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Robust Output Feedback Control for Fractional
Order Nonlinear Systems with Time-varying Delays

Changchun Hua, Tong Zhang, Yafeng Li, and Xinping Guan

Abstract—Robust controller design problem is investigated for
a class of fractional order nonlinear systems with time varying
delays. Firstly, a reduced-order observer is designed. Then,
an output feedback controller is designed. Both the designed
observer and controller are independent of time delays. By
choosing appropriate Lyapunov functions, we prove the designed
controller can render the fractional order system asymptotically
stable. A simulation example is given to verify the effectiveness
of the proposed approach.

Index Terms—Fractional order systems, time-varying delays,
Laypunov function, backstepping.

I. INTRODUCTION

Fractional calculus is an ancient concept, which can be
dated back to the end of 17th century, the time when the classi-
cal integer order calculus was established. It is a generalization
of the ordinary differentiation and integration to arbitrary or-
der[1]. Although it has a long history, it has not attracted much
attention until recently in the control field. It is found that
many systems with memory feature or complex material can
be more concisely and actually described by fractional order
derivatives, such as the diffusion process, the heat transfer
process and the effect of the frequency in induction machines.
It also has been proved that fractional order controllers, like
fractional order PID controllers and fractional order model
reference adaptive controllers, can capture much better effect
and robustness[2]. For some basic theory of fractional order
calculus and fractional order systems, one can refer to [1−6]
and the references therein.

Stability analysis is one of the most fundamental and
essential issues for the control system. In [7], Matignon
firstly studied the stability of fractional-order linear differ-
ential systems with the Caputo definition. Since then, many
further achievements have been obtained[8−11]. In [8−9], the
authors presented the sufficient and necessary conditions for
the asymptotical stability of fractional order interval systems
with fractional order α satisfying 0 < α < 1 and 1 < α < 2,
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respectively. Reference [10] designed both state and output
feedback controllers for fractional order linear systems in
triangular form by introducing appropriate transformations of
coordinates. Based on Gronwall-Bellman lemma and sector
bounded condition, the stability and stabilization of fractional
order linear systems subject to input saturation were studied in
[11]. For the nonlinear fractional order systems, the stability
analysis is much more difficult than that of the linear systems.
We can find some sufficient conditions in [12−14]. In [15], the
authors introduced Mittag-Leffler stability by using Lyapunov
direct method.

Time delay is an inherent phenomenon in the interconnected
systems or processes, which makes the stability analysis and
controller design challenging. Robust output control problem
for a class of nonlinear time-delay systems was studied in
[16]. The necessary and sufficient stability conditions for linear
fractional-order differential equations and linear time-delayed
fractional differential equations have already been obtained
in [17−19]. Reference [20] investigated the stability of α-
dimensional linear fractional-order differential systems with
order 1 < α < 2. References [21−22] contain the stability
analysis of fractional order nonlinear time delay system based
on Lyapunov direct method and by using properties of Mittag-
Leffler function and Laplace transform.

In recent years, the backstepping technique has attracted
much attention as a powerful method for controlling the strict
feedback nonlinear systems. There are a few works using
backstepping technique to handle fractional order systems.
Using Lyapunov indirect method, the authors of [23] presented
a new method to design an adaptive backstepping controller
for triangular fractional order nonlinear systems. In [24], a new
adaptive fractional-order backstepping method is proposed for
a class of commensurate fractional order nonlinear systems
with uncertain constant parameters. However, for fractional
order nonlinear systems with time-varying delays, there is
none related work. Motivated by the mentioned situation, we
devote to solve the stabilization problem of fractional order
nonlinear systems with time-varying delays.

The contributions of this paper are as follows: 1) A reduced-
order observer is designed to estimate the state of the system;
2) Based on the backstepping method, we design a robust
output feedback controller for a class of fractional order
nonlinear time-varying delay systems; 3) With a novel class
of fractional Lyapunov functions, we prove the stability of
fractional order nonlinear systems.

The remainder of this paper is organized as follows: Section
II presents some basic concepts about fractional order calculus
and the stability of fractional order nonlinear systems. In Sec-
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tion III, as the main part of this note, an adaptive controller
is designed by using the backstepping method for fractional
order nonlinear time-varying delayed systems. An example is
presented to show the effectiveness of the proposed controller
in Section IV. Finally, Section V gives the conclusion of this
paper.

Notations . Throughout this paper, R denotes the set of
real numbers, Rn for n-dimensional Euclidean vector space
and Rn×n for the space of n×n real matrices. XT and X−1

represent the transpose and the inverse of matrix X , respec-
tively. I denotes the unit matrix with proper dimensions. For
any matrix A ∈ Rn×n, λi(A) stands for the i-th eigenvalue
of A. For simplicity, C

0 Dα
t is mentioned as Dα.

II. PRELIMINARIES

In this section, we provide some basic knowledge of frac-
tional calculus and fractional order systems (details can be
found in [1−2]). There are several definitions of fractional
order derivatives, among which the Riemann-Liouville and
Caputo definitions are well known and most commonly used.
In this paper, we choose the Caputo definition for the fractional
order derivatives. The Caputo derivative and fractional integral
are defined as follows.

Definition 1 (Caputo fractional derivative). The Caputo
fractional derivative of order α ≥ 0 for a function f : [0,∞] →
R is defined as

0D
α
t f(t) =

1
Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α+1−n

ds, t > 0, (1)

where n is the first integer that is larger than α and Γ(·) is
the well known Gamma function which is defined as follows:

Γ(t) =
∫ ∞

0

xt−1e−xdx.

Definition 2 (Fractional integral). The fractional integral
of order α ≥ 0 for a function f : [0,∞] → R is defined as

0I
α
t f(t) =

1
Γ(α)

∫ t

0

f(s)
(t− s)1−α

ds, t > 0. (2)

Definition 3 (Class-K function). A continuous function γ :
[0, t) → [0,∞) is said to belong to class-K function if it is
strictly increasing and γ(0) = 0.

Here are some lemmas we could use in this paper.
Lemma 1 (General Leibnitz’s rule). If f and g are

differentiable and continuous functions, the product f · g is
also differentiable and its α-th (α ≥ 0) derivative is given by

Dα(f · g) = (Dαf) · g +
∞∑

k=1

Γ(α + 1)Dα−kf ·Dkg

Γ(k + 1)Γ(α− k + 1)
. (3)

According to Lemma 1, the α-th order time derivative of
V (x) = 2xTx can be extended as DαV (x) = (Dαx)Tx
+ xTDαx + 2γ, where x is a column vector and γ =∑∞

k=1
Γ(α+1)(Dα−kx)TDkx

Γ(k+1)Γ(α−k+1) .
Lemma 2 (Fractional comparison principle). Let Dαx(t)

≥ Dαy(t) and x(0) = y(0), where α ∈ (0, 1). Then x(t) ≥
y(t). In particular, if x(t) = c, where c is a constant, Dαc =
0 and y(0) = c, we will have y(t) ≤ c.

Theorem 1[15]. Let x = 0 be an equilibrium point for
Dαx(t) = f(t, x) and D ⊂ Rn be a domain containing x = 0.
Let V (t, x) : [0,∞)×D → R be a continuously differentiable
function such that for ∀t ≥ 0, ∀x ∈ D, 0 < α < 1,

W1(x) ≤ V (t, x) ≤ W2(x),
DαV (t, x) ≤ −W3(x), (4)

where W1(x), W2(x), and W3(x) are class-K functions on D.
Then x = 0 is asymptotically stable.

Lemma 4[12]. Let x(t) ∈ Rn be a differentiable and
continuous function. Then, for ∀t ≥ t0 and ∀α ∈ (0, 1)

1
2
Dα(xT(t)x(t)) ≤ xT(t)Dαx(t). (5)

Lemma 5 (Schur complement lemma). The linear matrix
inequality (LMI)

M =
[

A B
BT C

]
< 0,

where A = AT, C = CT and C is invertible, is equivalent to

C < 0, A−BC−1BT < 0.

III. MAIN RESULTS

Consider the following fractional order nonlinear system
with 0 < α < 1 and time-varying delays:





Dαx1 = x2 + F1(x1) + H1(y(t), y(t− d1(t))),
Dαxi = xi+1 + Fi(x̄i) + Hi(y(t), y(t− di(t))),
Dαxn = u + Fn(x̄n) + Hn(y(t), y(t− dn(t))),
y = x1,

(6)

where x(t) = [x1 (t) , x2 (t) , . . . , xn (t)]T ∈ Rn is the state
and xi(θ) = φi(θ), θ ∈ [−di(0), 0), i = 1, . . . , n, x(0) = 0,
u(t) ∈ R and y(t) ∈ R are the control input and the output
of the system, respectively; x̄i(t) = [x1(t), x2(t), . . . , xi(t)]T;
Fi (·) and Hi (·) are smooth nonlinear functions and Fi(0, . . . ,
0) = Hi (0, 0) = 0; di(t) is the time-varying delay and there
exists positive scalar ηi such that ḋi(t) ≤ ηi < 1.

We impose the following assumptions on system (6).
Assumption 1. Nonlinear functions Hi(ξ1, ξ2) (i = 1, 2,

. . . , n) satisfy the following inequality:

|Hi(ξ1, ξ2)| ≤ H̄i1(ξ1)ξ1 + H̄i2(ξ2)ξ2, (7)

where H̄i1(·) and H̄i2(·) are known functions.
Let Hi1(ξ1) = 2H̄2

i1(ξ1)ξ1, Hi2(ξ2) = 2H̄2
i2(ξ2)ξ2, then we

can have the following inequality:

|Hi(ξ1, ξ2)|2 ≤ Hi1(ξ1)ξ1 + Hi2(ξ2)ξ2. (8)

Assumption 1 is very common in nonlinear time delay
systems, by which the term y(t−di(t)) can be separated from
the delay-function, so that we can handle the delay problems.

Assumption 2. For nonlinear functions Fi(·), there exist
some positive scalars li such that the following inequalities
hold for i = 1, 2, 3, . . . , n:

|Fi(ζ̄i)− Fi(̂̄ζi)| ≤ li

∥∥∥ζ̄i − ̂̄ζi

∥∥∥ , (9)

where ζ̄i = [ζ1, ζ2, . . . , ζi]T, ̂̄ζi = [ζ1, ζ̂2, . . . , ζ̂i]T and li is a
known positive parameter.

We can use the following expression for Fi(x̄i)
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Fi(x̄i) = ni1x1 + F̄i(x̄i), i = 1, . . . , n, (10)

where ni1 is a constant which could be zero.
In this paper, we focus on solving the following problem.

For system (6) satisfying Assumptions 1 and 2, design a
reduced-order observer based memoryless output feedback
controller to render the closed-loop system stable.

Considering system (6) with unmeasured state variables, we
propose the following reduced-order observer:




Dαλi(t) = λi+1(t) + ki+1x1(t) + Fi(x̂i(t))
−ki(λ2(t) + k2y(t) + F1(y(t))),

Dαλn(t) = u(t) + Fn(x̂n(t))
−kn(λ2(t) + k2y(t) + F1(y(t))),

x̂i(t) = λi + kiy(t), i = 2, . . . , n,

(11)

where x̂i(t) = [x1(t), x̂2(t), . . . , x̂i(t)]T and parameters ki (i
= 2, . . . , n) are to be specified later.

Similar to (10), we can change Fi(x̂i(t)) into

Fi(x̂i(t)) = ni1x1 + F̄i(x̂i(t)).

Remark 1. In this paper, we introduce the reduced-order
observer instead of the full-order one. In this way, some of the
states can be derived from the real output, making the results
more precise and simplifying the structure and computation
complexity. To our best knowledge, it is the first time that
the reduced-order observer is introduced to fractional order
nonlinear systems.

The estimation errors are defined as

ei(t) = xi(t)− x̂i(t). (12)

From (11) and (12), we can get

Dαe(t) = Ae(t) + F̃ (t) + H̃(t), (13)

where

e(t) = [e2(t), . . . , en(t)]T,

A =




−k2 1 0 · · · 0
−k3 0 1 · · · 0

...
...

...
. . .

...
−kn 0 0 · · · 0


 ,

F̃ (t) = [F2(x̄2(t))− F2(x̂2(t)), . . . ,

Fn(x̄n(t))− Fn(x̂n(t))]T, (14)

H̃(t) = [H2(y(t), y(t− d2)))− k2H1(y(t), y(t− d1))),

. . . ,Hn(y(t), y(t− dn)))− knH1(y(t), y(t− d1)))]T.
(15)

Next, we extend the backstepping technique to the fractional
order nonlinear system with time-varying delays described by
(6). The virtual controllers αi (i = 1, . . . , n−1) are developed
at each step. Finally, at step n, the actual controller u is
designed. First, we introduce the following transformation of
states.

z1(t) = y(t),
zi(t) = λi(t)− αi−1, i = 2, . . . , n. (16)

Then we choose the Lyapunov function as

V = Ve + Vz + Vd, (17)

where
Ve = I1−αeTPe, (18)

and P is a real symmetric positive matrix.

Vz = I1−α
n∑

i=1

Mi, (19)

Mi =
1
2
z2
i ,

Vd =

(
2

n∑

i=2

k2
i + 1

)∫ t

t−d1(t)

1
1− η1

H12(y(t))y(t)dt

+ 2
n∑

i=2

∫ t

t−di(t)

1
1− ηi

Hi2(y(t))y(t)dt. (20)

Next, we will give the derivative of Ve, Vz , Vd, and V in
turn. From Lemma 4, the derivative of Ve is:

V̇e = Dαe(t)TPe(t)

≤ (Dαe(t))TPe(t) + eT(t)PDαe(t) (21)

= (Ae(t) + F̃ (t) + H̃(t))TPe(t)

+ eT(t)P (Ae(t) + F̃ (t) + H̃(t))

= eT(t)(ATP + PA)e(t) + F̃T(t)Pe(t)

+ eT(t)PF̃ (t) + H̃T(t)Pe(t) + eT(t)PH̃(t) (22)

According to Assumption 2, we can get

F̃T(t)F̃ (t) =
n∑

i=2

(Fi(x̄i(t))− Fi(x̂i(t)))2

≤
n∑

i=2

l2i
∥∥x̄i − ̂̄xi

∥∥2

≤ ρ
∥∥x̄n − ̂̄xn

∥∥2
,

where ρ =
∑n

i=2 l2i .

V̇e ≤ eT(t)(ATP + PA)e(t) + ρeT(t)e(t)

+ H̃T(t)H̃(t) + 2eT(t)PPe(t)

≤ eT(t)(ATP + PA + ρI + 2PP )e(t) + H̃T(t)H̃(t)

≤ eT(t)(ATP + PA + ρI + 2PP )e(t)

+ 2
n∑

i=2

H2
i + 2

n∑

i=2

k2
i H2

1 (23)

and P and ki (i = 2, . . . , n) satisfy

ATP + PA + ρI + 2PP < − n

2ε1
I. (24)

To solve inequality (24), we decompose A = Ā + kB with

Ā =
[

0 I(n−2)×(n−2)

0 0

]
, k =




k2

...
kn




(n−1)×1

,

B = [−1, 0, . . . , 0]1×(n−1).
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According to Lemma 5, inequality (24) is equivalent to the
following LMI[

PĀ + WB + BTWT + ĀTP + (ρ + n
2ε1

)I P

P −0.5I

]

< 0, (25)

where W = Pk. Further, we can use LMI toolbox in Matlab
to obtain P and k.

The derivative of Vz is:

V̇z =
n∑

i=1

DαMi. (26)

Next, by the backstepping method, the virtual controllers αi

(i = 1, 2, . . . , n−1) and controller u are designed respectively.
Step 1.

DαM1 =
1
2
Dαz2

1 ≤ z1D
αz1

= z1(z2 + α1 + k2x1 + e2 + F1(y(t))
+ H1(y(t), y(t− d1(t))))

≤
(

1
4

+
ε1
2

)
z2
1 +

1
2ε1

e2
2 + H2

1 (y(t), y(t− d1(t)))

+ z1(α1 + k2x1 + F1(x1(t))) + z1z2, (27)

where ε1 is a positive constant.
Choose

α1 =−
(

c1 +
1
4

+
ε1
2

+ k2 + n11

)
z1 − F̄1(y(t))

−
(

2
n∑

i=2

k2
i + 1

)(
H11(y(t)) +

1
1− η1

H12(y(t))
)

− 2
n∑

i=2

(
Hi1(y(t)) +

1
1− ηi

Hi2(y(t))
)

=−K1z1 − ᾱ1, (28)

where ci (i = 1, 2, . . . , n) are positive constants,

K1 = c1 +
1
4

+
ε1
2

+ k2 + n11

ᾱ1 = F̄1(y(t)) +

(
2

n∑

i=2

k2
i + 1

)
(H11(y(t))

+
1

1− η1
H12(y(t))) + 2

n∑

i=2

(Hi1(y(t))

+
1

1− ηi
Hi2(y(t))).

Step 2.

DαM2 =
1
2
Dαz2

2 ≤ z2D
αz2

= z2(z3 + α2 + k3x1 + F2(̂̄x2(t))
− k2(λ2 + k2x1 + F1(x1))−Dαα1)

≤ z2z3 +
1

2ε1
e2
2 + z2(α2 + k3x1 + F2(̂̄x2(t))

− k2(λ2 + k2x1 + F1(x1)) + Dαᾱ1

+ K1(z2 + α1 + k2x1 + F1(y(t))) +
K1ε1

2
z2
2 .

(29)

Choose

α2 =− z1 −
(

c2 +
K1ε1

2

)
z2 − k3x1 − n21z1

− F̄2(̂̄x2(t))−K1(z2 + α1 + k2x1 + F1(y(t)))
+ k2(λ2 + k2x1(t) + F1(x1(t)))−Dαᾱ1

=−K2z1 − ᾱ2, (30)

where

K2 = 1 + (K1 − k2)(n11 + k2) + n21 + k3

ᾱ2 =
(

c2 +
K1ε1

2

)
z2 + F̄2(̂̄x2(t))

+ (K1 − k2)(z2 + α1 + F̄1(y(t))) + Dαᾱ1.

Step iii.

DαMi =
1
2
Dαz2

i ≤ ziD
αzi

= zi(zi+1 + αi + ki+1x1 + Fi(̂̄xi(t))
− ki(λ2 + k2x1(t) + F1(x1(t)))−Dααi−1)

= zizi+1 +
1

2ε1
e2
2 + zi(αi + ki+1x1 + Fi(̂̄xi(t)))

− ki(λ2 + k2x1(t) + F1(x1(t))) + Dαᾱi−1

+ Ki−1(z2 + α1 + k2x1 + F1(y(t)))) +
Ki−1ε1

2
z2
i .

(31)

Choose

αi =− zi−1 −
(

ci +
Ki−1ε1

2

)
zi − ki+1x1 − ni1z1

− F̄i(̂̄xi(t)) + ki(λ2 + k2x1(t) + F1(x1(t)))
−Dαᾱi−1 −Ki−1(z2 + α1 + k2x1 + F1(y(t)))

=−Kiz1 − ᾱi, (32)

where

Ki = (Ki−1 − ki)(n11 + k2) + ni1 + ki+1

ᾱi = zi−1 +
(

ci +
Ki−1ε1

2

)
zi + F̄i(̂̄xi(t))

+ (Ki−1 − ki)(z2 + α1 + F̄1(y(t))) + Dαᾱi−1.

Step nnn.

DαMn =
1
2
Dαz2

n ≤ znDαzn

= zn(u + Fn(̂̄xn(t))− kn(λ2 + k2x1(t)
+ F1(x1(t)))−Dααn−1)

=
1

2ε1
e2
2 +

Kn−1ε1
2

z2
n + zn(u + Fn(̂̄xn(t))

+ Dαᾱn−1 − kn(λ2 + k2x1(t) + F1(x1(t)))
+ Kn−1(z2 + α1 + k2x1 + F1(y(t)))). (33)

Then

u = − zn−1 −
(

cn +
Kn−1ε1

2

)
zn − Fn(̂̄xn(t))

+ kn(λ2 + k2x1(t) + F1(x1(t)))
−Kn−1(z2 + α1 + k2x1 + F1(x1(t)))−Dαᾱn−1.

(34)
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The derivative of Vd is:

V̇d =

(
2

n∑

i=2

k2
i + 1

)

×
(

d
dt

(∫ t

t−d1(t)

1
1− η1

H12(y(t))y(t)dt

))

+ 2
n∑

i=2

(
d
dt

(∫ t

t−di(t)

1
1− ηi

Hi2(y(t))y(t)dt

))

≤
(

2
n∑

i=2

k2
i + 1

)(
1

1− η1
H12(y(t)

)
y(t)

−H12(y(t− d1(t)))y(t− d1(t)))

+ 2
n∑

i=2

(
1

1− ηi
Hi2(y(t))y(t)

−Hi2(y(t− di(t)))y(t− di(t))). (35)

Then, we have

V̇ = V̇e + V̇z + V̇d

≤ eT(t)
(

ATP + PA +
(

ρ +
n

2ε1

)
I + 2PP

)
e(t)

−
n∑

i=1

ciz
2
i . (36)

So
V̇ ≤ −W (e(t), z̄n), (37)

where z̄i = [z1, z2, . . . , zn] and W (·) and W1(·) are class-K
functions.

According to the definition of the Caputo fractional deriva-
tive, Lemma 2 and (37)

DαV = I1−αV̇ ≤ −I1−αW (e(t), z̄n) ≤ −W1(e(t), z̄n)

Finally, we present the main result of this paper as follows:
Theorem 2. For a system described by (6) satisfying

Assumptions 1 and 2, controller (34) can render the closed-
loop system asymptotically stable.

IV. SIMULATION

In this section, an example is given to show the effectiveness
of the proposed controller.

Consider the following system:
{

Dαx1(t) = x2(t)− 0.8x1(t) + 0.5x2
1(t− d1(t)) sin t,

Dαx2(t) = u− 0.8x2(t) + 0.5x3
1(t− d2(t)) sin t,

where d1(t) = 0.5(1 + sin t), d2(t) = 0.5(1 + cos t). We
can see that the aforementioned system satisfies the above
assumptions with P = I , η1 = η2 = 0.5, l = 0.8, ρ = 0.64,
n11 = −0.8, F̄1(x1) = 0, n21 = 0, F̄2(x̄2) = −0.8x2,
H11(t) = H21(t) = 0, H12(t − d1(t)) = 0.25x3

1(t − d1(t))
and H22(t−d1(t)) = 0.25 x5

1(t−d1(t)). Choosing ε1 = 1, k2

= 2, c1 = 0.05 and c2 = 0.8, we can obtain the reduced-order
observer and the function β1(x1(t)):

Dαλ2(t) = u− 2.8λ2(t)− 4x1(t),

α1(x1(t)) = −2x1(t)− 4.5x3
1(t)− x5

1(t).

Then, K1 = 2, ᾱ1 = 4.5x3
1 + x5

1, the controller can be
designed as

u(t) = 0.6x1(t)− λ2(t) + 1.8α1(x1(t))−Dαᾱ1.

The simulation results are shown in Figs. 1 and 2, from
which we can see that the constructed controller renders the
closed-loop system stable.

Fig. 1. The output response of the closed-loop system.

Fig. 2. The trajectories of x2 and x̂2.

V. CONCLUSION

In this paper, we study the controller design problem for
fractional order nonlinear time-varying delay systems, us-
ing the well known backstepping method. Also, we extend
the Lyapunov method to fractional order systems. Both the
designed observer and controller are independent of time
delays. Through the simulation presented in Section IV, the
effectiveness of the proposed controller has been verified. As
put in [25], fractional order systems have a memory feature,
which could make difficulties in the process of controller
design. In the future, we will further consider the memory
feature and its influence. Based on the result of this paper, we
will study the stability and stabilization problems for fractional
nonlinear delayed systems with fractional order 1 < α < 2
and the stability of fractional order nonlinear systems with
fractional order α > 2.
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