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A Note on Robust Stability Analysis of
Fractional Order Interval Systems by Minimum

Argument Vertex and Edge Polynomials
Baris Baykant Alagoz

Abstract—By using power mapping (s = vm), stability analysis
of fractional order polynomials was simplified to the stability
analysis of expanded degree integer order polynomials in the
first Riemann sheet. However, more investigation is needed
for revealing properties of power mapping and demonstration
of conformity of Hurwitz stability under power mapping of
fractional order characteristic polynomials. Contributions of this
study have two folds: Firstly, this paper demonstrates conser-
vation of root argument and magnitude relations under power
mapping of characteristic polynomials and thus substantiates
validity of Hurwitz stability under power mapping of fractional
order characteristic polynomials. This also ensures implications
of edge theorem for fractional order interval systems. Secondly,
in control engineering point of view, numerical robust stability
analysis approaches based on the consideration of minimum
argument roots of edge and vertex polynomials are presented.
For the computer-aided design of fractional order interval control
systems, the minimum argument root principle is applied for a
finite set of edge and vertex polynomials, which are sampled
from parametric uncertainty box. Several illustrative examples
are presented to discuss effectiveness of these approaches.

Index Terms—Fractional order systems, robust stability, edge
theorem, interval uncertainty.

I. INTRODUCTION

ROBUST stability analysis is very essential for robust
performance of practical control systems working in

real applications. Imprecision in system modeling and tem-
poral deviation of system parameters may cause instability
of real control systems that are designed according to nom-
inal system models. Implementation of practical and robust
control systems requires the system design aspects, which
ensure the stability of control systems within the possible
ranges of system parameter fluctuations. Several theorems
such as Kharitonov’s theorem and edge theorem were de-
veloped to accomplish parametric robust stability analysis of
integer-order system models introducing interval uncertainty
of coefficients[1]. These theorems state sufficient conditions
for robust stability and thus facilitate robust stability analyses
of integer order linear time invariant (LTI) systems with para-
metric uncertainty. They limit stability checking to the certain
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number of polynomials sampled from a continuous family
of interval characteristic polynomials. Nowadays, fractional
order systems are on the focus of control community and
confirmation of the validity of well-established robust stability
analysis methods for fractional order system models is very
beneficial. Robust stability analysis and robust stabilization
problems of fractional order systems were addressed in many
aspects during the last two decades[2−15]. It can be briefly
explained as follows: Stability analysis of fractional order
systems according to the pole placement in the complex
plane was addressed by Matignon[15]. Minimum argument
root principle was a milestone for robust stability analy-
sis of fractional order interval systems. Based on minimum
argument of eigenvalues of state space model, an interval
boundary box method was presented for stability testing of
the fractional order LTI systems with interval uncertainties[5].
Then, stabilization of fractional order LTI systems by using
linear matrix inequality (LMI) method was shown in several
works[6−9]. Robust stability check based on four Kharitonov’s
polynomials were also discussed for commensurate order LTI
systems[10−11].

In many works, the power mapping of polynomials in
complex planes, which is also known as conformal mapping,
was employed to simplify stability analysis of fractional or-
der systems by simply transforming them into integer order
polynomials[3−4]. By applying s = vm mapping, stability
analyses in the first Riemann sheet were shown for fractional
order polynomials[13]. Later, a numerical method based on the
exposed edge polynomial sampling was proposed for robust
stability analysis of fractional order interval polynomials by
using s = vm mapping[14]. However, it is obvious that there is
a need for further works to demonstrate impacts of power map-
ping on root locus and stability related properties of systems.
Thus, implication of edge theorem under power mapping of
fractional order characteristic polynomials can be utilized and
the robust stability analysis methods based on edge theorem
can be developed to reduce computational complexity in robust
stability analysis of fractional order interval systems.

In this paper, an investigation on the conformity of Hurwitz
stability under power mapping (s = vm) of characteristic
polynomials of fractional order systems is presented. After
showing that Hurwitz stability is conformal to power mapping,
implications of edge theorem for fractional order characteris-
tic polynomial are discussed. Then, robust stability analysis
schemes considering combinations of edge and vertex polyno-



412 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 3, NO. 4, OCTOBER 2016

mials of the hyper-rectangle are presented and compared
with the application of conventional edge theorem given in
[14]. Computational complexity and effectiveness of presented
methods are discussed by illustrative examples.

II. BASIC DEFINITIONS AND PRELIMINARIES

Definition 1 (Hurwitz stability for integer order polyno-
mials). Let us consider an integer order polynomial with real
coefficient, which is expressed as p(s) =

∑n
i=0 cis

i. Parame-
ters ci ∈ R are real polynomial coefficients, and the parameter
n ∈ Z+ represents the degree of the polynomials. A charac-
teristic polynomial with real coefficients is said to be Hurwitz
stable if and only if all of its roots lie in the left hand side of
complex s plane[16−17]. Accordingly, Hurwitz stable polyno-
mials are defined as {p(s)|p(s) = 0 : ∀s ∈ C ∧ Re{s} < 0}.
If characteristic polynomial of a LTI system model is a
Hurwitz stable polynomial, the LTI system model behaves
asymptotically stable because time domain solutions consist
of exponentially decaying terms. Consequently, root locus
of characteristic polynomials has been widely used for the
asymptotic stability analyses of LTI systems. The left hand
side of complex plane, which is bounded by imaginary axis,
is considered as the stability region for root locus analysis of
integer order characteristic polynomials p(s).

In general, the characteristic polynomial p(s) is a multi-
valued function of the complex variable s, whose domain is
described by the principle sheet (the first sheet) of Riemann
surfaces, defined in an argument range −π < arg(s) < π[2].
As known, Hurwitz stability region (HSR) for characteristic
polynomial roots is the left half plane of the first sheet, which
can be defined according to root arguments as π/2 < arg(s) <
3π/2. It is convenient to call the argument bounds with angles
of −π/2 and π/2 as the Hurwitz stability boundary (HSB) for
characteristic root locus[18]. The set of complex points with
arguments −π/2 and π/2 also refers to the imaginary axis.

Definition 2 (Hurwitz stable fractional order polynomi-
als). Let us consider a fractional order polynomial with real co-
efficients expressed in the form of pf (s) =

∑n
i=0 cis

αi , where
αi ≥ 0 and αi ∈ R+ is the fractional orders of the polynomi-
als. The case of α0 = 0 yields the constant term of polynomi-
als. In order to facilitate root locus analysis of fractional order
LTI systems, s = vm mapping has been used to transform
a fractional order characteristic polynomial to the expanded
degree integer order characteristic polynomials. It was shown
by many works that one can carry out stability analysis of
fractional order systems by examining root locus of the ex-
panded degree integer-order characteristic polynomials, given
as pf (s)|s=vm = pm(v) =

∑n
i=0 civ

mαi [2−3, 5−6, 13−14].
Here, each mαi for i = 0, 1, 2, . . . , n is an integer number.
Following the s = vm mapping, the first Riemann sheet is
confined into a plane slice with the argument range −π/m <
arg(v) < π/m[2] and stability analyses were carried out in
the first Riemann sheet[10−11, 13−14, 18]. In related works, by
applying s = vm mapping, interval characteristic polynomials
were recognized to be stable, in the case that all roots in the
first Riemann sheet lie in complex plane slice with argument
ranges of (π/2m,π/m] and [−π/m,−π/2m). Detailed works

on the solution of fractional order characteristic polynomials
were elaborated in [18] for analysis and design of control
systems. Some useful properties of power mapping can be
stated as follows:

Remark 1 (Magnitude and argument properties of
power mapping). Let us consider the fraction order real
polynomial pf (s), where complex input variable is defined as
s = Mejθ ∈ C. The s = vm transformation maps the function
pf (s) to a real polynomial pm(v), where v = M̃ejφ ∈ C such
that the magnitude is M̃ = M (1/m) and the argument is φ =
θ/m.

Proof. This remark was previously mentioned in [3−4]. In
order to better see mapping properties of s = vm transfor-
mation, one can write reverse transformation as v = s1/m =
M (1/m)ejθ/m for a complex point s = Mejθ, where parame-
ters M and θ stand for the magnitude and argument of points
in s domain. After rearranging v = M (1/m)ejθ/m in the form
of v = M̃ejφ, it is obvious that s = vm transformation maps
the complex point in s domain to a point in v domain, where
the argument is φ = θ/m and the magnitude is M̃ = M (1/m).

¤
Remark 2 (Hurwitz stability region under s = vm map-

ping). An integer order characteristic polynomial is Hurwitz
stable, if all characteristic roots lie in the left half side of
complex plane. In case of s = vm mapping, the Hurwitz
stability region is mapped into (π/2m,π/m] for positive root
arguments and [−π/m,−π/2m) for negative root arguments.

Proof. Let us express Hurwitz stability region, given by
−π/2 < arg(s) < π/2, as combination of π/2 < θ < π for
positive root arguments and −π < θ < −π/2 for negative
root arguments. Here, θ is the argument of a point in s
domain and written as θ = arg(s). By considering root
argument transformation φ = θ/m in Remark 1, Hurwitz
stability region is mapped to (π/2m,π/m] for positive root
arguments and [−π/m, −π/2m) for negative root arguments
under s = vm mapping. Fig. 1 depicts the mapping of Hurwitz
stability region under s = vm mapping for stability analysis.

¤

Fig. 1. Hurwitz stability region of fractional order characteristic
polynomials under s = vm mapping[4].

Lemma 1 (Conservation of argument and magnitude re-
lations). s = vm mapping of real polynomials is conservative
in term of argument and magnitude relations. In other words,
s = vm mapping conserves spatial relations between roots
of s domain while mapping in v domain. For m ∈ Z+, the
following root argument relations are valid,
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θi > θj , θl < θk, θu = θq,

⇒ φi > φj , φl < φk, φu = φq, (1)

and the following root magnitude relations are also valid under
s = vm mapping,

Mi > Mj , Ml < Mk, Mu = Mq,

⇒ M̃i > M̃j , M̃l < M̃k, M̃u = M̃q. (2)

Proof. For m ∈ Z+, one can write the following relations
for arguments according to Remark 1,

θi > θj → θi

m
>

θj

m
→ φi > φj ,

θl > θk → θl

m
>

θk

m
→ φl > φk,

θu > θp → θu

m
>

θp

m
→ φu > φp.

And the following relations for magnitudes,

Mi < Mj → M
( 1

m )
i < M

( 1
m )

j → M̃i < M̃j ,

Ml > Mk → M
( 1

m )

l > M
( 1

m )

k → M̃l > M̃k,

Mu > Mq → M
( 1

m )
u > M

( 1
m )

q → M̃u > M̃q.

¤
This lemma tells us that argument and magnitude relations

are conserved under s = vm mapping.

III. PROBLEM STATEMENT

Fractional order LTI systems are represented by the frac-
tional order differential equations in the form of [19],

anDαny(t) + an−1D
αn−1y(t) + · · ·+ a1D

α1y(t) + a0y(t)
= bmDϕmu(t) + bm−1D

ϕm−1u(t) + · · ·
+ b1D

ϕ1u(t) + b0u(t). (3)

By using Laplace transform L {Dαf(t)} = sαF (s) for f(0+)
= 0[19], fractional order transfer functions are written to
express system model in continuous frequency domain as
follows.

T (s) =
Y (s)
U(s)

=

m∑
i=0

bis
ϕi

n∑
i=0

aisαi

, (4)

where denominator polynomial coefficients ai and numerator
polynomial coefficients bi are real numbers. The fractional
orders of the system are denoted by αi ∈ R (i = 0, 1, 2, 3,
. . . , n) and ϕi ∈ R (i = 0, 1, 2, 3, . . . , m). For α0 = 0 and ϕ0

= 0, the system models have constant terms a0 and b0. Here,
the model orders satisfy αn > αn−1 > αn−2 > · · · > α2 >
α1 > 0 and ϕn > ϕn−1 > ϕn−2 > · · · > ϕ2 > ϕ1 > 0.

In real systems, unpredictable parameter deviations and
change of operating conditions lead to reduce consistency
of system modeling. Therefore, a relevant modeling of real
systems is not always possible to obtain by means of nominal
LTI system models. The system modeling with parametric
interval uncertainty is more convenient for the control sys-
tem design problems compared to nominal system models.

Because, systems can operate more effectively in real control
application when controller performance is designed robust for
possible ranges of system parameter variations. The character-
istic polynomials of transfer functions with interval uncertainty
are expressed as,

∆(s) =
n∑

i=0

[ai āi]sαi , (5)

where the parameters [ai āi] represent uncertainty of the coef-
ficient ai, which refers to deviation between a lower (ai) and
an upper (āi) bound. In practice, interval uncertainty bounds
of the nominal coefficient ai can be expressed by considering
parameter deviation (∆ai) as [ai āi] = [ai −∆ai ai + ∆ai].
The checking of boundary conditions for robust stability is
useful for control system design problems[18]. Example 3 is
devoted to searching of the boundaries for allowable parameter
deviation of robust stable control system according to edge
theorem.

By applying s = vm to (5), one obtains expanded degree
integer order characteristic polynomials in the form of,

∆m(v) =
n∑

i=0

[ai āi]vβi , (6)

where βi ∈ Z+∪{0} is expanded degree integer order, which
is defined as βi = mαi.

The uncertainty box of interval coefficients defines a hyper-
rectangle (n-orthotope) denoted by A, which is written as
Cartesian product of interval polynomial coefficients ai ≤ ai

≤ āi, i = 1, 2, 3, . . . , n,

A =
n∏

i=0

[ai āi]. (7)

A point of the hyper-rectangle is represented by coefficient
vector a = [a1 a2 a3 · · · an]. Each vector a from hyper-
rectangle Astands for a fractional order polynomial from the
interval polynomial family that is denoted by the set Ω ∈
Rn[14]. By considering real positive coefficient vectors, the
hyper-rectangle A can be also expressed as A = {a : 0 < ai

≤ ai ≤ āi, i = 1, 2, 3, . . . , n}[14].
Let us assume that each characteristic polynomial from the

set Ω has ξ numbers of complex roots, denoted by vr in the
complex v plane. The number of complex roots depends on
the degree of ∆m(v) and it can be found by ξ = mαn. The
complex roots of the interval polynomial family Ω form a set
of roots in the first Riemann sheet, which can be written as[14],

R(Ω) = {vr : ∆m(a, vr) = 0 ∧ |arg(vr)| < π

m
,

∀a ∈ A, r = 1, 2, 3, . . . , ξ}. (8)

Since expanded degree integer order characteristic polynomi-
als are real coefficient integer order polynomials, complex
roots lie symmetrically with respect to the real axis in complex
v plane. The root region can be split into three subsets, R(Ω) =
R(Ω)− ∪ R(Ω)0∪R(Ω)+, according to root arguments. Here,
R(Ω)+, R(Ω)− and R(Ω)0 represent subsets of R(Ω) formed
with positive argument roots, negative argument roots and
zero argument roots, respectively. The complex conjugate roots
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present symmetry at positive and negative argument sides[20],
that is, one can state |arg(R(Ω)−)| ≡ |arg(R(Ω)+)| for
complex conjugate root arguments. Therefore, analysis given
for positive arguments roots (φ > 0) is also valid for negative
argument roots (φ < 0). This leads us to the conclusion;
when R(Ω)0 is empty set, if only minimum positive argument
characteristic roots lie in the stability region (π/2m,π/m]
in the first Riemann sheet under s = vm mapping, then the
interval system can be recognized as Hurwitz stable[5, 15, 18].

min{arg(R(Ω))} >
π

2m
. (9)

Edge theorem is conformal under s = vm mapping due to
Lemma 1. Because, conservation of argument and magnitude
relations under power mapping ensures that root constellation
in HSR of complex s plane is preserved in HSR of complex
v plane and vice versa. Since argument relations of all edge
and vertex roots are conserved under power mapping, edge
theorem can be extended to complex v plane. On the other
hand, due to the conservation of root argument relations
according to Lemma 1, it is easy to see that if the minimum
argument root in s domain lies in HSR region, it lies in HSR
region of v domain. Fig. 2 depicts the mapping relations of the
root constellation and vice versa. Lemma 1 also suggests us
that vertex and edge of R(Ω) in v plane are also vertex and
edge polynomials in s plane.

Theorem 1. (Conformity of minimum argument roots un-
der power mapping): Under s = vm mapping (m > 0),
theminimum argument root of a fractional order polynomial
in s plane is mapped to the minimum argument root of its
expanded integer order polynomials in v plane. Therefore,
Hurwitz stability is conserved under power mapping.

Proof. Let us denote set of root arguments of all edges and
vertex roots of R(Ω) as,

ψ = arg(R(Ω)) = {φ1, φ2, φ3, . . . , φk}. (10)

The minimum argument of root set R(Ω) is φmin =
min{arg(R(Ω))}. If the condition φmin > π/2m is satisfied,
the root set R(Ω) lies in Hurwitz stability region defined as
(π/2m, π/m] in Remark 2 due to the fact that ∀φi ∈ ψ, φi ≥
φmin > π/2m. One can rearrange it as mφi ≥ mφmin > π/2,
which refers to θi ≥ θmin > π/2 where θmin = mφmin

and θi = mφi according to Remark 1. Therefore, if the
expanded degree integer order characteristic polynomials are
Hurwitz stable, fractional order characteristic polynomial is
also Hurwitz stable. It is shown for unstable cases in the same
manner. One can state that the stability properties related with
root locus are conformal under power mapping. ¤

It is noteworthy that the root region in v plane is indeed the
scaled and rotated image of root region in s plane according to
magnitudeand argument properties (M̃ = M (1/m), φ = θ/m)
given in Remark 1. A graph defined by edge and vertices roots
on root region R(Ω) is preserved under power mapping.

IV. IMPLICATIONS OF EDGE THEOREM WITH MINIMUM
ARGUMENT ROOT PRINCIPLE FOR FRACTIONAL ORDER

INTERVAL POLYNOMIALS

Edge theorem provides consistent solutions for the robust
stability analyses of integer-order LTI interval systems[1]. For

Fig. 2. Argument and magnitude relations are conformal under
power mappings (Root placements in s and v planes conserve
argument relations).

fractional order interval systems, an application of edge theo-
rem for numerical robust stability analysis was demonstrated
by Senol et al.[14]. The boundary of root region in the first
Riemann sheet was represented by roots of exposed edge
polynomials of interval coefficient hyper-rectangle. In this sec-
tion, with consideration of minimum argument root principle
for vertex and its connected edge polynomials, author aims
to reduce computational complexity of the robust stability
analysis of fractional order system models. Fig. 3 (a) depicts
the exposed edge and vertex polynomials of hyper-rectangle
A, which was drawn for the case of three interval coefficients.
Fig. 3 (b) illustrates the corresponding roots of exposed edge
and vertex polynomials of hyper-rectangle A in the first
Riemann sheet. Fig. 3 (c) indicates the minimum argument
vertex root and roots of its connected edges. This study
suggests that analysis of roots in Fig. 3 (c) can significantly
reduce computational complexity of robust stability analysis
of fractional order interval polynomials.

Edge theorem also implies that boundary of root region is
formed by roots of vertex and exposed edge polynomials of
uncertainty box, which is represented by hyper-rectangle A
of interval coefficients. It is obvious that the change of root
location with respect to the change of polynomial coefficients
is continuous due to the fact that polynomials and their
coefficient intervals are continuous. According to this reason,
the most outer roots of root region R(Ω) can come from
edge and vertex polynomials of hyper-rectangle A. A given
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root region seen in Fig. 4 validates this effect. Boundaries of
root region were formed by roots of vertex and exposed edges
polynomials of A.

Fig. 3. Illustrations for three-dimensional hyper-rectangle and root
placements ((a) An illustration of vertex (u1, u2, u3, . . . , u8) and
exposed edges (e1, e2, e3, . . . , e8) of hyper-rectangle A build for
three interval coefficients; (b) Root locus of exposed edge and vertex
polynomials; (c) Root locus of minimum argument vertex polynomial
and roots of connected exposed edge polynomials.)

As known, n number of uncertain parameters builds 2n

vertices on the hyper-rectangle. Coefficient vectors of vertex
polynomials of A were expressed as Cartesian products of
upper and lower bounds of interval coefficients[14],

uk = {a0, ā0} × {a1, ā1} × {a2, ā2} × · · ·
× {

an−1, ān−1

}× {an, ān} , (11)

where “×” represents Cartesian product operator. Let us
express vertex polynomials of expanded degree integer order
interval polynomials as,

∆uk
= ∆m(uk, v), k = 1, 2, 3, . . . , 2n. (12)

Exposed edges are line segments connecting vertices through
the surfaces of A as illustrated in Fig. 3 (a). The edge poly-

nomials can be obtained by sampling coefficient vectors from
exposed edge of A[14],

ek = {a0, ā0} × {a1, ā1} × {a2, ā2} × · · ·
× s(ak, λ)× · · · × {

an−1, ān−1

}× {an, ān} (13)

where s(ak, λ) is edge sampling function and defined linearly
as s(ak, λ) = λak + (1− λ)āk, λ ∈ [0, 1]. Edge polynomials
of expanded degree integer order interval characteristic poly-
nomial are expressed as,

∆ek
= ∆m(ek, v). (14)

Fig. 4. Root region of expanded degree integer order interval poly-
nomial ∆10(v) = [2.1 2.6]v21 + [1.2 1.7]v8 + [0.7 1.3] in the first
Riemann sheet. Roots from edge polynomials and roots from vertex
polynomials of hyper-rectangle A are indicated by blue dots and red
asterisks, respectively.

It is unnecessary to check all edge polynomials for robust
stability checking. Because, if one can show that minimum
argument root lies in stability region, the interval system is
robust stable. Computational complexity of robust stability
analysis based on root locus strongly depends on the number
of tested polynomials and the number of polynomials to be
solved increases depending on the number of exposed edges
of hyper-rectangle, which is expressed as n2n−1, where n is
the number of interval coefficients.

Our approach to reduce complexity of numerical analysis
is to consider only connected exposed edge polynomials of
the minimum argument vertex polynomial. The number of the
connected edges of a vertex is n. Complexity reduction de-
pending on edge number can be expressed depending on total
edge counts as G(n) = n/(n2n−1) = 2−n+1. This indicates
an exponential decay of complexity reduction depending on
considered edge counts.

Set of vertex roots in the root region R(Ω) can be expressed
as

Ru(Ω) = {v : ∆uk
(a, v) = 0 ∧ |arg(v)| < π

m
,

∀a ∈ A, k = 1, 2, 3, . . . , 2n}. (15)

Set of exposed edge roots in the root region R(Ω) can be
expressed as
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Re(Ω) = {v : ∆ek
(a, v) = 0 ∧ |arg(v)| < π

m
,

∀a ∈ A, k = 1, 2, 3, . . . , n2n−1}. (16)

Edge theorem suggests that stability checking of all exposed
edge polynomials is sufficient to show robust stability of
integer order interval characteristic polynomials. Considering
this theorem and using power mapping, stability analyses
according to test of polynomials taken from all exposed edge
and vertex polynomials (Ru(Ω) ∪ Re(Ω)) were discussed in
[14]. In the case of sampling edges with np polynomials (np

> 2), the method in [14] requires test of npn2n−1 + 2n

polynomials. Here, npn2n−1 polynomials are for sampling
of edges and 2n polynomials are for vertex polynomials. In
order to simplify robust stability analyses, the following two
approaches are proposed in this study:

1) Test of minimum argument vertex with connected edge
polynomials (MVCE): For positive interval coefficient polyno-
mials, it can be possible to reduce number of test polynomials
by only evaluating stability of the minimum argument vertex
polynomial and its connected edge polynomials. It requires
the calculation of roots from Ru(Ω)∪Rce(Ω), where Rce(Ω)
∈ Re(Ω) is a subset of edge roots. It needs only testing
of the exposed edge polynomials connected to the minimum
argument vertex that is defined as min{arg(Ru(Ω))}. In the
case of an edge polynomial sampling with np polynomials,
MVCE approach requires the test of npn + 2n polynomials.
This approach is valid under the assumption that the branch
of edge graph, composed of the minimum argument vertex
and its connected edges, includes the minimum argument root
of A. Since the boundary of root region is formed by only
roots of vertex and exposed edge polynomials of A, minimum
argument root is the most likely to be on the minimum
argument vertex or its connected edge polynomials.

2) Test of minimum argument vertex (MV): It is possible to
reduce further the number of test polynomials by considering
only vertex polynomials of hyper-rectangle A. This approach
requires calculation of min{arg(Ru(Ω))}, so it performs the
test of 2n polynomials. This test relies on the assumption that
minimum argument roots probably come from vertex poly-
nomials of hyper-rectangle because the interval polynomial
coefficients are continuous and lead to continuity of root locus.
The most distant polynomials of hyper-rectangle A are vertex
polynomials. The roots of vertex polynomials of A form the
vertices of root region.

Table I shows the number of the test polynomials re-
quired for robust stability analysis for edge theorem based
approaches. Fig. 5 shows increase of test polynomials with
respect to number of interval coefficients (n) for 20 poly-
nomials edge sampling (np = 20). It can be seen that the
test of minimum argument vertex polynomials (MV) is very
advantageous in term of computational complexity.

Fig. 5. Number of the tested polynomials required for test of all
edge and vertex polynomials (AEAV), for the test of minimum
argument vertex with connected edge polynomials (MVCE) and for
the test of minimum argument vertex polynomials (MV).

V. ILLUSTRATIVE EXAMPLES

Initial conditions of systems were assumed to be zero for
all parameters in numerical analyses.

Example 1. By considering the fractional order LTI nominal
system described by fractional order differential equations[3],

0.8D2.2y(t) + 0.5D0.9y(t) + y(t) = u(t). (17)

Let us check robust stability of this system for interval
uncertainty of coefficients given as 0.8± 0.4 = [0.4 1.2], 0.5
± 0.2 = [0.3 0.7] and 1± 0.3 = [0.7 1.3].

To simplify analysis of interval system, one can express it
in the form of transfer function with zero initial conditions as

G(s) =
Y (s)
U(s)

=
1

[0.4 1.2]s2.2 + [0.3 0.7]s0.9 + [0.7 1.3]
,

(18)

TABLE I
ROBUST STABILITY ANALYSIS APPROACHES BASED ON EDGE THEOREM FOR REAL POSITIVE COEFFICIENT INTERVAL

CHARACTERISTIC POLYNOMIALS

Approaches based on edge theorem Number of test polynomials Basic assumptions

Test of all edge and vertex npn2n−1 + 2n The test of all exposed edge polynomials

polynomials (AEAV)[14] from A is sufficient to show robust stability

Test of minimum argument vertex with npn + 2n Set of minimum argument vertex with connected edge polynomials

connected edge polynomials (MVCE) generally includes minimum argument root of A

Test of minimum argument vertex 2n Minimum argument root is probably

polynomials (MV) the root of vertex polynomials of A
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and the characteristic polynomial of the system is found as

∆(s) = [0.4 1.2]s2.2 + [0.3 0.7]s0.9 + [0.7 1.3]. (19)

By applying s = vm mapping, the expanded degree integer
order characteristic polynomial is written as,

∆10(v) = [0.4 1.2]v22 + [0.3 0.7]v9 + [0.7 1.3]. (20)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆10([0.4 0.3 0.7], v), ∆u2 = ∆10([0.4 0.3 1.3], v),

∆u3 = ∆10([0.4 0.7 0.7], v), ∆u4 = ∆10([0.4 0.7 1.3], v),

∆u5 = ∆10([1.2 0.3 0.7], v), ∆u6 = ∆10([1.2 0.3 1.3], v),

∆u7 = ∆10([1.2 0.7 0.7], v), ∆u8 = ∆10([1.2 0.7 1.3], v)}

We performed edge sampling with 19 polynomials (np =
19) in numerical analyses, so edge sampling function can
be written as s(ak, λ) = λak + (1 − λ)āk, where λ ∈
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55,
0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95} and k = {1, 2,
3}. Set of edge polynomials were obtained as,

{∆e1 = ∆10([(λ0.4 + (1− λ)1.2) 0.3 0.7], v),

∆e2 = ∆10([(λ0.4 + (1− λ)1.2) 0.3 1.3], v),

∆e3 = ∆10([(λ0.4 + (1− λ)1.2) 0.7 0.7], v),

∆e4 = ∆10([(λ0.4 + (1− λ)1.2) 0.7 1.3], v),

∆e5 = ∆10([ 0.4 (λ0.3 + (1− λ)0.7) 0.7], v),

∆e6 = ∆10([ 0.4 (λ0.3 + (1− λ)0.7) 1.3], v),

∆e7 = ∆10([ 1.2 (λ0.3 + (1− λ)0.7) 0.7], v),

∆e8 = ∆10([ 1.2 (λ0.3 + (1− λ)0.7) 1.3], v),

∆e9 = ∆10([ 0.4 0.3 (λ0.7 + (1− λ)1.3)], v),

∆e10 = ∆10([ 0.4 0.7 (λ0.7 + (1− λ)1.3)], v),

∆e11 = ∆10([ 1.2 0.3 (λ0.7 + (1− λ)1.3)], v),

∆e12 = ∆10([ 1.2 0.7 (λ0.7 + (1− λ)1.3)], v)}.

Figs. 6 (a) and 6 (b) show roots of vertex and edge poly-
nomials of A in the first Riemann sheet. Roots of vertex
polynomials are indicated by blue asterisks. Roots of minimum
argument vertex and connected edge polynomial are indicated
by red dots in complex v plane. Minimum argument root is the
root of vertex polynomial ∆u6 = ∆10([1.2 0.3 1.3], v) and the
value of minimum argument is φmin = min{arg(R(Ω))} =
0.0487 radian. Since it is lower than the stability boundary φs

= π
20 , the interval system is not robust stable.
Fig. 7 shows step response of 8 vertex polynomials. The step

response obtained for u6 = [1.2 0.3 1.3] confirms the unstable
response of the interval system.

Example 2. By considering the closed loop control of
electrical heater, which was modeled by fractional order plant
function, G(s) = Y (s)

U(s) = 1
39.96s1.25+0.598 , and the integer

Fig. 6. Root placement for Example 1 ((a) Roots of vertex and
edge polynomials; (b) Close view of minimum argument vertex and
connected edge polynomials.)

Fig. 7. Step responses of vertex polynomials.

order PD controller, C(s) = 64.47 + 12.46s[3], let us check
robust stability of closed loop control system for interval
uncertainty given as the following:

For electrical heater model, parameter deviations are 39.96
± 5.3 = [34.66 45.26] and 0.58 ± 0.12 = [0.46 0.7], and for
the controller function, parameter deviations are 64.47± 11.5
= [52.97 75.97] and 12.46± 3.36 = [9.10 15.82].

The resulting closed loop transfer function of interval sys-
tem becomes,

T (s) =
Y (s)
U(s)

=
[9.10 15.82]s + [52.97 75.97]

[34.66 45.26]s1.25 + [9.10 15.82]s + [53.43 76.67]
,

(21)
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and then characteristic polynomial of the system can be
expressed as,

∆(s) = [34.66 45.26]s1.25 + [9.10 15.82]s + [53.43 76.67].
(22)

By applying s = v100 mapping, the expanded degree integer
order characteristic polynomial is written as,

∆100(v) = [34.66 45.26]v125 + [9.10 15.82]v100

+ [53.43 76.67]. (23)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆100([34.66 9.10 53.43], v),

∆u2 = ∆100([34.66 9.10 76.67], v),

∆u3 = ∆100([34.66 15.83 53.43], v),

∆u4 = ∆100([34.66 15.83 76.67], v),

∆u5 = ∆100([45.26 9.10 53.43], v),

∆u6 = ∆100([45.26 9.10 76.67], v),

∆u7 = ∆100([45.26 15.82 53.43], v),

∆u8 = ∆100([45.26 15.82 76.67], v)}.
We used 19 polynomials edge sampling (np = 19) in

numerical analyses. Set of edge polynomials can be written
as,

{∆e1 = ∆100([(λ34.66 + (1− λ)45.26) 9.10 53.43], v),

∆e2 = ∆100([(λ34.66 + (1− λ)45.26) 9.10 76.67], v),

∆e3 = ∆100([(λ34.66 + (1− λ)45.26) 15.82 53.43], v),

∆e4 = ∆100([(λ34.66 + (1− λ)45.26) 15.82 76.67], v),

∆e5 = ∆100([ 34.66 (λ9.10 + (1− λ) 15.82) 53.43], v),

∆e6 = ∆100([ 34.66 (λ9.10 + (1− λ) 15.82) 76.67], v),

∆e7 = ∆100([ 45.26 (λ9.10 + (1− λ) 15.82) 53.43], v),

∆e8 = ∆100([ 45.26 (λ9.10 + (1− λ) 15.82) 76.67], v),

∆e9 = ∆100([ 34.66 9.10 (λ53.43 + (1− λ) 76.67) ], v),

∆e10 = ∆100([ 34.66 15.82 (λ53.43 + (1− λ) 76.67) ], v),

∆e11 = ∆100([ 45.26 9.10 (λ53.43 + (1− λ) 76.67) ], v),

∆e12 = ∆100([ 45.26 15.82 (λ53.43 + (1− λ) 76.67) ], v)}.
Figs. 8 (a) and 8 (b) show roots of vertex and edge poly-

nomials in the first Riemann sheet. Minimum argument root
is the root of vertex polynomial ∆u6 = ∆100([45.26 9.10
76.67], v) and the value of minimum argument is φmin =
min{arg(R(Ω))} = 0.0259 radian. Since minimum argument
root lies in HSR defined with the root argument interval
(π/200, π/100], the interval system is robust stable.

Fig. 9 shows step responses of 8 vertex polynomials and
confirms robust stability of the closed loop electrical heater
control system for the given parameter deviation ranges.

Example 3. By considering the closed loop electrical heater
control system given in previous example as the plant function
G(s) = Y (s)

U(s) = 1
39.96s1.25+0.598 and PD controller of system,

C(s) = 64.47 + 12.46s. By using edge theorem approaches,
let us find out interval uncertainly ranges of γ that make the
closed loop control system robust stable.

Fig. 8. Root placement for Example 2 ((a) Roots of vertex and
edge polynomials; (b) Close view of minimum argument vertex and
connected edge polynomials.)

Fig. 9. Step responses of vertex polynomials.

It is convenient to write closed loop transfer function of
system:

T (s) =
Y (s)
U(s)

=
12.46s + 64.47

(39.96± γ)s1.25 + (12.46± γ)s + (65.068± γ)
.

(24)

Then, the characteristic polynomial was obtained as,

∆(s) = (39.96±γ) s1.25+(12.46±γ)s+(65.068±γ). (25)

By applying s = v100 mapping, the expanded degree integer
order characteristic polynomial is written as,
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∆100(v) = (39.96±γ) v125 +(12.46±γ)v100 +(65.068±γ).
(26)

Vertex polynomials of expanded degree integer order interval
characteristic polynomial were obtained as

{∆u1 = ∆100([(39.96− γ) (12.46− γ) (65.068− γ)], v),

∆u2 = ∆100([(39.96− γ) (12.46− γ) (65.068 + γ)], v),

∆u3 = ∆100([(39.96− γ) (12.46 + γ) (65.068− γ)], v),

∆u4 = ∆100([(39.96− γ) (12.46 + γ) (65.068 + γ)], v),

∆u5 = ∆100([(39.96 + γ) (12.46− γ) (65.068− γ)], v),

∆u6 = ∆100([(39.96 + γ) (12.46− γ) (65.068 + γ)], v),

∆u7 = ∆100([(39.96 + γ) (12.46 + γ) (65.068− γ)], v),

∆u8 = ∆100([(39.96 + γ) (12.46 + γ) (65.068 + γ)], v)}.
We used 19 polynomials edge sampling. Then, edge poly-

nomials were obtained as,

{∆e1 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46− γ)(65.068− γ)], v),

∆e2 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46− γ)(65.068 + γ)], v),

∆e3 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46 + γ)(65.068− γ)], v),

∆e4 = ∆100([(λ(39.96− γ)
+ (1− λ)(39.96 + γ))(12.46 + γ)(65.068 + γ)], v),

∆e5 = ∆100([(39.96− γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068− γ)], v),

∆e6 = ∆100([(39.96− γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068 + γ)], v),

∆e7 = ∆100([(39.96 + γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068− γ)], v),

∆e8 = ∆100([(39.96 + γ)(λ(12.46− γ)
+ (1− λ)(12.46 + γ))(65.068 + γ)], v),

∆e9 = ∆100([(39.96− γ)(12.46− γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e10 = ∆100([(39.96− γ)(12.46 + γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e11 = ∆100([[(39.96 + γ)(12.46− γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v),

∆e12 = ∆100([(39.96 + γ)(12.46 + γ)(λ(65.068− γ)
+ (1− λ)(65.068 + γ) )], v)}.

Figs. 10 (a)-10 (h) show roots of vertex and edge polynomi-
als in the first Riemann sheet for various values of γ. Table II
lists minimum argument of vertex roots with respect to value
of γ. Graphical results shown in Fig.10 indicate that interval
uncertain control system is robust stable for γ ≤ 27.

In this example, all edge and vertex polynomials (AEAV)
method[14] requires the test of 236 polynomials (19.3.22+23),
minimum argument vertex with connected edge polynomials
(MVCE) method requires the test of 65 polynomials (19.3 +
23) and minimum argument vertex polynomials (MV) method
requires the test of 8 polynomials (23). Examples numerically
reveal that MVCE and MV can reduce computational com-
plexity of robust stability analysis based on edge theorem;
however there is need for theoretical verification of basic
assumptions of MVCE and MV approaches.

VI. CONCLUSIONS

This study confirms that Hurwitz stability analysis of frac-
tional order characteristic polynomials is valid in v plane under
power mapping. As known, it is difficult to calculate root locus
of fractional order characteristic polynomials in s domain.
The s = vm power mapping significantly simplifies stability
analyses of fractional order polynomials. The problem turns
into the Hurwitz stability analysis of expanded degree integer
order polynomials in the first Riemann sheet.

It is important to investigate impacts of power mapping
on root locus and stability related properties. Preliminarily,
this paper revealed properties of s = vm mapping related
with stability analysis and root locus: It was shown that root
argument and magnitude relations are conserved under power
mapping. This is an important remark of power mapping
that leads to conformity of root locus analysis given in v
plane for the fractional order systems defined in s plane. The
conservation of argument and magnitude relations leads to
conservation of the geometrical properties of root constellation
under power mapping transformations between complex s and
v planes. Thus, the minimum argument root of expanded
degree integer order polynomials in complex v plane is also

TABLE II
MINIMUM ARGUMENT OF VERTEX POLYNOMIAL ROOTS AND SYSTEM STABILITY FOR VARIOUS γ

Value of γ Minimum angle vertex polynomial number (1-8) Minimum argument of vertex polynomials (Radian) Robust stability

1 6 0.0263 Stable

5 6 0.0258 Stable

10 6 0.0254 Stable

15 1 0.0246 Stable

20 1 0.0231 Stable

25 1 0.0193 Stable

27 1 0.0158 Stable

28 1 0.0128 Unstable
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Fig. 10. Root regions of vertex and edge polynomials in the first Riemann sheet for (a) γ = 1, (b) γ = 5, (c) γ = 10, (d) γ = 15,
(e) γ = 20, (f) γ = 25, (g) γ = 27 and (h) γ = 28.

minimum argument root of fractional order polynomial in the s
plane. This property provides the validity of Hurwitz stability
and implication of edge theorem under power mapping and it
makes possible the robust stability analysis of fractional order
interval polynomials according to robust stability of expanded
degree integer order polynomials complex v plane.

To utilize edge theorem based approach for robust stability
analysis of fractional order control systems. Author numer-
ically demonstrated two robust stability analysis approaches
based on minimum root argument analyses of vertex and
exposed edge polynomials in v plane. These approaches were
shown to reduce the number of test polynomials for the
parametric robust stability analyses of fractional order systems.
It was observed in numerical calculations that the test of only
vertex polynomials can significantly reduce computational
complexity of robust stability analyses for interval charac-
teristic polynomials with positive real coefficients. It should
be noted that results are valid under the assumption that
minimum argument root comes from vertex and/or connected
edge polynomials of hyper-rectangle. Results of numerical
examples confirm the validity of this assumption. However,
there is need for a future study addressing properties of zeros
in polynomial arithmetics for the theoretical proof of this
assumption.

This study contributes to advance our understanding on
implications of power mapping for root locus and stability
properties of fractional order systems.
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