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Criteria for Response Monotonicity Preserving

in Approximation of Fractional Order Systems
Mohammad Saleh Tavazoei, Member, IEEE

Abstract—In approximation of fractional order systems, a
significant objective is to preserve the important properties of the
original system. The monotonicity of time/frequency responses is
one of these properties whose preservation is of great importance
in approximation process. Considering this importance, the issues
of monotonicity preservation of the step response and monotonic-
ity preservation of the magnitude-frequency response are inde-
pendently investigated in this paper. In these investigations, some
conditions on approximating filters of fractional operators are
found to guarantee the preservation of step/magnitude-frequency
response monotonicity in approximation process. These condi-
tions are also simplified in some special cases. In addition,
numerical simulation results are presented to show the usefulness
of the obtained conditions.

Index Terms—Fractional order system, approximation, step
response, magnitude-frequency response, monotonicity

I. INTRODUCTION

THESE days, fractional calculus[1] has found a widespread
use in facilitating and dealing with different engi-

neering challenges. On the basis of using fractional or-
der dynamics[2], effective solutions have been proposed for
some engineering problems[3] in different fields such as
control system design[4−5], system identification[6−7], anal-
ysis and synthesis of electrical circuits[8−10], image and
signal processing[11−12], robotics[13], electromagnetics[14],
biomedical informatics[15], vibration reduction[16−17], wave
propagation[18], and viscoelasticity[19].

In practice, sometimes there is a need to approximate frac-
tional order systems. Consequently till now, different useful
methods have been proposed for approximating fractional
operators (for some sample methods, see [20−26]). But a
main concern in using approximation methods is that the
significant properties of the original fractional order systems
may not be preserved after approximation[27−29]. Considering
the importance of preserving the properties of fractional order
systems in approximation process, some studies on this subject
have been done in literature. For example, the problem of
stability preservation has been investigated in [30−31] for
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methods presenting rational continuous-time filters for ap-
proximation of fractional operators. Also, the approximation
methods constructed based on the direct discretization of
fractional operators have been analyzed in the viewpoint of
stability preservation in [32]. In this paper, the aim is to
investigate the problem of response monotonicity preserving
in approximation of fractional order systems by using rational
approximations of fractional operators. Monotonicity of the
step response is known as a feature for dynamical systems
having desired transient responses[33−37]. Also, a necessary
condition to have desired transient response in linear time
invariant dynamical systems is monotonicity of the magnitude-
frequency response[38]. Considering these points, dynamical
systems with monotonic time/frequency responses have been
taken into consideration in different applications[33−40]. In
these applications, if we deal with a fractional order dynamical
system with monotonic time/frequency response (for example
in fractional order control system design or in fractional
order filter synthesis with the aim of achieving a desired
transient response)[41−43], approximating such a system may
be unavoidable in practice. In this case, due to the significance
of the property of response monotonicity, preserving such a
property in approximation process is of great importance. In
this paper, general conditions on rational approximations of
fractional operators are derived that guarantee the preserva-
tion of monotonicity property of the step response or the
magnitude-frequency response in approximation process.

The paper is organized as follows. In Section II, some
preliminaries on approximation of fractional order systems
are presented. Conditions for guaranteeing the preservation
of the monotonicity property of the step response and the
magnitude-frequency response in approximation of fractional
order systems are respectively obtained in Sections III and
IV. In these sections, numerical simulation results are also
presented to confirm the usefulness of the obtained conditions.
Finally, conclusions in Section V close the paper.

II. RATIONAL APPROXIMATION OF
FRACTIONAL ORDER SYSTEMS

Consider a SISO LTI fractional order system described by
the following pseudo-state space equations

{
0D

α
t x(t) = Ax(t) + Bu(t),

y(t) = Cx(t), (1)

where u(t) ∈ R, y(t) ∈ R, and x(t) ∈ Rn are respectively
the input, output, and pseudo-state vector of the system[44].
Also, A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, α ∈ (0, 1), and
0D

α
t denotes the Caputo derivative operator defined by
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0D
α
t x(t) =

1
Γ(1− α)

∫ t

0

x′(τ)
(t− τ)α

dτ, α ∈ (0, 1). (2)

It is worth noting that (1) is the fractional order counterpart
of the integer order system

{
ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t). (3)

The transfer function from input u(t) to output y(t) in
system (1) is given as follows (See Fig. 1).

G(sα) = C (sαI −A)−1
B. (4)

Fig. 1. Block diagram of pseudo-state space system (1).

A common way for approximating fractional order system
(1) is to approximate and replace the operator 1/sα in block
diagram of Fig. 1 by a rational transfer function (Fig. 2)[45].
Assume that the following approximation

sα ≈ P (s), (5)

where

P (s) =
bmsm + bm−1s

m−1 + · · ·+ b1s + b0

sm + am−1sm−1 + · · ·+ a1s + a0
, (6)

ai ≥ 0 for i = 0, 1, . . . , m− 1 and bi ≥ 0 for i = 0, 1, ..., m,
is used for approximating fractional order system (1). In this
case, the approximated system will be described by rational
transfer function G(P (s)).

Fig. 2. Block diagram of the approximated integer order system for
fractional order system (1) obtained by using approximation (5).

Preservation of the principal properties of the system is an
important issue which should be taken into consideration in
the approximation process. Considering this importance, on
the basis of comparing the stability conditions of the original
system (1) and its rational approximation, the stability preser-
vation problem has been previously studied in [31−32]. In this
paper, we focus on the monotonicity preservation problem
for the time/frequency responses, and obtain conditions on
approximation (5) for guaranteeing the preservation of the
response monotonicity. Satisfying these conditions guarantees
that the monotonicity of the system response is preserved in
approximation process, i.e., the approximated integer order
system similar as the original fractional order system has a

monotonic time/frequency response. The main feature of the
conditions obtained in the next sections is the independency
of these conditions from the original system dynamics.

III. STEP RESPONSE MONOTONICITY

A. Preliminaries
Consider a BIBO stable system described by transfer func-

tion H(s). According to the Post-Widder inversion formula[46],
the impulse response of this system (h(t)), as the inverse
Laplace transform of H(s), is given by

h(t) = lim
k→∞

(−1)k

k!

(
k + 1

t

)k+1

H(k)

(
k + 1

t

)
, (7)

where H(k)(s) denotes the k−th derivative of H(s). An
interesting consequence of the Post-Widder inversion formula,
which has been taken into consideration in the literature[47],
is about non-negativeness of the impulse response. According
to this formula, if the BIBO stable transfer function H(s)
satisfies condition

(−1)r H(r)(s)
∣∣∣
s=σ

≥ 0, (8)

for r = 1, 2, . . . and all positive real values of σ, then its
impulse response is non-negative for t > 0. Conversely, by
considering the Laplace transform definition, i.e.

H(s) =
∫ ∞

0

e−sth(t) dt, (9)

it is deduced that

(−1)rH(r)(σ) =
∫ ∞

0

e−σttrh(t) dt, (10)

for σ > 0, where H(s) is a BIBO stable transfer function with
the impulse response h(t). Therefore, if h(t) is non-negative,
then condition (8) is satisfied for r = 1, 2, . . . , and all positive
real values of σ[47].

B. Criteria for Step Response Monotonicity
This subsection deals with finding conditions on approxima-

tion filter (6) to guarantee monotonicity of the step response.
Firstly, the monotonicity condition is derived in a general
case (Theorem 1), and then this condition is simplified in
some special cases (Corollaries 1-3). In addition, numerical
examples are presented to validate the obtained results.

For obtaining the results in this subsection, it is assumed that
the original system (G(sα)), the approximating filter (P (s)),
and the approximated system (G(P (s))) are BIBO stable
(the conditions on approximating filter (P (s)) to preserve the
stability of the system in the approximation process can be
found in [31]). Now, as a first result consider the following
theorem presenting a condition to guarantee the step response
monotonicity in the approximation process.

Theorem 1. Assume that system (1) has a monotonic
non-decreasing step response. The monotonicity of the step
response is preserved by using rational approximation (5) if

(−1)k P̃ (k)(s)
∣∣∣
s=σ

≤ 0, (11)

for all positive real values of σ and k ∈ N, where P̃ (s) =
P 1/α(s).
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Proof. Since the BIBO stable system (1) has a monotonic
non-decreasing step response, according to discussions of
Section III-A

(−1)k Ĝ(k)(s)
∣∣∣
s=σ

≥ 0, (12)

for all k ∈ N and σ > 0 where Ĝ(s) = G(sα) = C(sαI −
A)−1B. By using the rational approximation (5), the approxi-
mated system is described by transfer function Ĝ(P 1/α(s)) =
Ĝ(P̃ (s)). According to the Faàdi Bruno’s formula (gener-
alization of the chain rule for higher derivatives)[48], the r-
th (r ∈ N) derivative of this transfer function with respect to
is given by

dr

dsr
Ĝ

(
P̃ (s)

)
=

∑ r!
k1! k2! · · · kr!1!k12!k2 · · · r!kr

× Ĝ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (s)

r∏

i=1

(
P̃ (i)(s)

)ki

, (13)

where the sum appeared in the right-hand side of (13) is over
all r-tuples of non-negative integers satisfying the Diophantine
equation

k1 + 2k2 + · · ·+ rkr = r. (14)

The Diophantine equation (14) yields in
∏r

i=1

(
(−1)iP̃ (i)(s)

)
ki

= (−1)r
∏r

i=1

(
(−1)iP̃ (i)(s)

)ki

. From this equality and (13),

(−1)r dr

dsr
Ĝ

(
P̃ (s)

)
=

∑ r!
k1! k2! ...kr!1!k12!k2 · · · r!kr

× Ĝ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (s)

r∏

i=1

(
(−1)iP̃ (i)(s)

)ki

. (15)

If condition (11) is satisfied for all σ > 0 and k ∈ N,

then
(
(−1)i P̃ (i)(s)

∣∣∣
s=σ

)ki

and (−1)ki have the same signs
for each σ > 0 and non-negative integer ki. Considering this
fact and (15), it is deduced that (−1)r dr

dsr Ĝ
(
P̃ (s)

)∣∣∣
s=σ

and

(−1)k1+k2+···+krĜ(k1+k2+···+kr)(x)
∣∣∣
x=P̃ (σ)

have the same

signs for all σ > 0. Hence, from (12) it is found that

(−1)r dr

dsr
Ĝ

(
P̃ (s)

)∣∣∣∣
s=σ

≥ 0, (16)

for all r ∈ N and σ > 0. According to (16) and the Post-
Widder inversion formula, it is concluded that the BIBO stable
system Ĝ(P̃ (s)) (approximated system) has a monotonic non-
decreasing step response. ¤

If α = 1/N where N ∈ N, condition (11) is written as

(−1)k
(
PN (s)

)(k)
∣∣∣
s=σ

≤ 0. (17)

According to discussions of Section III-A, condition (17) is
satisfied for all k ∈ N, if the BIBO stable transfer function

−PN (s) has a non-negative impulse response for t > 0.
Consequently, since the impulse response of this transfer
function is equal to the negative of the impulse response of
transfer function PN (s), the following corollary is deduced
from Theorem 1.

Corollary 1. Assume that α = 1/N (N ∈ N), and the step
response of system (1) is monotonic non-decreasing. In this
case, the monotonicity of the step response of system (1) is
preserved by using rational approximation (5) if the rational
transfer function PN (s) has a non-positive impulse response
for t > 0.

Example 1. Consider the approximation s0.5 ≈ P (s) with
(18), Shown at the bottom of the page, which is obtained
by the low-frequency continued fraction method[49]. It can
be verified that P 2(s) has a non-positive impulse response
for t > 0 (See Fig. 3). Hence, from Corollary 1 it is con-
cluded that the step response monotonicity is preserved by
using the above-mentioned approximation to approximate each
fractional order system in the form (1) with α = 1/2 and a
monotonic step response. For example, system (1) with α =

1/2, A =
[ −1.8 −1

1 0

]
, B =

[
1 0

]T
, and C = [0 1]

is a BIBO stable system having a monotonic step response.
As shown in Fig. 4, the monotonicity of the step response
of this system is preserved by using the above-mentioned
approximation.

Fig. 3. Impulse response of P 2(s) for t > 0 where P (s) is defined
by (18).

Fig. 4. Monotonic step responses of the original system and its
approximation in Example 1.

———————————————————————————————————————————————————–

P (s) =
s(s + 0.933)(s + 0.75)(s + 0.5)(s + 0.25)(s + 0.06699)

(s + 0.983)(s + 0.8536)(s + 0.6294)(s + 0.3706)(s + 0.1464)(s + 0.01704)
, (18)
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According to [41, Theorem 3], we know that if (3) is a
BIBO stable system with a monotonic step response, then (1)
also has a monotonic step response. Hence in such a case,
the monotonicity condition is reduced as that stated in the
following corollary.

Corollary 2. Assume that the integer order system described
by (3) is a BIBO stable system with a monotonic non-
decreasing step response. In such a case, the step response of
the approximation of system (1) obtained by using (5), similar
as the step response of the original system (1), is monotonic
if P (s) has a non-positive impulse response for t > 0.

It is worth noting that the simple condition presented in
Corollary 2 can be satisfied by a large class of rational
approximations having interlaced real zeros and poles (For
example, the rational approximations proposed in [21, 25,
51]). To show this fact, assume that the transfer function P (s)
described by

P (s) = k

m∏
i=1

(s + zi)

m∏
i=1

(s + pi)
, (19)

where

k > 0 & 0 ≤ z1 < p1 < z2 < p2 < · · · < zm < pm (20)

is used for approximation of fractional operator sα (α ∈
(0, 1)). If condition (20) holds, P (s) can be rewritten as

P (s) = k +
m∑

i=1

ri

s + pi
, (21)

where ri < 0 for i = 1, ..., m (See [50]). Since all ri (i =
1, ..., m) are negative, transfer function (19) has a non-positive
impulse response for t > 0. Therefore, the following result is
deduced.

Corollary 3. Let assumptions of Corollary 2 hold. Then,
the monotonicity of step response is preserved by using
approximation (5) if P (s) is in the form (19) and satisfies
conditions in (20).

For instance, the approximation methods proposed in [21,
25, 51] satisfy conditions of Corollary 3. Consequently, using
these methods results in preservation of the step response
monotonicity in approximation of fractional order systems
having monotonic step responses.

Example 2. In [41, Example 1], the monotonicity of the step
response of a fractional order system is shown. The pseudo-
state space representation of the system considered in [41,
Example 1] is in the form (1) with the following matrices

A =




0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
−0.1 −1.05 −4.55 −10.53 −14.07 −11.05 −4.9




,

B =
[

0 0 0 0 0 0 1
]T

,

C =
[

2 1 2 1 0 0 0
]

.

The step response of this system in the case α = 0.9 is
shown in Fig. 5. If the approximation

s0.9 ≈ 501.1872(s + 0.001259)(s + 0.1259)(s + 12.59)
(s + 0.07943)(s + 7.943)(s + 794.3)

,

(22)
obtained based on the CRONE method[51], is used for approx-
imating the above-described system, according to Corollary 3
the monotonicity of the step response is preserved. The step
response of the approximated system shown in Fig. 5 confirms
this point.

Fig. 5. Monotonic step responses of the original system and its
approximation in Example 2.

IV. MAGNITUDE-FREQUENCY RESPONSE MONOTONICITY

The monotonicity of magnitude-frequency response of all-
pole fractional order systems has been studied in [42]. In
the mentioned study, algebraic conditions have been derived
to guarantee the nonexistence of extrema in the magnitude-
frequency response of an all-pole fractional order system. In
continuation of the work done in [42], in this section it is
assumed that (1) describes an all-pole transfer function in the
form

G(s) =
1

n∑
k=0

dkskα

, dn > 0 & dk ≥ 0 for k = 0, ..., n− 1

(23)
with the monotonic magnitude-frequency response |G(jω)|
for ω ∈ (0,∞). Considering this assumption, the following
theorem presents conditions on the approximating filter P (s)
in (5) to preserve the monotonicity of the magnitude-frequency
response of system (1) in the approximation process.

Theorem 2. The magnitude-frequency response monotonic-
ity of any fractional order system in the form (1) with
transfer function (23), which has a monotonic non-increasing
magnitude-frequency response, is preserved in the frequency
range (ωi, ωh) by approximating this system on the basis of
approximation (5) if the following sets of conditions





min
c∈C+

Ψc(ω)
cos( cαπ

2 ) ≥ 0,

min
c∈C+

Ψc(ω)
cos( cαπ

2 ) ≥ max
c∈C−

Ψc(ω)
cos( cαπ

2 ) ,
∀ω ∈ (ωl, ωh) (24)

are satisfied where
C+ =

{
c ∈ {−n, ..., n}| cos( cαπ

2 ) ≥ 0
}

,
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C− =
{

c ∈ {−n, ..., n}| cos( cαπ
2 ) < 0

}
, and

Ψc(ω) =
d |P (jω)|

dω
cos (c]P (jω))

− d]P (jω)
dω

|P (jω)| sin (c]P (jω)) . (25)

Proof. It can be shown that if the magnitude-frequency
response of transfer function (23) is monotonic non-increasing,
then

f(ω) ≥ 0, ∀ω ∈ (0,∞), (26)

where f(ω) is defined as follows (For more details, see [42:
Section 3]).

f(ω) =
n∑

k=0

n∑

l=0

kdkdl cos
(

(k − l)απ

2

)
ωk+l−1. (27)

On the other hand, by using approximation (5) the
magnitude-frequency response of the approximated system
G(P (s)) is given by

|G (P (jω))| = 1√
ρ(ω)

, (28)

where

ρ(ω) =
(

n∑
k=0

dk |P (jω)|k cos (k]P (jω))
)2

+
(

n∑
k=0

dk |P (jω)|k sin (k]P (jω))
)2

.

(29)

The magnitude-frequency response of the approximated
system is monotonic non-increasing in the frequency range

(ωi, ωh) if and only if
dρ(ω)
dω

≥ 0, ∀ω ∈ (ωi, ωh). According
to (29),

dρ(ω)
dω

= 2
(

n∑
k=0

dk |P (jω)|k cos (k]P (jω))
)

×



n∑
k=0

kdk |P (jω)|k−1 d|P (jω)|
dω cos (k]P (jω))

− kdk |P (jω)|k d]P (jω)
dω sin (k]P (jω))




+ 2
(

n∑
k=0

dk |P (jω)|k sin (kP (jω))
)

×



n∑
k=0

kdk |P (jω)|k−1 d|P (jω)|
dω sin (k]P (jω))

+ kdk |P (jω)|k d]P (jω)
dω cos (k]P (jω))


 .

(30)
By some calculations, (30) is simplified as

dρ(ω)
dω

=
n∑

k=0

n∑

l=0

kdkdl |P (jω)|k+l−1 Ψk−l(ω). (31)

It is worth noting that condition (26) results in

f(|P (jω)|)
=

n∑
k=0

n∑
l=0

kdkdl cos
(

(k−l)απ
2

)
|P (jω)|k+l−1 ≥ 0,

(32)

for ω ∈ (0,∞). Define

µ(ω) = min
c∈C+

Ψc(ω)
cos( cαπ

2 )
, ω ∈ (ωl, ωh). (33)

Definition (33) yields in

Ψc(ω) ≥ µ(ω) cos(
cαπ

2
), ∀ω ∈ (ωl, ωh) & ∀c ∈ C+.

(34)
Also if the second part of the conditions in (24) is met, then

Ψc(ω) ≥ µ(ω) cos(
cαπ

2
), ∀ω ∈ (ωl, ωh) & ∀c ∈ C−.

(35)
According to (31), (34), and (35), we have

dρ(ω)
dω

≥
n∑

k=0

n∑

l=0

kdkdl cos
(

(k − l)απ

2

)
µ(ω) |P (jω)|k+l−1

,

(36)
for all ω ∈ (ωl, ωh). If the first part of conditions in (24)
(i.e., µ(ω) ≥ 0,∀ω ∈ (ωl, ωh) is satisfied, from (32) and (36)
it is concluded that dρ(ω)/dω ≥ 0,∀ω ∈ (ωl, ωh). Hence,
if the conditions in (24) hold, the approximated system has
a monotonic non-increasing magnitude-frequency response in
the frequency range (ωi, ωh). ¤

Example 3. The following approximation (37), shown
at the bottom of the page, which has been obtained
by using the low-frequency continued fraction method[49].
For approximation (37), functions min

c∈{−1,0,1}
Ψc(ω)

cos(0.3cπ) and

min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)/ max

c∈{−2,2}
Ψc(ω)

cos(0.3cπ) have been respec-

tively plotted versus ω in Figs. 6 and 7. Plotting these func-
tions specify that the conditions in (24) are simultaneously
satisfied in the frequency range (0.074,∞) for n = 2. Hence,
from Theorem 2 the monotonicity of the magnitude-frequency
response is preserved in the frequency range (0.074,∞)
by using approximation (37) in approximating each all-pole
fractional order system in the form (1) with α = 0.6 and
n = 2 which has a monotonic magnitude-frequency response.
As a sample, consider system (1) with order α = 0.6,

and matrices A =
[ −1/40 −1/10

1/16 0

]
, B = [1/4 0]T,

and C = [0 2/5]. In this case, (1) is an all-pole system
with a monotonic magnitude-frequency response (See Fig. 8).
Although the magnitude-frequency response of the approx-
imation of this system, obtained on the basis of (37), is
not monotonic for all frequencies, the monotonicity of the
magnitude-frequency response is preserved in the frequency
range (0.074,∞) (See Fig. 8).

According to (31), a trivial condition which results in the
monotonicity of the magnitude-frequency response is non-
negative-ness of Ψc(ω). Hence, the following result is de-
duced.

———————————————————————————————————————————————————–

s0.6 ≈ s(s + 0.8961)(s + 0.6405)(s + 0.3316)(s + 0.08734)
(s + 0.9811)(s + 0.8075)(s + 0.5167)(s + 0.2199)(s + 0.03037)

, (37)
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Fig. 6. min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)

versus ω (Example 3).

Fig. 7. min
c∈{−1,0,1}

Ψc(ω)
cos(0.3cπ)

/ max
c∈{−2,2}

Ψc(ω)
cos(0.3cπ)

versus ω

(Example 3).

Fig. 8. Magnitude-frequency responses of the original system and
its approximation in Example 3.

Fig. 9. Ψc(ω) versus ω for c ∈ −3, . . . , 3 (Example 4).

Corollary 4. If Ψc(ω) ≥ 0 for all ω ∈ (ωi, ωh) and
c ∈ −n, ..., n, then the approximation of system (1) with
transfer function (23), which is obtained on the basis of (5),
is monotonic non-increasing in the frequency range (ωi, ωh).

Example 4. Approximation (38), shown at the bottom of
the page, which is obtained by using the CRONE method
[51, Sec. 4.1.1]. For this approximation, functions Ψc(ω)
for c ∈ −3, ..., 3 are non-negative in the frequency range
(0,∞) (See Fig. 9). Therefore according to Corollary 4, using
approximation (38) in approximating system (1) with a transfer
function in the form

G(s) =
1

d3s0.9 + d2s0.6 + d1s0.3 + d0
, (39)

where dk ≥ 0 for k = 0, . . . , 3, results in an approxi-
mated system with a monotonic magnitude-frequency response
(According to [42, Corollary 1], transfer function (39) with
condition dk ≥ 0 for k = 0, . . . , 3 has a monotonic magnitude-
frequency response). For instance if approximation (38) is used
for approximating the system




0D
0.3
t x(t) =



−2 −0.5 −1

1 0 0
0 1 0


x(t) +




1
0
0


u(t),

y(t) =
[

0 0 1
]
x(t),

(40)
as confirmed in Fig. 10 the approximated system similar as
the original system has a monotonic magnitude-frequency
response.

Fig. 10. Magnitude-frequency responses of the original system and
its approximation in Example 4.

V. CONCLUSIONS

In this paper, the problem of preservation of response
monotonicity in approximating fractional order systems by
using rational approximations of fractional operators was
investigated. In this investigation, conditions on the rational
approximation of fractional operators were found to guarantee
the monotonicity of step/magnitude-frequency response in
approximation process (Theorems 1 and 2). These conditions
were also simplified in some special cases (Corollaries 1-4).

———————————————————————————————————————————————————–

s0.3 ≈ 3.9811
(s + 0.01711)(s + 0.07943)(s + 0.3687)(s + 1.711)(s + 7.943)(s + 36.87)
(s + 0.02712)(s + 0.1259)(s + 0.5843)(s + 2.712)(s + 12.59)(s + 58.43)

, (38)
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Moreover, numerical simulations results were presented
to confirm the usefulness of the obtained conditions. The
main significance of the conditions, which were obtained
on approximating filters to guarantee the monotonicity of
step/magnitude-frequency responses in approximation process,
is the independency of these conditions from the original
system dynamics. This means that if an approximating filter
satisfies the obtained conditions, using this filter in approx-
imation of each original system with a monotonic response
results in an approximated system having a monotonic re-
sponse. Generally speaking, this feature can considerably
reduce the computational costs for investigating the problem of
monotonicity preservation, where the aim is approximation of
various fractional order systems having monotonic responses.
In this case, the obtained conditions can be only checked for
the approximating filter, and if these conditions are satisfied,
monotonicity of the response is guaranteed for all the approx-
imated systems resulted from using such an approximating
filter. Proposing new monotonicity preserving methods for
approximation of fractional order operators or determining
the free parameters of the existing approximation methods to
guarantee the preservation of the response monotonicity, on the
basis of the conditions derived in this paper, can be considered
as interesting topics for future research works.
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