fractional calculus of varia-
tions, holonomic constraints, isoperimetric constraints, optimiza-
tion, variable fractional order.

I. INTRODUCTION

MANY real world phenomena are better described by
noninteger order derivatives. In fact, fractional deriva-

tives have unique characteristics that may model certain dy-
namics more efficiently. To start, we can consider any real or-
der for the derivatives, and thus we are not restricted to integer-
order derivatives only. Secondly, they are nonlocal operators,
in opposite to the usual derivatives, containing memory. With
the memory property one can take into account the past of the
processes. This subject, called Fractional Calculus, although as
old as ordinary calculus itself, only recently has found numer-
ous applications in mathematics, physics, mechanics, biology
and engineering. The order of the derivative is assumed to
be fixed along the process, that is, when determining what
is the order α > 0 such that the solution of the fractional
differential equation Dαy(t) = f(t, y(t)) better approaches
the experimental data, we consider the order to be a fixed
constant. Of course, this may not be the best option, since
trajectories are a dynamic process, and the order may vary.
So, the natural solution to this problem is to consider the
order to be a function, α(·), depending on time. Then we
may seek what is the best function α(·) such that the variable
order fractional differential equation Dα(·)y(t) = f(t, y(t))
better describes the real data. This approach is very recent,
and many work has to be done for a complete study of the
subject (see, e.g., [1]−[5]).
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The most common fractional operators considered in the
literature take into account the past of the process: they are
usually called left fractional operators. But in some cases
we may be also interested in the future of the process, and
the computation of α(·) to be influenced by it. In that case,
right fractional derivatives are then considered. Our goal is
to develop a theory where both fractional operators are taken
into account, and for that we define a combined fractional
variable order derivative operator that is a linear combination
of the left and right fractional derivatives. For studies with
fixed fractional order see [6]−[8].

Variational problems are often subject to one or more con-
straints. For example, isoperimetric problems are optimization
problems where the admissible functions are subject to integral
constraints. This direction of research has been recently in-
vestigated in [9], where variational problems with dependence
on a combined Caputo derivative of variable fractional order
are considered and necessary optimality conditions deduced.
Here variational problems are considered subject to integral or
holomonic constraints.

The text is organized in four sections. In Section II we
review some important definitions and results about combined
Caputo derivative of variable fractional order, and present
some properties that will be need in the sequel. For more
on the subject we refer the interested reader to [3], [10],
[11]. In Section III we present two different isoperimetric
problems and we study necessary optimality conditions in
order to determine the minimizers for each of the problems.
We end Section III with an example. In Section IV we consider
a new variational problem subject to a holonomic constraint.

II. FRACTIONAL CALCULUS OF VARIABLE ORDER

In this section we collect definitions and preliminary results
on fractional calculus, with variable fractional order, needed
in the sequel. The variational fractional order is a continuous
function of two variables, α : [a, b]2 → (0, 1). Let x : [a, b] →
R. Two different types of fractional derivatives are considered.

Definition 1 (Riemann–Liouville fractional derivatives):
The left and right Riemann–Liouville fractional derivatives of
order α(·, ·) are defined respectively by

aD
α(·,·)
t x(t)

=
d

dt

∫ t

a

1
Γ(1− α(t, τ))

(t− τ)−α(t,τ)x(τ)dτ

and

tD
α(·,·)
b x(t)

=
d

dt

∫ b

t

−1
Γ(1− α(τ, t))

(τ − t)−α(τ,t)x(τ)dτ.
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Definition 2 (Caputo fractional derivatives): The left and
right Caputo fractional derivatives of order α(·, ·) are defined
respectively by

C
a D

α(·,·)
t x(t)

=
∫ t

a

1
Γ(1− α(t, τ))

(t− τ)−α(t,τ)x(1)(τ)dτ

and

C
t D

α(·,·)
b x(t)

=
∫ b

t

−1
Γ(1− α(τ, t))

(τ − t)−α(τ,t)x(1)(τ)dτ.

Of course the fractional derivatives just defined are linear
operators. The next step is to define a new fractional derivative,
combining the previous ones into a single one.

Definition 3: Let α, β : [a, b]2 → (0, 1) be the fractional
orders, and define the constant vector γ = (γ1, γ2) ∈ [0, 1]2.
The combined Riemann–Liouville fractional derivative of a
function x is defined by

Dα(·,·),β(·,·)
γ x(t) = γ1 aD

α(·,·)
t x(t) + γ2 tD

β(·,·)
b x(t).

The combined Caputo fractional derivative of a function x
is defined by

CDα(·,·),β(·,·)
γ x(t) = γ1

C
a D

α(·,·)
t x(t) + γ2

C
t D

β(·,·)
b x(t).

For the sequel, we also need the generalization of fractional
integrals for a variable order.

Definition 4 (Riemann–Liouville fractional integrals): The
left and right Riemann–Liouville fractional integrals of order
α(·, ·) are defined respectively by

aI
α(·,·)
t x(t) =

∫ t

a

1
Γ(α(t, τ))

(t− τ)α(t,τ)−1x(τ)dτ

and

tI
α(·,·)
b x(t) =

∫ b

t

1
Γ(α(τ, t))

(τ − t)α(τ,t)−1x(τ)dτ.

We remark that in contrast to the fixed fractional order case,
variable-order fractional integrals are not the inverse operation
of the variable-order fractional derivatives.

For the next section, we need the following fractional
integration by parts formulas.

Theorem 1 (Theorem 3.2 of [11]): If x, y ∈ C1[a, b], then
∫ b

a

y(t) C
a D

α(·,·)
t x(t)dt

=
∫ b

a

x(t) tD
α(·,·)
b y(t)dt +

[
x(t) tI

1−α(·,·)
b y(t)

]t=b

t=a

and
∫ b

a

y(t) C
t D

α(·,·)
b x(t)dt

=
∫ b

a

x(t) aD
α(·,·)
t y(t)dt−

[
x(t) aI

1−α(·,·)
t y(t)

]t=b

t=a
.

III. FRACTIONAL ISOPERIMETRIC PROBLEMS

Consider the set

D =
{

(x, t) ∈ C1([a, b])× [a, b] : CDα(·,·),β(·,·)
γ x(t)

exists and is continuous on [a, b]
}

endowed with the norm

‖(x, t)‖ := max
a≤t≤b

|x(t)|+ max
a≤t≤b

∣∣∣CDα(·,·),β(·,·)
γ x(t)

∣∣∣+ |t|.

Throughout the text, we denote by ∂iz the partial derivative
of a function z : R3 → R with respect to its i-th argument.
Also, for simplification, we consider the operator

[x]α,β
γ (t) :=

(
t, x(t), CDα(·,·),β(·,·)

γ x(t)
)

.

The main problem of the fractional calculus of varia-
tions with variable order is described as follows. Let L :
C1

(
[a, b]× R2

) → R and consider the functional J : D → R
of the form

J (x, T ) =
∫ T

a

L[x]α,β
γ (t)dt + φ(T, x(T )) (1)

where φ : [a, b] × R → R is of class C1. In the sequel, we
need the auxiliary notation of the dual fractional derivative:

D
β(·,·),α(·,·)
γ,c = γ2 aD

β(·,·)
t + γ1 tD

α(·,·)
c (2)

where γ = (γ2, γ1) and c ∈ (a, b].
Remark 1: Fractional derivatives (2) can be regarded as

a generalization of usual fractional derivatives. For advan-
tages of applying them to fractional variational problems see
[8], [12], [13].

In [9] we obtained necessary conditions that every local
minimizer of functional J must fulfill.

Theorem 2 [9]: If (x, T ) ∈ D is a local minimizer of
functional (1), then (x, T ) satisfies the fractional differential
equation

∂2L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t) = 0

on [a, T ] and

γ2

(
aD

β(·,·)
t ∂3L[x]α,β

γ (t) −T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

= 0

on [T, b].
Remark 2: In general, analytical solutions to fractional vari-

ational problems are hard to find. For this reason, numerical
methods are often used. The reader interested in this subject
is referred to [14], [15] and references therein.

Fractional differential equations as the ones given by The-
orem 2, are known in the literature as fractional Euler –
Lagrange equations, and they provide us with a method to de-
termine the candidates for solutions of the problem addressed.
Solutions of such fractional differential equations are called
extremals for the functional. In this paper, we proceed the
study initiated in [9] by considering additional constraints to
the problems. We will deal with two types of isoperimetric
problems, which we now describe.
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A. Problem I

The fractional isoperimetric problem of the calculus of
variations consists to determine the local minimizers of J
over all (x, T ) ∈ D satisfying a boundary condition

x(a) = xa (3)

for a fixed xa ∈ R and an integral constraint of the form
∫ T

a

g[x]α,β
γ (t)dt = ψ(T ) (4)

where g : C1
(
[a, b]× R2

) → R and ψ : [a, b] → R are two
differentiable functions. The terminal time T and terminal state
x(T ) are free. In this problem, the condition of the form (4)
is called an isoperimetric constraint. The next theorem gives
fractional necessary optimality conditions to this isoperimetric
problem.

Theorem 3: Suppose that (x, T ) gives a local minimum
for functional (1) on D subject to the boundary condition (3)
and the isoperimetric constraint (4). If (x, T ) does not satisfies
the Euler–Lagrange equations with respect to the isoperimetric
constraint, that is, if one of the two following conditions is not
verified,

∂2g[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3g[x]α,β

γ (t) = 0 (5)

for t ∈ [a, T ], or

γ2

[
aD

β(·,·)
t ∂3g[x]α,β

γ (t)− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]

= 0 (6)

for t ∈ [T, b], then there exists a constant λ such that, if we
define the function F : [a, b]× R2 → R by F = L−λg, (x, T )
satisfies the fractional Euler – Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0 (7)

on the interval [a, T ] and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t) −T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0 (8)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





F [x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′(T ) + λψ′(T ) = 0[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

−aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
= 0. (9)

Proof : Consider variations of the optimal solution (x, T )
of the type

(x∗, T ∗) = (x + ε1h1 + ε2h2, T + ε1∆T ) (10)

where, for each i ∈ {1, 2}, εi ∈ R is a small parameter, hi ∈
C1([a, b]) satisfies hi(a) = 0, and 4T ∈ R. The additional
term ε2h2 must be selected so that the admissible variations

(x∗, T ∗) satisfy the isoperimetric constraint (4). For a fixed
choice of hi, let

i(ε1, ε2) =
∫ T+ε14T

a

g[x∗]α,β
γ (t)dt− ψ(T + ε14T ).

For ε1 = ε2 = 0, we obtain that

i(0, 0) =
∫ T

a

g[x]α,β
γ (t)dt− ψ(T )

= ψ(T )− ψ(T ) = 0.

The derivative
∂i

∂ε2
is given by

∂i

∂ε2
=

∫ T+ε14T

a

(
∂2g[x∗]α,β

γ (t)h2(t)

+ ∂3g[x∗]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt.

For ε1 = ε2 = 0 one has

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ T

a

(
∂2g[x]α,β

γ (t)h2(t)

+ ∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt. (11)

The second term in (11) can be written as
∫ T

a

∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)dt

=
∫ T

a

∂3g[x]α,β
γ (t)

[
γ1

C
a D

α(·,·)
t h2(t)

+ γ2
C
t D

β(·,·)
b h2(t)

]
dt

= γ1

∫ T

a

∂3g[x]α,β
γ (t)C

a D
α(·,·)
t h2(t)dt

+ γ2

[∫ b

a

∂3g[x]α,β
γ (t)C

t D
β(·,·)
b h2(t)dt

−
∫ b

T

∂3g[x]α,β
γ (t)C

t D
β(·,·)
b h2(t)dt

]
. (12)

Using the fractional integrating by parts formula, (12) is
equal to

∫ T

a

h2(t)
[
γ1tDT

α(·,·)∂3g[x]α,β
γ (t)

+ γ2aDt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]α,β

γ (t)

− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+

[
h2(t)

(
γ1tIT

1−α(·,·)∂3g[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂3g[x]α,β

γ (t)
)]

t=T

+

[
γ2h2(t)

(
T It

1−β(·,·)∂3g[x]α,β
γ (t)

− aIt
1−β(·,·)∂3g[x]α,β

γ (t)
)]

t=b

.
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Substituting these relations into (11), and considering the
fractional operator D

β(·,·),α(·,·)
γ,c as defined in (2), we obtain

that
∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ T

a

h2(t)
[
∂2g[x]α,β

γ (t) + D
β(·,·),α(·,·)
γ,T ∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h2(t)
[

aD
β(·,·)
t ∂3g[x]α,β

γ (t)

− T Dt
β(·,·)∂3g[x]α,β

γ (t)
]
dt

+

[
h2(t)

(
γ1tIT

1−α(·,·)∂3g[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂3g[x]α,β

γ (t)

)]

t=T

+

[
γ2h2(t)

(
T It

1−β(·,·)∂3g[x]α,β
γ (t)

− aIt
1−β(·,·)∂3g[x]α,β

γ (t)

)]

t=b

.

Since (5) or (6) fails, there exists a function h2 such that

∂i

∂ε2

∣∣∣∣
(0,0)

6= 0.

In fact, if not, from the arbitrariness of the function h2 and
the fundamental lemma of the calculus of the variations, (5)
and (6) would be verified. Thus, we may apply the implicit
function theorem, that ensures the existence of a function ε2(·),
defined in a neighborhood of zero, such that i(ε1, ε2(ε1)) = 0.
In conclusion, there exists a subfamily of variations of the form
(10) that verifies the integral constraint (4). We now seek to
prove the main result. For that purpose, consider the auxiliary
function j(ε1, ε2) = J (x∗, T ∗). By hypothesis, function j
attains a local minimum at (0, 0) when subject to the constraint
i(·, ·) = 0, and we proved before that ∇i(0, 0) 6= 0. Applying
the Lagrange multiplier rule, we ensure the existence of a
number λ such that

∇ (j(0, 0)− λi(0, 0)) = 0.

In particular,
∂ (j − λi)

∂ε1
(0, 0) = 0. (13)

Let F = L− λg. The relation (13) can be written as

0 =
∫ T

a

h1(t)
[
∂2F [x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂3F [x]α,β

γ (t)

− T D
β(·,·)
t ∂3F [x]α,β

γ (t)
]
dt

+ h1(T )
[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t) + ∂2φ(t, x(t))
]

t=T

+ ∆T
[
F [x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t) + λψ′(t)
]

t=T

+ h1(b)γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
. (14)

As h1 and 4T are arbitrary, we can choose 4T = 0 and
h1(t) = 0 for all t ∈ [T, b]. But h1 is arbitrary in t ∈ [a, T ).
Then, we obtain the first necessary condition (7):

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0

for all t ∈ [a, T ]. Analogously, considering 4T = 0 and
h1(t) = 0 for all t ∈ [a, T ] ∪ {b}, and h1 arbitrary on (T, b),
we obtain the second necessary condition (8):

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)

−T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0 ∀t ∈ [T, b].

As (x, T ) is a solution to the necessary conditions (7) and
(8), then (14) takes the form

0 = h1(T )
[
γ1 tI

1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t) + ∂2φ(t, x(t))
]

t=T

+ ∆T
[
F [x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t) + λψ′(t)
]

t=T

+ h1(b)
[
γ2

(
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

−aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
. (15)

Transversality conditions (9) are obtained for appropriate
choices of variations. ¥

In the next theorem, considering the same Problem I,
we rewrite the transversality conditions (9) in terms of the
increment on time ∆T and on the increment of space ∆xT

given by

∆xT = (x + h1)(T + ∆T )− x(T ). (16)

Theorem 4: Let (x, T ) be a local minimizer to the
functional (1) on D subject to the boundary condition (3)
and the isoperimetric constraint (4). Then (x, T ) satisfies the
transversality conditions





F [x]α,β
γ (T ) + ∂1φ(T, x(T )) + λψ′(T )

+x′(T )
[
γ2T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− γ1tI
1−α(·,·)
T ∂3F [x]α,β

γ (t)
]

t=T
= 0[

γ1 tI
1−α(·,·)
T ∂3F [x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂3F [x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
]

t=b
= 0. (17)

Proof : Suppose (x∗, T ∗) is an admissible variation of the
form (10) with ε1 = 1 and ε2 = 0. Using Taylor’s expansion
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up to first order for a small ∆T , and restricting the set of
variations to those for which h′1(T ) = 0, we obtain the
increment ∆xT on x:

(x + h1) (T + ∆T ) = (x + h1)(T ) + x′(T )∆T + O(∆T )2.

Relation (16) allows us to express h1(T ) in terms of ∆T
and ∆xT :

h1(T ) = ∆xT − x′(T )∆T + O(∆T )2.

Substituting this expression into (15), and using appropriate
choices of variations, we obtain the new transversality condi-
tions (17). ¥

Theorem 5: Suppose that (x, T ) gives a local minimum for
functional (1) on D subject to the boundary condition (3) and
the isoperimetric constraint (4). Then, there exists (λ0, λ) 6=
(0, 0) such that, if we define the function F : [a, b]×R2 → R
by F = λ0L − λg, (x, T ) satisfies the following fractional
Euler–Lagrange equations:

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3F [x]α,β

γ (t) = 0

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t) − T D
β(·,·)
t ∂3F [x]α,β

γ (t)
)

= 0

on the interval [T, b].
Proof : If (x, T ) does not verifies (5) or (6), then the

hypothesis of Theorem 3 is satisfied and we prove Theorem 5
considering λ0 = 1. If (x, T ) verifies (5) and (6), then we
prove the result by considering λ = 1 and λ0 = 0. ¥

B. Problem II

We now consider a new isoperimetric type problem with
the isoperimetric constraint of form

∫ b

a

g[x]α,β
γ (t)dt = C (18)

where C is a given real number.
Theorem 6: Suppose that (x, T ) gives a local minimum for

functional (1) on D subject to the boundary condition (3) and
the isoperimetric constraint (18). If (x, T ) does not satisfies
the Euler–Lagrange equation with respect to the isoperimetric
constraint, that is, the condition

∂2g[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0

for t ∈ [a, b] is not satisfied, then there exists λ 6= 0 such that,
if we define the function F : [a, b]×R2 → R by F = L−λg,
(x, T ) satisfies the fractional Euler–Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0 (19)

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

−λ
(
∂2g[x]α,β

γ (t) + γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)

= 0 (20)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





L[x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′(T ) = 0[
γ1 tI

1−α(·,·)
T ∂3L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3L[x]α,β

γ (t)

+ ∂2φ(t, x(t))
]

t=T
= 0[

−λγ1tI
1−α(·,·)
b ∂3g[x]α,β

γ (t)

+ γ2

(
T I

1−β(·,·)
t ∂3L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
= 0. (21)

Proof : Similarly as done to prove Theorem 3, let

(x∗, T ∗) = (x + ε1h1 + ε2h2, T + ε1∆T )

be a variation of the solution, and define

i(ε1, ε2) =
∫ b

a

g[x∗]α,β
γ (t)dt− C.

The derivative
∂i

∂ε2
, when ε1 = ε2 = 0, is

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ b

a

(
∂2g[x]α,β

γ (t)h2(t)

+ ∂3g[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt.

Integrating by parts and choosing variations such that
h2(b) = 0, we have

∂i

∂ε2

∣∣∣∣
(0,0)

=
∫ b

a

h2(t)
[
∂2g[x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t)
]
dt.

Thus, there exists a function h2 such that

∂i

∂ε2

∣∣∣∣
(0,0)

6= 0.

We may apply the implicit function theorem to conclude that
there exists a subfamily of variations satisfying the integral
constraint. Consider the new function j(ε1, ε2) = J (x∗, T ∗).
Since j has a local minimum at (0, 0) when subject to the
constraint i(·, ·) = 0 and ∇i(0, 0) 6= 0, there exists a number
λ such that

∂

∂ε1
(j − λi) (0, 0) = 0. (22)

Let F = L− λg. Relation (22) can be written as

0 =
∫ T

a

h1(t)
[
∂2F [x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t)
]
dt

+
∫ b

T

h1(t)
[
γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)



TAVARES et al.: CONSTRAINED FRACTIONAL VARIATIONAL PROBLEMS OF VARIABLE ORDER 85

− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

− λ
(
∂2g[x]α,β

γ (t)

+ γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)]

dt

+ h1(T )
[
γ1 tI

1−α(·,·)
T ∂3L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂3L[x]α,β

γ (t)

+ ∂2φ(t, x(t))
]

t=T

+ ∆T
[
L[x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′(t)
]

t=T

+ h1(b)
[
−λγ1tI

1−α(·,·)
b ∂3g[x]α,β

γ (t)

+ γ2

(
T I

1−β(·,·)
t ∂3L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂3F [x]α,β

γ (t)
)]

t=b
.

Considering appropriate choices of variations, we obtain the
first (19) and the second (20) necessary optimality conditions,
and also the transversality conditions (21). ¥

Similarly to Theorem 5, the following result holds.
Theorem 7: Suppose that (x, T ) gives a local minimum

for functional (1) on D subject to the boundary condition
(3) and the isoperimetric constraint (18). Then there exists
(λ0, λ) 6= (0, 0) such that, if we define the function F :
[a, b] × R2 → R by F = λ0L− λg, (x, T ) satisfies the
fractional Euler–Lagrange equations

∂2F [x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂3L[x]α,β

γ (t)

− λD
β(·,·),α(·,·)
γ,b ∂3g[x]α,β

γ (t) = 0

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂3F [x]α,β

γ (t)− T D
β(·,·)
t ∂3L[x]α,β

γ (t)
)

−λ
(
∂2g[x]α,β

γ (t) + γ1tD
α(·,·)
b ∂3g[x]α,β

γ (t)
)

= 0

on the interval [T, b].

C. An example

Let α(t, τ) = α(t) and β(t, τ) = β(τ). Define the function

ψ(T ) =
∫ T

0

(
t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2

dt

on the interval [0, b] with b > 0. Consider the functional J
defined by

J(x, t) =
∫ T

0

[
α(t) +

(
CDα(·,·),β(·,·)

γ x(t)
)2

+
(

t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2
]

dt

for t ∈ [0, b] and γ = (1/2, 1/2), subject to the initial
condition

x(0) = 0

and the isoperimetric constraint
∫ T

0

CDα(·,·),β(·,·)
γ x(t)

(
t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

)2

dt

= ψ(T ).

Define F = L− λg with λ = 2, that is,

F = α(t)+
(

CDα(·),β(·)
γ x(t)

− t1−α(t)

2Γ(2− α(t))
− (b− t)1−β(t)

2Γ(2− β(t))

)2

.

Consider the function x(t) = t with t ∈ [0, b]. Because

CDα(·,·),β(·,·)
γ x(t) =

t1−α(t)

2Γ(2− α(t))
+

(b− t)1−β(t)

2Γ(2− β(t))

we have that x satisfies conditions (7), (8) and the two last of
(9). Using the first condition of (9), that is,

α(t) + 2
(

T 1−α(T )

2Γ(2− α(T ))
+

(b− T )1−β(T )

2Γ(2− β(T ))

)2

= 0

we obtain the optimal time T .

IV. HOLONOMIC CONSTRAINTS

Consider the space

U = {(x1, x2, T ) ∈ C1([a, b])× C1([a, b])× [a, b] :
x1(a) = x1a ∧ x2(a) = x2a} (23)

for fixed reals x1a, x2a ∈ R. In this section we consider the
functional J defined in U by

J (x1,x2, T ) =
∫ T

a

L
(
t, x1(t), x2(t), CDα(·,·),β(·,·)

γ x1(t),

CDα(·,·),β(·,·)
γ x2(t)

)
dt + φ(T, x1(T ), x2(T )) (24)

with terminal time T and terminal states x1(T ) and x2(T )
free. The Lagrangian L : [a, b] × R4 → R is a continuous
function and continuously differentiable with respect to its i-th
argument, i ∈ {2, 3, 4, 5}. To define the variational problem,
we consider a new constraint of the form

g(t, x1(t), x2(t)) = 0, t ∈ [a, b] (25)

where g : [a, b]× R2 → R is a continuous function and con-
tinuously differentiable with respect to second and third argu-
ments. This constraint is called a holonomic constraint. The
next theorem gives fractional necessary optimality conditions
to the variational problem with a holonomic constraint. To
simplify the notation, we denote by x the vector (x1, x2); by
CD

α(·,·),β(·,·)
γ x the vector (CD

α(·,·),β(·,·)
γ x1,

CD
α(·,·),β(·,·)
γ x2);

and we use the operator

[x]α,β
γ (t) :=

(
t, x(t), CDα(·,·),β(·,·)

γ x(t)
)

.

Theorem 8: Suppose that (x, T ) gives a local minimum
to functional J as in (24), under the constraint (25) and the
boundary conditions defined in (23). If

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b]
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then there exists a piecewise continuous function λ : [a, b] →
R such that (x, T ) satisfies the following fractional Euler–
Lagrange equations:

∂2L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t)
+ λ(t)∂2g(t, x(t)) = 0 (26)

and

∂3L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
+ λ(t)∂3g(t, x(t)) = 0 (27)

on the interval [a, T ], and

γ2

(
aD

β(·,·)
t ∂4L[x]α,β

γ (t) − T Dt
β(·,·)∂4L[x]α,β

γ (t)

+ λ(t)∂2g(t, x(t))
)

= 0 (28)

and

aD
β(·,·)
t ∂5L[x]α,β

γ (t)− T Dt
β(·,·)∂5L[x]α,β

γ (t)
+ λ(t)∂3g(t, x(t)) = 0 (29)

on the interval [T, b]. Moreover, (x, T ) satisfies the transver-
sality conditions





L[x]α,β
γ (T ) + ∂1φ(T, x(T ))

+ ∂2φ(T, x(T ))x′1(T )
+ ∂3φ(T, x(T ))x′2(T ) = 0[

γ1 tI
1−α(·,·)
T ∂4L[x]α,β

γ (t)

− γ2 T I
1−β(·,·)
t ∂4L[x]α,β

γ (t)
]

t=T

+ ∂2φ(T, x(T )) = 0[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t)
]

t=T

+ ∂3φ(T, x(T )) = 0

γ2

[
T I

1−β(·,·)
t ∂4L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂4L[x]α,β

γ (t)
]

t=b
= 0

γ2

[
T I

1−β(·,·)
t ∂5L[x]α,β

γ (t)

− aI
1−β(·,·)
t ∂5L[x]α,β

γ (t)
]

t=b
= 0. (30)

Proof : Consider admissible variations of the optimal solution
(x, T ) of the type

(x∗, T ∗) = (x + εh, T + ε∆T )

where ε ∈ R is a small parameter,

h = (h1, h2) ∈ C1([a, b])× C1([a, b])

satisfies hi(a) = 0, i = 1, 2, and 4T ∈ R. Because

∂3g(t, x(t)) 6= 0 ∀t ∈ [a, b]

by the implicit function theorem there exists a subfamily of
variations of (x, T ) that satisfy (25), that is, there exists a
unique function h2(ε, h1) such that the admissible variation
(x∗, T ∗) satisfies the holonomic constraint (25):

g(t, x1(t) + εh1(t), x2(t) + εh2) = 0 ∀t ∈ [a, b].

Differentiating this condition with respect to ε and consid-
ering ε = 0, we obtain that

∂2g(t, x(t))h1(t) + ∂3g(t, x(t))h2(t) = 0

which is equivalent to

∂2g(t, x(t))h1(t)
∂3g(t, x(t))

= −h2(t). (31)

Define j on a neighborhood of zero by

j(ε) =
∫ T+ε4T

a

L[x∗]α,β
γ (t)dt

+ φ(T + ε4T, x∗(T + ε4T )).

The derivative
∂j

∂ε
for ε = 0 is

∂j

∂ε

∣∣∣∣
ε=0

=
∫ T

a

(
∂2L[x]α,β

γ (t)h1(t)

+ ∂3L[x]α,β
γ (t)h2(t)

+ ∂4L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t)

+ ∂5L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h2(t)
)
dt

+ L[x]α,β
γ (T )4T + ∂1φ(T, x(T ))4T

+ ∂2φ(T, x(T )) [h1(T ) + x′1(T )4T ]
+ ∂3φ(T, x(T )) [h2(T ) + x′2(T )4T ] . (32)

The third term in (32) can be written as
∫ T

a

∂4L[x]α,β
γ (t)CDα(·,·),β(·,·)

γ h1(t)dt

=
∫ T

a

∂4L[x]α,β
γ (t)

×
[
γ1

C
a D

α(·,·)
t h1(t) + γ2

C
t D

β(·,·)
b h1(t)

]
dt

= γ1

∫ T

a

∂4L[x]α,β
γ (t)C

a D
α(·,·)
t h1(t)dt

+ γ2

[∫ b

a

∂4L[x]α,β
γ (t)C

t D
β(·,·)
b h1(t)dt

−
∫ b

T

∂4L[x]α,β
γ (t)C

t D
β(·,·)
b h1(t)dt

]
. (33)

Integrating by parts, (33) can be written as
∫ T

a

h1(t)
[
γ1tDT

α(·,·)∂4L[x]α,β
γ (t)

+ γ2aDt
β(·,·)∂4L[x]α,β

γ (t)
]
dt

+
∫ b

T

γ2h1(t)
[

aD
β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t)
]
dt

+

[
h1(t)

(
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t)
)]

t=T
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+

[
γ2h1(t)

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

.

By proceeding similarly to the 4th term in (32), we obtain
an equivalent expression. Substituting these relations into (32)
and considering the fractional operator D

β(·,·),α(·,·)
γ,c as defined

in (2), we get

0 =
∫ T

a

[
h1(t)

[
∂2L[x]α,β

γ (t)

+D
β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t)
]

+ h2(t)
[
∂3L[x]α,β

γ (t)

+D
β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
]]

dt

+ γ2

∫ b

T

[
h1(t)

[
aD

β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t)
]

+ h2(t)
[

aD
β(·,·)
t ∂5L[x]α,β

γ (t)

− T Dt
β(·,·)∂5L[x]α,β

γ (t)
]]

dt

+ h1(T )

[
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t) + ∂2φ(t, x(t))

]

t=T

+ h2(T )

[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t) + ∂3φ(t, x(t))

]

t=T

+4T

[
L[x]α,β

γ (t) + ∂1φ(t, x(t)) + ∂2φ(t, x(t))x′1(t)

+ ∂3φ(t, x(t))x′2(t)

]

t=T

+ h1(b)

[
γ2

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

+ h2(b)

[
γ2

(
T It

1−β(·,·)∂5L[x]α,β
γ (t)

− aIt
1−β(·,·)∂5L[x]α,β

γ (t)

)]

t=b

.

(34)

Define the piecewise continuous function λ by

λ(t) =





−∂3L[x]α,β
γ (t)

∂3g(t, x(t))
− D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

t ∈ [a, T ]

− (aD
β(·,·)
t ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

+
T D

β(·,·)
t ∂5L[x]α,β

γ (t)
∂3g(t, x(t))

t ∈ [T, b]. (35)

Using (31) and (35), we obtain that

λ(t)∂2g(t, x(t))h1(t)

=





(∂3L[x]α,β
γ (t) + D

β(·,·),α(·,·)
γ,T ∂5L[x]α,β

γ (t))h2(t)

t ∈ [a, T ]

(aD
β(·,·)
t ∂5L[x]α,β

γ (t)−T D
β(·,·)
t ∂5L[x]α,β

γ (t))h2(t)

t ∈ [T, b].

Substituting in (34), we have

0 =
∫ T

a

h1(t)
[
∂2L[x]α,β

γ (t)

+ D
β(·,·),α(·,·)
γ,T ∂4L[x]α,β

γ (t) + λ(t)∂2g(t, x(t))
]
dt

+ γ2

∫ b

T

h1(t)
[

a

D
β(·,·)
t ∂4L[x]α,β

γ (t)

− T Dt
β(·,·)∂4L[x]α,β

γ (t) + λ(t)∂2g(t, x(t))

]
dt

+h1(T )

[
γ1tIT

1−α(·,·)∂4L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂4L[x]α,β

γ (t) + ∂2φ(t, x(t))

]

t=T

+h2(T )

[
γ1tIT

1−α(·,·)∂5L[x]α,β
γ (t)

− γ2T It
1−β(·,·)∂5L[x]α,β

γ (t) + ∂3φ(t, x(t))

]

t=T

+4T

[
L[x]α,β

γ (t) + ∂1φ(t, x(t))

+ ∂2φ(t, x(t))x′1(t) + ∂3φ(t, x(t))x′2(t)

]

t=T

+h1(b)

[
γ2

(
T It

1−β(·,·)∂4L[x]α,β
γ (t)

− aIt
1−β(·,·)∂4L[x]α,β

γ (t)

)]

t=b

+h2(b)

[
γ2

(
T It

1−β(·,·)∂5L[x]α,β
γ (t)

− aIt
1−β(·,·)∂5L[x]α,β

γ (t)

)]

t=b

.
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Considering appropriate choices of variations, we obtained
the first (26) and the third (28) necessary conditions, and also
the transversality conditions (30). The remaining conditions
(27) and (29) follow directly from (35). ¥

We end this section with a simple illustrative example.
Consider the following problem:

J(x, t) =
∫ T

0

[
α(t) +

(
CDα(·,·),β(·,·)

γ x1(t)

− t1−α(t)

2Γ(2− α(t))
− (b− t)1−β(t)

2Γ(2− β(t))

)2

+
(

CDα(·,·),β(·,·)
γ x2(t)

)2
]
dt −→ min

x1(t) + x2(t) = t + 1, x1(0) = 0, x2(0) = 1.

It is a simple exercise to check that x1(t) = t, x2(t) ≡ 1
and λ(t) ≡ 0 satisfy our Theorem 8.

V. CONCLUSION

Nowadays, optimization problems involving fractional
derivatives constitute a very active research field due to sev-
eral applications [14], [16], [17]. Here we obtained optimality
conditions for two isoperimetric problems and for a new
variational problem subject to a holonomic constraint, where
the Lagrangian depends on a combined Caputo derivative of
variable fractional order. Main results include Euler-Lagrange
and transversality type conditions. For simplicity, we con-
sidered here only linear combinations between the left and
right operators. Using similar techniques as the ones developed
here, one can obtain analogous results for fractional variational
problems with Lagrangians containing left-sided and right-
sided fractional derivatives of variable order. More difficult
and interesting, would be to develop a “multi-term fractional
calculus of variations”. The question seems however nontriv-
ial, even for the nonvariable order case, because of difficulties
in application of integration by parts. For the variable order
case, as we consider in our work, there is yet no formula
of fractional integration by parts for higher-order derivatives.
This is under investigation and will be addressed elsewhere.
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