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Cyber-Physical Systems as General Distributed
Parameter Systems: Three Types of Fractional Order
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Abstract—Cyber-physical systems (CPSs) are man-made com-
plex systems coupled with natural processes that, as a whole,
should be described by distributed parameter systems (DPSs) in
general forms. This paper presents three such general models
for generalized DPSs that can be used to characterize complex
CPSs. These three different types of fractional operators based
DPS models are: fractional Laplacian operator, fractional power
of operator or fractional derivative. This research investigation
is motivated by many fractional order models describing natu-
ral, physical, and anomalous phenomena, such as sub-diffusion
process or super-diffusion process. The relationships among these
three different operators are explored and explained. Several po-
tential future research opportunities are then articulated followed
by some conclusions and remarks.

Index Terms—Cyber-physical systems (CPSs), generalized dis-
tributed parameter systems (DPSs), fractional Laplacian opera-
tor, fractional power of operator, fractional derivative.

I. INTRODUCTION

IT is well known that the cyber-physical systems (CPSs)
with integrated computational and physical processes can

be regarded as a new generation of control systems and can
interact with humans through many new modalities[1]. The
objective of CPS is to develop new science and engineering
methods in which cyber and physical designs are compatible,
synergistic, and integrated at all scales. Besides, as we all
know, the distributed parameter systems (DPSs) can be used
to well characterize those cyber-physical process[2−3] and the
actions and measurements of the system studied are better
described by utilizing the actuators and sensors, which was
first introduced by El Jai and Pritchard in [4] and mainly
focused on the locations, number and spatial distributions of
the actuators and sensors.

Moreover, in the past several decades, fractional calculus
has shown great potential in science and engineering appli-
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cations and some phenomena such as self-similarity, non-
stationary, non-Gaussian process and short or long memory
process are all closely related to fractional calculus[5−7]. It
is now widely believed that, using fractional calculus in
modeling can better capture the complex dynamics of natural
and man-made systems, and fractional order controls can offer
better performance not achievable before using integer order
controls[8−9].

Motivated by the above arguments, in this paper, let Ω be
an open bounded subset of Rn with smooth boundary ∂Ω and
we consider the following fractional DPSs:

zt(x, t) + Az(x, t) = u(x, t) in Ω× [0, b], (1)

where b > 0 is a given constant, u is the control input
depending on the number and the structure of actuators and
A may be a fractional Laplacian operator, a fractional power
of operator or a fractional derivative.

The contribution of this present paper is to analyze the
relationship among the fractional Laplacian operator, fractional
power of operator and fractional derivative and try to explore
the opportunities and research challenges related to the frac-
tional order DPSs emerging at the same time. To the best of our
knowledge, no result is available on this topic. We hope that
the results here could provide some insights into the control
theory of this field and be used in real-life applications.

The rest of the paper is organized as follows. The re-
lationship among fractional Laplacian operator, fractional
power of operator and fractional derivative are explored in
Section II. In Section III, the emerging research opportunities
of the fractional order DPSs with those three operators are
discussed. Several conclusions and remarks of this paper are
given in the last section.

II. THREE DIFFERENT TYPES OF OPERATORS

In this section, we shall introduce some basic relationships
among the fractional Laplacian operator, fractional power of
operator and fractional derivative. For further information, we
refer the readers to papers from [10] to [36] in the reference
section of the present paper and the references cited therein.

A. Fractional Laplacian Operator and Fractional Power of
Operator

This subsection is devoted to the difference between the
fractional Laplacian operator and fractional power of operator.
For more details, please see [10−15] and their cited references.



354 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 2, NO. 4, OCTOBER 2015

Let us denote (−4)α/2 the nonlocal operator (also called
the fractional Laplacian operator) defined pointwise by the
following Cauchy principal value integral

(−4)α/2f(x) = CαP.V.

∫

R

f(x)− f(y)
|x− y|1+α

dy, 0 < α < 2, (2)

where Cα = 2αΓ(1/2+α/2)√
π|Γ(−α/2)| is a constant dependent on the

order α. Obviously, we see that the fractional Laplacian
(−4)α/2 is a nonlocal operator which depends on the pa-
rameter α and recovers the usual Laplacian as α → 2. For
more information about the fractional Laplacian operator, see
[16−20] and the references cited therein. Now we have the
following result.

Theorem 1[21]. Suppose that (−4)α/2 is defined in L2(0, l)
for α ∈ (0, 2). Then, the eigenvalues of the following spectral
problem

(−4)α/2ξ(x) = λξ(x), x ∈ (0, l), (3)

where ξ ∈ L2(0, l) is extended to all R by 0 is

λn =
(

nπ

l
− (2− α)π

4l

)α

+ O

(
1
n

)
(4)

satisfying
0 < λ1 < λ2 ≤ · · · ≤ λi ≤ · · · .

Moreover, the corresponding eigenfunctions ξn of λn, after
normalization, form a complete orthonormal basis in L2(0, l).

Note that the constant in the error term O
(

1
n

)
tends to zero

when α approaches 2 and in the particular case, when α = 2,
we see that λn = (nπ/l)2 without the error term.

However, for a positive operator A on bounded domain
[0, l], suppose 0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · are the
eigenvalues of A, {ξ1, ξ2, . . . , ξn, . . .} are the corresponding
eigenfunctions and ξn (i = 1, 2, . . .) form an orthonormal
basis of L2(0, l). Let (·, ·) be the inner product of L2(0, l).
We define the fractional power of operator A as follows:

Aβf(x) =
∞∑

n=1

λβ
n(ξn, f)ξn(x), f ∈ L2(0, l). (5)

Then λβ
n (i = 1, 2, . . .) are the eigenvalues of Aβ . This implies

that the two operators are different.
Moreover, the work spaces of the two operators (fractional

Laplacian operator and fractional power of operator A) are
different. Before stating our main results, we first introduce
two Banach spaces, which are specified in [11, 13, 14, 16].

For Ω ⊆ Rn is a bounded domain, s ∈ (0, 1) and
p ∈ [1,∞), we define the classical Sobolev space W s,p(Ω)
as follows[13]:

W s,p(Ω) :=
{

f ∈ Lp(Ω) :
f(x)− f(y)
|x− y|n

p +s
∈ Lp(Ω× Ω)

}
(6)

endowed with the natural norm

‖f‖W s,p(Ω)

:=
(∫

Ω
|f(x)|pdx +

∫
Ω

∫
Ω
|f(x)−f(y)|p
|x−y|n+sp dxdy

)1/p

is an intermediary Banach space between Lp(Ω) and W 1,p(Ω).
When a non-integer s > 1, let s = m + σ with m ∈ N

and σ ∈ (0, 1). In this case, let Dβf with |β| = m be the
distributed derivative of f , then the classical Sobolev space
W s,p(Ω) defined by

W s,p(Ω) :=
{

f ∈ Wm,p(Ω) : Dβf ∈ W σ,p(Ω) for
all β such that |β| = m

}
(7)

with respect to the norm

‖f‖W s,p(Ω) :=
(
‖f‖p

W m,p(Ω) + ‖Dβf‖p
W σ,p(Ω)

)1/p

(8)

is a Banach space. Clearly, if s = m is an integer, the space
W s,p(Ω) coincides with the Sobolev space Wm,p(Ω).

Besides, let ρ(x) ∼ 1
δα(x) with δ(x) = dist(x,Ωc). Define

another space as follows:

W s,p
ρ (Ω) := {f ∈ W s,p(Ω) : ρ(x)f(x) ∈ Lp(Ω)} (9)

with the norm

‖f‖W s,p
ρ (Ω)

:=
(∫

Ω
|ρ(x)f(x)|pdx +

∫
Ω

∫
Ω
|f(x)−f(y)|p
|x−y|n+sp dxdy

)1/p

.
(10)

Actually, W s,p
ρ (Ω) is called nonlocal Sobolev space and we

have W s,p
ρ (Ω) ⊆ W s,p(Ω)[14, 16].

By the Remark 2.1 in [11], for the fractional power of
operator, we take the classical fractional Sobolev space as
its work space. But for fractional Laplacian operator, we
must take the nonlocal Sobolev space as its work space,
which can be regarded as the weighted fractional Sobolev
space. More precisely, for any element f ∈ W s,p(Ω), since
−4 is a local operator and we do not know how f(x)
approaches 0 when x → ∂Ω. Even if considering the space
W s,p

0 (Ω);= {f ∈ W s,p(Ω) : f |∂Ω = 0}, we only know that
the function f = 0 on the boundary and we do not know
how f approaches 0. However, for the fractional Laplacian
operator, it is a nonlocal operator and it is defined in the whole
space. So, it provides information about how f approaches 0
as x → ∂Ω. In fact, from the definition of nonlocal Sobolev
space, we know that f(x)

δα(x) → 0 as x → ∂Ω, which dictates
how f approaches 0 near boundary. It coincides with the result
of the Theorem 1.2 in [22]. Thus, this is a significant difference
between the fractional power of operator A = −4 and the
fractional Laplacian operator.

Besides, it is well known that

‖4f‖W s,p(Ω) = ‖f‖W s+2,p(Ω).

But for the fractional Laplacian operator (−4)α,

‖(−4)αf‖W s,p(Ω) = ‖f‖W s+2α,p(Ω)

will not hold. By using Fourier transform, we have

‖(−4)αf‖W s,p
ρ (Ω) = ‖f‖W s+2α,p

ρ (Ω).

Finally, by [15], let X be a rotationally invariant stable pro-
cess of index α ∈ (0, 1). Its symbol is given by η(f) = −|f |α
for all f ∈ Rn. It is instructive to accept that η is the symbol
for a legitimate differential operator; then, using the usual
correspondence fj → −i∂j for 1 ≤ j ≤ n, we would write

A = η(Ω) = −
(√

−∂2
1 − · · · − ∂2

n

)α

= −(−4)α/2. (11)
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In fact, it is very useful to interpret η(Ω) as a fractional power
of the operator −4. However, for the fractional Laplacian
operator, it can be defined as the generator of α-stable Lévy
processes. More precisely, if Xt is the isotropic α-stable Lévy
processes starting at zero and f is a smooth function, then

(−4)α/2f(x) = lim
h→0+

E[f(x)− f(x + Xh)]
h

. (12)

This also indicates that the fractional power of operator −4
and the fractional Laplacian operator are different.

B. Fractional Laplacian Operator and Fractional Derivative
This subsection is focused on the relationship between

the fractional Laplacian operator and the Riesz fractional
derivative.

Definition 1[23]. The Riesz fractional operator for n− 1 <
α ≤ n on a finite interval 0 ≤ x ≤ l is defined as

∂α

∂|x|α f(x) =
−1

2 cos(απ
2 )

[0Dα
x + xDα

l ] f(x), (13)

where

0Dα
x f(x) =

1
Γ(n− α)

∂n

∂xn

∫ x

0

(x− η)−α−1+nf(η)dη

and

xDα
l f(x) =

(−1)n

Γ(n− α)
∂n

∂xn

∫ l

x

(η − x)−α−1+nf(η)dη

are the left-sided and right-sided Riemann-Liouville fractional
derivative, respectively.

Moreover, according to [24], the fractional Laplacian is
the operator with symbol |x|α. In other words, the following
formula holds:

(−4)α/2f(x) = F−1|x|αFf(x), (14)

where F and F−1 denote the Fourier transform and inverse
Fourier transform of f(x), respectively. We refer the readers
to [25] for a detailed proof of the equivalence between the two
definitions (1) and (2) of fractional Laplacian operator.

By using Luchko’s theorem in [26], we obtain the following
result on the equivalent relationship between the Riesz frac-
tional derivative ∂α

∂|x|α and the fractional Laplacian operator
−(−4)α/2.

Lemma 1[27]. For a function f(x) defined on the finite
domain [0, l], and f(0) = f(l) = 0, the following equality
holds:

− (−4)α/2
f(x) =

−1
2 cos(απ

2 )
[0Dα

x f(x) + xDα
l f(x)]

=
∂α

∂|x|α f(x),

where α ∈ (1, 2) and the space fractional derivative ∂α

∂|x|α is
a Riesz fractional derivative.

For more information on the analytical solution of the
generalized multi-term time and space fractional partial dif-
ferential equations with Dirichlet nonhomogeneous boundary
conditions, we refer the readers to [27]. For more information
on the numerical solution of fractional partial differential
equation with Riesz space fractional derivatives on a finite
domain, consult [28−29].

C. Fractional Derivative and Fractional Power of Operator

In this part, we first show the following definition of the
positive operator.

Definition 2[30]. The operator A is said to be positive if
its spectrum σ(A) lies in the interior of the sector of angle
ϕ ∈ (0, π), symmetric with respect to the real axis, and if
on the edges of this sector, S1 = {ρeiϕ : 0 ≤ ρ < ∞} and
S2 = {ρe−iϕ : 0 ≤ ρ < ∞}, and outside it the resolvent
(λI −A)−1 is subject to the bound

∥∥(λI −A)−1
∥∥ ≤ M(ϕ)

1 + |λ| . (15)

Moreover, for a positive operator A, any α > 0, one can
define the negative fractional power of operator A by the
following formula[31]:

A−α =
1

2πi

∫

Γ

λ−αR(λ)dλ,

(
R(λ) = (A− λI)−1,
Γ = S1 ∪ S2

)
. (16)

It is then quite easy to see that A−α is a bounded operator,
which is an entire function of α, satisfying A−α = A−n if α
is an integer n, and A−(α+β) = A−αA−β for all α, β ∈ C.
Using (16), we have

A−α =
1

2πi

∫ 0

−∞
λ−αR(λ)dλ +

1
2πi

∫ −∞

0

λ−αR(λ)dλ. (17)

Then taking the integration along the lower and upper sides
of the cut respectively: λ = se−πi and λ = seπi, it follows
that

A−α =
eαπi

2πi

∫ ∞

0

s−αR(−s)ds− e−απi

2πi

∫ ∞

0

s−αR(−s)ds

=
cos(απ) + i sin(απ)

2πi

∫ ∞

0

s−αR(−s)ds

− cos(απ)− i sin(απ)

2πi

∫ ∞

0

s−αR(−s)ds

=
sin(απ)

π

∫ ∞

0

s−αR(−s)ds

=
1

Γ(α)Γ(1− α)

∫ ∞

0

s−αR(−s)ds.

Moreover, for any α ∈ (n− 1, n), we get that

Aαf = Aα−nAnf =

∫∞
0

sα−nR(−s)Anfds

Γ(n− α)Γ(1 + α− n)
. (18)

and for more properties on the fractional power of a positive
operator, please see [32−35] and the references cited therein.

Now we are ready to state the following results on the
connection of fractional derivative and integral with fractional
power of positive operator.

Theorem 2. Let the absolutely space

ACn[0, l] := {f : f (n−1)(x) ∈ C[0, l], f (n)(x) ∈ L2[0, l]}
and let A be the operator defined by the formula Af(x) =
f ′(x) with the domain

{f : f ∈ ACn[0, l], f (n)(0) = 0}.
Then A is a positive operator in the Banach space ACn[0, l]
and

Aαf(x) = 0D
α
x f(x), n− 1 < α < n (19)
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for all f(x) ∈ D(A).
Proof. By [36], the operator A+ sI (s ≥ 0) has a bounded

inverse and the resolvent of A is given by
(
(A + sI)−1

f
)

(x) =
∫ x

0

e−s(x−y)f(y)dy. (20)

Then the operator A is a positive operator in ACn[0, l] and
(17) gives

Aαf(x) =

∫∞
0

sα−nR(−s)Anf(x)ds

Γ(n− α)Γ(1 + α− n)

=

∫∞
0

sα−n (A + sI)−1 f (n)(x)ds

Γ(n− α)Γ(1 + α− n)

=

∫∞
0

sα−n
∫ x

0
e−s(x−y)f (n)(y)dyds

Γ(n− α)Γ(1 + α− n)

=

∫ x

0

[∫∞
0

sα−ne−s(x−y)ds
]
f (n)(y)dy

Γ(n− α)Γ(1 + α− n)
.

Let s(x− y) = λ, we get that
∫ ∞

0

sα−ne−s(x−y)ds = (x− y)n−α−1

∫ ∞

0

λα−ne−λdλ

= (x− y)n−α−1Γ(α− n + 1).

Then

Aαf(x) =

∫ x

0
(x− y)n−α−1Γ(α− n + 1)f (n)(y)dy

Γ(n− α)Γ(1 + α− n)

=
1

Γ(n− α)

∫ x

0

(x− y)n−α−1f (n)(y)dy

= 0D
α
x f(x).

¤

III. THE EMERGING RESEARCH OPPORTUNITIES

Recent advances in modeling and control of fractional
diffusion systems, fractional reaction-diffusion systems and
fractional reaction-diffusion-advection systems have been re-
viewed in the framework of CPSs. The fractional order DPSs
have now been found wide applications for describing many
physical phenomena, such as sub-diffusion or super-diffusion
processes. At the same time, to our best knowledge, many
problems are still open calling for research cooperation of
multi-disciplines such as mathematical modelling, engineering
applications, and information sciences.

First, it is worth noting that in the more recent
monograph[37], the theory of pseudo-differential operators with
singular symbols, and the connections between them and
those three types of operators are explored. See [38−40] for
more knowledge on pseudo-differential operator. Moreover,
we claim that those equivalences between fractional Lapla-
cian operator and fractional derivative, fractional order of
operator and fractional derivative discussed in this paper can
introduce new mathematical vehicles to study fractional order
generalized DPSs. For example, when we study a fractional
DPSs with Riesz fractional derivative, by Lemma 1 in Section
II-B, the spectral representation methods can be used to
characterize the solution of the dynamic system. Then we can
study the existence of solutions, stability, controllability and
observability of the system under consideration.

Potential topics such as modeling the sub-diffusion or super-
diffusion processes with consideration of the networked mo-
bile actuators and mobile sensors, the communication among
the actuators and sensors, collocated or non-collocated actua-
tors and sensors, their robustness and optimality problems are
all interesting and worthy much more efforts in future. An-
other interesting and important topic concerns the time-space
fractional DPSs where the traditional first order derivative is
replaced by a fractional order derivative with respect to the
time t.

Furthermore, in the case of diffusion systems, it is worth
mentioning that, in general, not all the states can be reached
in the whole domain of interest[4, 41−42] and it would be
more challenging in nature since the dynamics of the real-
life control problem is always hybrid continuous and discrete.
Due to the spatial-temporal sampling and discrete nature of
decision and control, the notions of regional analysis should
be introduced, i.e., we can consider the regional stability,
regional controllability, regional observability etc. of the sys-
tem under consideration. In addition, as stated in [43], from
an application point of view, some plain questions such as
“How many actuators/sensors are sufficient and how to best
configure them for a fractional DPSs control process?”, “Given
the desirable zone shape, is it possible to control or contain
the fractional diffusion process within the given zone?”, if
not, “How to quantify the controllability/observability of the
actuators/sensors” and etc. might be asked, which in fact
raises some important theoretical challenges and open new
opportunities for further research.

IV. CONCLUSION

This paper is concerned with the fractional order DPSs
with three different operators: fractional Laplacian operator,
fractional power of operator and fractional derivative. The rela-
tionship among the three operators and the emerging research
opportunities are introduced. We hope that the results here
could provided some insight into the control theory analysis
of fractional order DPSs in particular and CPSs in general.
The results presented here can also be extended to complex
fractional order DPSs and various open questions are still
pending. For instance, the problem of regional optimal control
of fractional order DPSs with more complicated sensing and
actuation configurations are of great interest.
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process and their associated time-fractional order pseudo-differential
equations. Journal of Theoretical Probability, 2012, 25(1): 262−279

[39] Umarov S. Algebra of pseudo-differential operators with variable ana-
lytic symbols and propriety of the corresponding equations. Differential
Equations, 1991, 27(6): 753−759

[40] Hahn M, Umarov S. Fractional Fokker-Planck-Kolmogorov type equa-
tions and their associated stochastic differential equations. Fractional
Calculus and Applied Analysis, 2011, 14(1): 56−79

[41] Afifi L, Chafia A, El Jai A. Regionally efficient and strategic actuators.
International Journal of Systems Science, 2002, 33(1): 1−12

[42] Ge F D, Chen Y Q, Kou C H. Regional controllability of anomalous
diffusion generated by the time fractional diffusion equations. In: Pro-
ceedings of the 2015 ASME International Design Engineering Techni-
cal Conferences (ASME IDETC/CIE 2015), Boston, 2015, DETC2015-
46697. See also: arXiv preprint arXiv: 1508. 00047

[43] Chen Y Q, Moore K L, Song Z. Diffusion boundary determination and
zone control via mobile actuator-sensor networks (MAS-net): challenges
and opportunities. In: Proceedinds of SPIE, Intelligent Computing:
Theory and Applications II. Orlando, FL: SPIE, 2004, 5421: 102−113

Fudong Ge Ph. D. candidate in the College of
Information Science and Technology of Donghua
University, China. He joined the MESA Lab of
the University of California, Merced in October,
2014 as an exchange Ph. D. student hosted by Prof.
YangQuan Chen. His research interests include ex-
istence, stability of solutions for fractional differen-
tial equations, continuous time random walks and
anomalous diffusion systems, distributed measure-
ment and distributed control problems in general
distributed parameter systems or cyber-physical sys-

tems in general form.

YangQuan Chen earned his Ph. D. degree in ad-
vanced control and instrumentation from Nanyang
Technological University, Singapore, in 1998. Dr.
Chen was on the Faculty of Electrical and Com-
puter Engineering at Utah State University before
he joined the School of Engineering, University
of California, Merced in 2012 where he teaches
“Mechatronics” for juniors and “Fractional Order
Mechanics” for graduates. His current research in-
terests include mechatronics for sustainability, cog-
nitive process control and hybrid lighting control,

multi-UAV based cooperative multi-spectral “personal remote sensing” and
applications, applied fractional calculus in controls, signal processing and
energy informatics, distributed measurement and distributed control of dis-
tributed parameter systems using mobile actuator and sensor networks. Cor-
responding author of this paper.

Chunhai Kou received his Ph. D. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2002. He joined the Department of Science,
Donghua University in 2004 where he teaches “Sta-
bility Analysis of Nonlinear Differential Equations”,
“Theory and Applications of Fractional Differential
Equations” and “Mathematical Analysis”. His cur-
rent research interests include stability analysis of
differential equations based on the Lyapunov the-
ory, basic theory of differential inclusions, applied
fractional calculus in controls, existence, stability of

solutions for the fractional differential equations.


